GNU Linux-libre 6.7.9-gnu
[releases.git] / arch / arm64 / kvm / va_layout.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/kvm_host.h>
8 #include <linux/random.h>
9 #include <linux/memblock.h>
10 #include <asm/alternative.h>
11 #include <asm/debug-monitors.h>
12 #include <asm/insn.h>
13 #include <asm/kvm_mmu.h>
14 #include <asm/memory.h>
15
16 /*
17  * The LSB of the HYP VA tag
18  */
19 static u8 tag_lsb;
20 /*
21  * The HYP VA tag value with the region bit
22  */
23 static u64 tag_val;
24 static u64 va_mask;
25
26 /*
27  * Compute HYP VA by using the same computation as kern_hyp_va().
28  */
29 static u64 __early_kern_hyp_va(u64 addr)
30 {
31         addr &= va_mask;
32         addr |= tag_val << tag_lsb;
33         return addr;
34 }
35
36 /*
37  * Store a hyp VA <-> PA offset into a EL2-owned variable.
38  */
39 static void init_hyp_physvirt_offset(void)
40 {
41         u64 kern_va, hyp_va;
42
43         /* Compute the offset from the hyp VA and PA of a random symbol. */
44         kern_va = (u64)lm_alias(__hyp_text_start);
45         hyp_va = __early_kern_hyp_va(kern_va);
46         hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va;
47 }
48
49 /*
50  * We want to generate a hyp VA with the following format (with V ==
51  * vabits_actual):
52  *
53  *  63 ... V |     V-1    | V-2 .. tag_lsb | tag_lsb - 1 .. 0
54  *  ---------------------------------------------------------
55  * | 0000000 | hyp_va_msb |   random tag   |  kern linear VA |
56  *           |--------- tag_val -----------|----- va_mask ---|
57  *
58  * which does not conflict with the idmap regions.
59  */
60 __init void kvm_compute_layout(void)
61 {
62         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
63         u64 hyp_va_msb;
64
65         /* Where is my RAM region? */
66         hyp_va_msb  = idmap_addr & BIT(vabits_actual - 1);
67         hyp_va_msb ^= BIT(vabits_actual - 1);
68
69         tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
70                         (u64)(high_memory - 1));
71
72         va_mask = GENMASK_ULL(tag_lsb - 1, 0);
73         tag_val = hyp_va_msb;
74
75         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
76                 /* We have some free bits to insert a random tag. */
77                 tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
78         }
79         tag_val >>= tag_lsb;
80
81         init_hyp_physvirt_offset();
82 }
83
84 /*
85  * The .hyp.reloc ELF section contains a list of kimg positions that
86  * contains kimg VAs but will be accessed only in hyp execution context.
87  * Convert them to hyp VAs. See gen-hyprel.c for more details.
88  */
89 __init void kvm_apply_hyp_relocations(void)
90 {
91         int32_t *rel;
92         int32_t *begin = (int32_t *)__hyp_reloc_begin;
93         int32_t *end = (int32_t *)__hyp_reloc_end;
94
95         for (rel = begin; rel < end; ++rel) {
96                 uintptr_t *ptr, kimg_va;
97
98                 /*
99                  * Each entry contains a 32-bit relative offset from itself
100                  * to a kimg VA position.
101                  */
102                 ptr = (uintptr_t *)lm_alias((char *)rel + *rel);
103
104                 /* Read the kimg VA value at the relocation address. */
105                 kimg_va = *ptr;
106
107                 /* Convert to hyp VA and store back to the relocation address. */
108                 *ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va));
109         }
110 }
111
112 static u32 compute_instruction(int n, u32 rd, u32 rn)
113 {
114         u32 insn = AARCH64_BREAK_FAULT;
115
116         switch (n) {
117         case 0:
118                 insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
119                                                           AARCH64_INSN_VARIANT_64BIT,
120                                                           rn, rd, va_mask);
121                 break;
122
123         case 1:
124                 /* ROR is a variant of EXTR with Rm = Rn */
125                 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
126                                              rn, rn, rd,
127                                              tag_lsb);
128                 break;
129
130         case 2:
131                 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
132                                                     tag_val & GENMASK(11, 0),
133                                                     AARCH64_INSN_VARIANT_64BIT,
134                                                     AARCH64_INSN_ADSB_ADD);
135                 break;
136
137         case 3:
138                 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
139                                                     tag_val & GENMASK(23, 12),
140                                                     AARCH64_INSN_VARIANT_64BIT,
141                                                     AARCH64_INSN_ADSB_ADD);
142                 break;
143
144         case 4:
145                 /* ROR is a variant of EXTR with Rm = Rn */
146                 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
147                                              rn, rn, rd, 64 - tag_lsb);
148                 break;
149         }
150
151         return insn;
152 }
153
154 void __init kvm_update_va_mask(struct alt_instr *alt,
155                                __le32 *origptr, __le32 *updptr, int nr_inst)
156 {
157         int i;
158
159         BUG_ON(nr_inst != 5);
160
161         for (i = 0; i < nr_inst; i++) {
162                 u32 rd, rn, insn, oinsn;
163
164                 /*
165                  * VHE doesn't need any address translation, let's NOP
166                  * everything.
167                  *
168                  * Alternatively, if the tag is zero (because the layout
169                  * dictates it and we don't have any spare bits in the
170                  * address), NOP everything after masking the kernel VA.
171                  */
172                 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN) || (!tag_val && i > 0)) {
173                         updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
174                         continue;
175                 }
176
177                 oinsn = le32_to_cpu(origptr[i]);
178                 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
179                 rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
180
181                 insn = compute_instruction(i, rd, rn);
182                 BUG_ON(insn == AARCH64_BREAK_FAULT);
183
184                 updptr[i] = cpu_to_le32(insn);
185         }
186 }
187
188 void kvm_patch_vector_branch(struct alt_instr *alt,
189                              __le32 *origptr, __le32 *updptr, int nr_inst)
190 {
191         u64 addr;
192         u32 insn;
193
194         BUG_ON(nr_inst != 4);
195
196         if (!cpus_have_cap(ARM64_SPECTRE_V3A) ||
197             WARN_ON_ONCE(cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)))
198                 return;
199
200         /*
201          * Compute HYP VA by using the same computation as kern_hyp_va()
202          */
203         addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector));
204
205         /* Use PC[10:7] to branch to the same vector in KVM */
206         addr |= ((u64)origptr & GENMASK_ULL(10, 7));
207
208         /*
209          * Branch over the preamble in order to avoid the initial store on
210          * the stack (which we already perform in the hardening vectors).
211          */
212         addr += KVM_VECTOR_PREAMBLE;
213
214         /* movz x0, #(addr & 0xffff) */
215         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
216                                          (u16)addr,
217                                          0,
218                                          AARCH64_INSN_VARIANT_64BIT,
219                                          AARCH64_INSN_MOVEWIDE_ZERO);
220         *updptr++ = cpu_to_le32(insn);
221
222         /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
223         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
224                                          (u16)(addr >> 16),
225                                          16,
226                                          AARCH64_INSN_VARIANT_64BIT,
227                                          AARCH64_INSN_MOVEWIDE_KEEP);
228         *updptr++ = cpu_to_le32(insn);
229
230         /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
231         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
232                                          (u16)(addr >> 32),
233                                          32,
234                                          AARCH64_INSN_VARIANT_64BIT,
235                                          AARCH64_INSN_MOVEWIDE_KEEP);
236         *updptr++ = cpu_to_le32(insn);
237
238         /* br x0 */
239         insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
240                                            AARCH64_INSN_BRANCH_NOLINK);
241         *updptr++ = cpu_to_le32(insn);
242 }
243
244 static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst)
245 {
246         u32 insn, oinsn, rd;
247
248         BUG_ON(nr_inst != 4);
249
250         /* Compute target register */
251         oinsn = le32_to_cpu(*origptr);
252         rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
253
254         /* movz rd, #(val & 0xffff) */
255         insn = aarch64_insn_gen_movewide(rd,
256                                          (u16)val,
257                                          0,
258                                          AARCH64_INSN_VARIANT_64BIT,
259                                          AARCH64_INSN_MOVEWIDE_ZERO);
260         *updptr++ = cpu_to_le32(insn);
261
262         /* movk rd, #((val >> 16) & 0xffff), lsl #16 */
263         insn = aarch64_insn_gen_movewide(rd,
264                                          (u16)(val >> 16),
265                                          16,
266                                          AARCH64_INSN_VARIANT_64BIT,
267                                          AARCH64_INSN_MOVEWIDE_KEEP);
268         *updptr++ = cpu_to_le32(insn);
269
270         /* movk rd, #((val >> 32) & 0xffff), lsl #32 */
271         insn = aarch64_insn_gen_movewide(rd,
272                                          (u16)(val >> 32),
273                                          32,
274                                          AARCH64_INSN_VARIANT_64BIT,
275                                          AARCH64_INSN_MOVEWIDE_KEEP);
276         *updptr++ = cpu_to_le32(insn);
277
278         /* movk rd, #((val >> 48) & 0xffff), lsl #48 */
279         insn = aarch64_insn_gen_movewide(rd,
280                                          (u16)(val >> 48),
281                                          48,
282                                          AARCH64_INSN_VARIANT_64BIT,
283                                          AARCH64_INSN_MOVEWIDE_KEEP);
284         *updptr++ = cpu_to_le32(insn);
285 }
286
287 void kvm_get_kimage_voffset(struct alt_instr *alt,
288                             __le32 *origptr, __le32 *updptr, int nr_inst)
289 {
290         generate_mov_q(kimage_voffset, origptr, updptr, nr_inst);
291 }
292
293 void kvm_compute_final_ctr_el0(struct alt_instr *alt,
294                                __le32 *origptr, __le32 *updptr, int nr_inst)
295 {
296         generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0),
297                        origptr, updptr, nr_inst);
298 }