GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / arm64 / kvm / va_layout.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/kvm_host.h>
8 #include <linux/random.h>
9 #include <linux/memblock.h>
10 #include <asm/alternative.h>
11 #include <asm/debug-monitors.h>
12 #include <asm/insn.h>
13 #include <asm/kvm_mmu.h>
14
15 /*
16  * The LSB of the random hyp VA tag or 0 if no randomization is used.
17  */
18 static u8 tag_lsb;
19 /*
20  * The random hyp VA tag value with the region bit if hyp randomization is used
21  */
22 static u64 tag_val;
23 static u64 va_mask;
24
25 static void compute_layout(void)
26 {
27         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
28         u64 hyp_va_msb;
29         int kva_msb;
30
31         /* Where is my RAM region? */
32         hyp_va_msb  = idmap_addr & BIT(vabits_actual - 1);
33         hyp_va_msb ^= BIT(vabits_actual - 1);
34
35         kva_msb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
36                         (u64)(high_memory - 1));
37
38         if (kva_msb == (vabits_actual - 1)) {
39                 /*
40                  * No space in the address, let's compute the mask so
41                  * that it covers (vabits_actual - 1) bits, and the region
42                  * bit. The tag stays set to zero.
43                  */
44                 va_mask  = BIT(vabits_actual - 1) - 1;
45                 va_mask |= hyp_va_msb;
46         } else {
47                 /*
48                  * We do have some free bits to insert a random tag.
49                  * Hyp VAs are now created from kernel linear map VAs
50                  * using the following formula (with V == vabits_actual):
51                  *
52                  *  63 ... V |     V-1    | V-2 .. tag_lsb | tag_lsb - 1 .. 0
53                  *  ---------------------------------------------------------
54                  * | 0000000 | hyp_va_msb |    random tag  |  kern linear VA |
55                  */
56                 tag_lsb = kva_msb;
57                 va_mask = GENMASK_ULL(tag_lsb - 1, 0);
58                 tag_val = get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
59                 tag_val |= hyp_va_msb;
60                 tag_val >>= tag_lsb;
61         }
62 }
63
64 static u32 compute_instruction(int n, u32 rd, u32 rn)
65 {
66         u32 insn = AARCH64_BREAK_FAULT;
67
68         switch (n) {
69         case 0:
70                 insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
71                                                           AARCH64_INSN_VARIANT_64BIT,
72                                                           rn, rd, va_mask);
73                 break;
74
75         case 1:
76                 /* ROR is a variant of EXTR with Rm = Rn */
77                 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
78                                              rn, rn, rd,
79                                              tag_lsb);
80                 break;
81
82         case 2:
83                 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
84                                                     tag_val & GENMASK(11, 0),
85                                                     AARCH64_INSN_VARIANT_64BIT,
86                                                     AARCH64_INSN_ADSB_ADD);
87                 break;
88
89         case 3:
90                 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
91                                                     tag_val & GENMASK(23, 12),
92                                                     AARCH64_INSN_VARIANT_64BIT,
93                                                     AARCH64_INSN_ADSB_ADD);
94                 break;
95
96         case 4:
97                 /* ROR is a variant of EXTR with Rm = Rn */
98                 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
99                                              rn, rn, rd, 64 - tag_lsb);
100                 break;
101         }
102
103         return insn;
104 }
105
106 void __init kvm_update_va_mask(struct alt_instr *alt,
107                                __le32 *origptr, __le32 *updptr, int nr_inst)
108 {
109         int i;
110
111         BUG_ON(nr_inst != 5);
112
113         if (!has_vhe() && !va_mask)
114                 compute_layout();
115
116         for (i = 0; i < nr_inst; i++) {
117                 u32 rd, rn, insn, oinsn;
118
119                 /*
120                  * VHE doesn't need any address translation, let's NOP
121                  * everything.
122                  *
123                  * Alternatively, if we don't have any spare bits in
124                  * the address, NOP everything after masking that
125                  * kernel VA.
126                  */
127                 if (has_vhe() || (!tag_lsb && i > 0)) {
128                         updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
129                         continue;
130                 }
131
132                 oinsn = le32_to_cpu(origptr[i]);
133                 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
134                 rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
135
136                 insn = compute_instruction(i, rd, rn);
137                 BUG_ON(insn == AARCH64_BREAK_FAULT);
138
139                 updptr[i] = cpu_to_le32(insn);
140         }
141 }
142
143 void *__kvm_bp_vect_base;
144 int __kvm_harden_el2_vector_slot;
145
146 void kvm_patch_vector_branch(struct alt_instr *alt,
147                              __le32 *origptr, __le32 *updptr, int nr_inst)
148 {
149         u64 addr;
150         u32 insn;
151
152         BUG_ON(nr_inst != 5);
153
154         if (has_vhe() || !cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
155                 WARN_ON_ONCE(cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS));
156                 return;
157         }
158
159         if (!va_mask)
160                 compute_layout();
161
162         /*
163          * Compute HYP VA by using the same computation as kern_hyp_va()
164          */
165         addr = (uintptr_t)kvm_ksym_ref(__kvm_hyp_vector);
166         addr &= va_mask;
167         addr |= tag_val << tag_lsb;
168
169         /* Use PC[10:7] to branch to the same vector in KVM */
170         addr |= ((u64)origptr & GENMASK_ULL(10, 7));
171
172         /*
173          * Branch over the preamble in order to avoid the initial store on
174          * the stack (which we already perform in the hardening vectors).
175          */
176         addr += KVM_VECTOR_PREAMBLE;
177
178         /* stp x0, x1, [sp, #-16]! */
179         insn = aarch64_insn_gen_load_store_pair(AARCH64_INSN_REG_0,
180                                                 AARCH64_INSN_REG_1,
181                                                 AARCH64_INSN_REG_SP,
182                                                 -16,
183                                                 AARCH64_INSN_VARIANT_64BIT,
184                                                 AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX);
185         *updptr++ = cpu_to_le32(insn);
186
187         /* movz x0, #(addr & 0xffff) */
188         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
189                                          (u16)addr,
190                                          0,
191                                          AARCH64_INSN_VARIANT_64BIT,
192                                          AARCH64_INSN_MOVEWIDE_ZERO);
193         *updptr++ = cpu_to_le32(insn);
194
195         /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
196         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
197                                          (u16)(addr >> 16),
198                                          16,
199                                          AARCH64_INSN_VARIANT_64BIT,
200                                          AARCH64_INSN_MOVEWIDE_KEEP);
201         *updptr++ = cpu_to_le32(insn);
202
203         /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
204         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
205                                          (u16)(addr >> 32),
206                                          32,
207                                          AARCH64_INSN_VARIANT_64BIT,
208                                          AARCH64_INSN_MOVEWIDE_KEEP);
209         *updptr++ = cpu_to_le32(insn);
210
211         /* br x0 */
212         insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
213                                            AARCH64_INSN_BRANCH_NOLINK);
214         *updptr++ = cpu_to_le32(insn);
215 }