GNU Linux-libre 6.9.1-gnu
[releases.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20
21 #include <asm/cacheflush.h>
22 #include <asm/cputype.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/esr.h>
25 #include <asm/kvm_arm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/perf_event.h>
31 #include <asm/sysreg.h>
32
33 #include <trace/events/kvm.h>
34
35 #include "sys_regs.h"
36
37 #include "trace.h"
38
39 /*
40  * For AArch32, we only take care of what is being trapped. Anything
41  * that has to do with init and userspace access has to go via the
42  * 64bit interface.
43  */
44
45 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
46 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
47                       u64 val);
48
49 static bool bad_trap(struct kvm_vcpu *vcpu,
50                      struct sys_reg_params *params,
51                      const struct sys_reg_desc *r,
52                      const char *msg)
53 {
54         WARN_ONCE(1, "Unexpected %s\n", msg);
55         print_sys_reg_instr(params);
56         kvm_inject_undefined(vcpu);
57         return false;
58 }
59
60 static bool read_from_write_only(struct kvm_vcpu *vcpu,
61                                  struct sys_reg_params *params,
62                                  const struct sys_reg_desc *r)
63 {
64         return bad_trap(vcpu, params, r,
65                         "sys_reg read to write-only register");
66 }
67
68 static bool write_to_read_only(struct kvm_vcpu *vcpu,
69                                struct sys_reg_params *params,
70                                const struct sys_reg_desc *r)
71 {
72         return bad_trap(vcpu, params, r,
73                         "sys_reg write to read-only register");
74 }
75
76 #define PURE_EL2_SYSREG(el2)                                            \
77         case el2: {                                                     \
78                 *el1r = el2;                                            \
79                 return true;                                            \
80         }
81
82 #define MAPPED_EL2_SYSREG(el2, el1, fn)                                 \
83         case el2: {                                                     \
84                 *xlate = fn;                                            \
85                 *el1r = el1;                                            \
86                 return true;                                            \
87         }
88
89 static bool get_el2_to_el1_mapping(unsigned int reg,
90                                    unsigned int *el1r, u64 (**xlate)(u64))
91 {
92         switch (reg) {
93                 PURE_EL2_SYSREG(  VPIDR_EL2     );
94                 PURE_EL2_SYSREG(  VMPIDR_EL2    );
95                 PURE_EL2_SYSREG(  ACTLR_EL2     );
96                 PURE_EL2_SYSREG(  HCR_EL2       );
97                 PURE_EL2_SYSREG(  MDCR_EL2      );
98                 PURE_EL2_SYSREG(  HSTR_EL2      );
99                 PURE_EL2_SYSREG(  HACR_EL2      );
100                 PURE_EL2_SYSREG(  VTTBR_EL2     );
101                 PURE_EL2_SYSREG(  VTCR_EL2      );
102                 PURE_EL2_SYSREG(  RVBAR_EL2     );
103                 PURE_EL2_SYSREG(  TPIDR_EL2     );
104                 PURE_EL2_SYSREG(  HPFAR_EL2     );
105                 PURE_EL2_SYSREG(  CNTHCTL_EL2   );
106                 MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
107                                   translate_sctlr_el2_to_sctlr_el1           );
108                 MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
109                                   translate_cptr_el2_to_cpacr_el1            );
110                 MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
111                                   translate_ttbr0_el2_to_ttbr0_el1           );
112                 MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL             );
113                 MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
114                                   translate_tcr_el2_to_tcr_el1               );
115                 MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL             );
116                 MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL             );
117                 MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL             );
118                 MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL             );
119                 MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL             );
120                 MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL             );
121                 MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL             );
122                 MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,     NULL             );
123                 MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL             );
124         default:
125                 return false;
126         }
127 }
128
129 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
130 {
131         u64 val = 0x8badf00d8badf00d;
132         u64 (*xlate)(u64) = NULL;
133         unsigned int el1r;
134
135         if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
136                 goto memory_read;
137
138         if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
139                 if (!is_hyp_ctxt(vcpu))
140                         goto memory_read;
141
142                 /*
143                  * If this register does not have an EL1 counterpart,
144                  * then read the stored EL2 version.
145                  */
146                 if (reg == el1r)
147                         goto memory_read;
148
149                 /*
150                  * If we have a non-VHE guest and that the sysreg
151                  * requires translation to be used at EL1, use the
152                  * in-memory copy instead.
153                  */
154                 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
155                         goto memory_read;
156
157                 /* Get the current version of the EL1 counterpart. */
158                 WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
159                 return val;
160         }
161
162         /* EL1 register can't be on the CPU if the guest is in vEL2. */
163         if (unlikely(is_hyp_ctxt(vcpu)))
164                 goto memory_read;
165
166         if (__vcpu_read_sys_reg_from_cpu(reg, &val))
167                 return val;
168
169 memory_read:
170         return __vcpu_sys_reg(vcpu, reg);
171 }
172
173 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
174 {
175         u64 (*xlate)(u64) = NULL;
176         unsigned int el1r;
177
178         if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
179                 goto memory_write;
180
181         if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
182                 if (!is_hyp_ctxt(vcpu))
183                         goto memory_write;
184
185                 /*
186                  * Always store a copy of the write to memory to avoid having
187                  * to reverse-translate virtual EL2 system registers for a
188                  * non-VHE guest hypervisor.
189                  */
190                 __vcpu_sys_reg(vcpu, reg) = val;
191
192                 /* No EL1 counterpart? We're done here.? */
193                 if (reg == el1r)
194                         return;
195
196                 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
197                         val = xlate(val);
198
199                 /* Redirect this to the EL1 version of the register. */
200                 WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
201                 return;
202         }
203
204         /* EL1 register can't be on the CPU if the guest is in vEL2. */
205         if (unlikely(is_hyp_ctxt(vcpu)))
206                 goto memory_write;
207
208         if (__vcpu_write_sys_reg_to_cpu(val, reg))
209                 return;
210
211 memory_write:
212          __vcpu_sys_reg(vcpu, reg) = val;
213 }
214
215 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
216 #define CSSELR_MAX 14
217
218 /*
219  * Returns the minimum line size for the selected cache, expressed as
220  * Log2(bytes).
221  */
222 static u8 get_min_cache_line_size(bool icache)
223 {
224         u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
225         u8 field;
226
227         if (icache)
228                 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
229         else
230                 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
231
232         /*
233          * Cache line size is represented as Log2(words) in CTR_EL0.
234          * Log2(bytes) can be derived with the following:
235          *
236          * Log2(words) + 2 = Log2(bytes / 4) + 2
237          *                 = Log2(bytes) - 2 + 2
238          *                 = Log2(bytes)
239          */
240         return field + 2;
241 }
242
243 /* Which cache CCSIDR represents depends on CSSELR value. */
244 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
245 {
246         u8 line_size;
247
248         if (vcpu->arch.ccsidr)
249                 return vcpu->arch.ccsidr[csselr];
250
251         line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
252
253         /*
254          * Fabricate a CCSIDR value as the overriding value does not exist.
255          * The real CCSIDR value will not be used as it can vary by the
256          * physical CPU which the vcpu currently resides in.
257          *
258          * The line size is determined with get_min_cache_line_size(), which
259          * should be valid for all CPUs even if they have different cache
260          * configuration.
261          *
262          * The associativity bits are cleared, meaning the geometry of all data
263          * and unified caches (which are guaranteed to be PIPT and thus
264          * non-aliasing) are 1 set and 1 way.
265          * Guests should not be doing cache operations by set/way at all, and
266          * for this reason, we trap them and attempt to infer the intent, so
267          * that we can flush the entire guest's address space at the appropriate
268          * time. The exposed geometry minimizes the number of the traps.
269          * [If guests should attempt to infer aliasing properties from the
270          * geometry (which is not permitted by the architecture), they would
271          * only do so for virtually indexed caches.]
272          *
273          * We don't check if the cache level exists as it is allowed to return
274          * an UNKNOWN value if not.
275          */
276         return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
277 }
278
279 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
280 {
281         u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
282         u32 *ccsidr = vcpu->arch.ccsidr;
283         u32 i;
284
285         if ((val & CCSIDR_EL1_RES0) ||
286             line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
287                 return -EINVAL;
288
289         if (!ccsidr) {
290                 if (val == get_ccsidr(vcpu, csselr))
291                         return 0;
292
293                 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
294                 if (!ccsidr)
295                         return -ENOMEM;
296
297                 for (i = 0; i < CSSELR_MAX; i++)
298                         ccsidr[i] = get_ccsidr(vcpu, i);
299
300                 vcpu->arch.ccsidr = ccsidr;
301         }
302
303         ccsidr[csselr] = val;
304
305         return 0;
306 }
307
308 static bool access_rw(struct kvm_vcpu *vcpu,
309                       struct sys_reg_params *p,
310                       const struct sys_reg_desc *r)
311 {
312         if (p->is_write)
313                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
314         else
315                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
316
317         return true;
318 }
319
320 /*
321  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
322  */
323 static bool access_dcsw(struct kvm_vcpu *vcpu,
324                         struct sys_reg_params *p,
325                         const struct sys_reg_desc *r)
326 {
327         if (!p->is_write)
328                 return read_from_write_only(vcpu, p, r);
329
330         /*
331          * Only track S/W ops if we don't have FWB. It still indicates
332          * that the guest is a bit broken (S/W operations should only
333          * be done by firmware, knowing that there is only a single
334          * CPU left in the system, and certainly not from non-secure
335          * software).
336          */
337         if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
338                 kvm_set_way_flush(vcpu);
339
340         return true;
341 }
342
343 static bool access_dcgsw(struct kvm_vcpu *vcpu,
344                          struct sys_reg_params *p,
345                          const struct sys_reg_desc *r)
346 {
347         if (!kvm_has_mte(vcpu->kvm)) {
348                 kvm_inject_undefined(vcpu);
349                 return false;
350         }
351
352         /* Treat MTE S/W ops as we treat the classic ones: with contempt */
353         return access_dcsw(vcpu, p, r);
354 }
355
356 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
357 {
358         switch (r->aarch32_map) {
359         case AA32_LO:
360                 *mask = GENMASK_ULL(31, 0);
361                 *shift = 0;
362                 break;
363         case AA32_HI:
364                 *mask = GENMASK_ULL(63, 32);
365                 *shift = 32;
366                 break;
367         default:
368                 *mask = GENMASK_ULL(63, 0);
369                 *shift = 0;
370                 break;
371         }
372 }
373
374 /*
375  * Generic accessor for VM registers. Only called as long as HCR_TVM
376  * is set. If the guest enables the MMU, we stop trapping the VM
377  * sys_regs and leave it in complete control of the caches.
378  */
379 static bool access_vm_reg(struct kvm_vcpu *vcpu,
380                           struct sys_reg_params *p,
381                           const struct sys_reg_desc *r)
382 {
383         bool was_enabled = vcpu_has_cache_enabled(vcpu);
384         u64 val, mask, shift;
385
386         BUG_ON(!p->is_write);
387
388         get_access_mask(r, &mask, &shift);
389
390         if (~mask) {
391                 val = vcpu_read_sys_reg(vcpu, r->reg);
392                 val &= ~mask;
393         } else {
394                 val = 0;
395         }
396
397         val |= (p->regval & (mask >> shift)) << shift;
398         vcpu_write_sys_reg(vcpu, val, r->reg);
399
400         kvm_toggle_cache(vcpu, was_enabled);
401         return true;
402 }
403
404 static bool access_actlr(struct kvm_vcpu *vcpu,
405                          struct sys_reg_params *p,
406                          const struct sys_reg_desc *r)
407 {
408         u64 mask, shift;
409
410         if (p->is_write)
411                 return ignore_write(vcpu, p);
412
413         get_access_mask(r, &mask, &shift);
414         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
415
416         return true;
417 }
418
419 /*
420  * Trap handler for the GICv3 SGI generation system register.
421  * Forward the request to the VGIC emulation.
422  * The cp15_64 code makes sure this automatically works
423  * for both AArch64 and AArch32 accesses.
424  */
425 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
426                            struct sys_reg_params *p,
427                            const struct sys_reg_desc *r)
428 {
429         bool g1;
430
431         if (!p->is_write)
432                 return read_from_write_only(vcpu, p, r);
433
434         /*
435          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
436          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
437          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
438          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
439          * group.
440          */
441         if (p->Op0 == 0) {              /* AArch32 */
442                 switch (p->Op1) {
443                 default:                /* Keep GCC quiet */
444                 case 0:                 /* ICC_SGI1R */
445                         g1 = true;
446                         break;
447                 case 1:                 /* ICC_ASGI1R */
448                 case 2:                 /* ICC_SGI0R */
449                         g1 = false;
450                         break;
451                 }
452         } else {                        /* AArch64 */
453                 switch (p->Op2) {
454                 default:                /* Keep GCC quiet */
455                 case 5:                 /* ICC_SGI1R_EL1 */
456                         g1 = true;
457                         break;
458                 case 6:                 /* ICC_ASGI1R_EL1 */
459                 case 7:                 /* ICC_SGI0R_EL1 */
460                         g1 = false;
461                         break;
462                 }
463         }
464
465         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
466
467         return true;
468 }
469
470 static bool access_gic_sre(struct kvm_vcpu *vcpu,
471                            struct sys_reg_params *p,
472                            const struct sys_reg_desc *r)
473 {
474         if (p->is_write)
475                 return ignore_write(vcpu, p);
476
477         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
478         return true;
479 }
480
481 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
482                         struct sys_reg_params *p,
483                         const struct sys_reg_desc *r)
484 {
485         if (p->is_write)
486                 return ignore_write(vcpu, p);
487         else
488                 return read_zero(vcpu, p);
489 }
490
491 static bool trap_undef(struct kvm_vcpu *vcpu,
492                        struct sys_reg_params *p,
493                        const struct sys_reg_desc *r)
494 {
495         kvm_inject_undefined(vcpu);
496         return false;
497 }
498
499 /*
500  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
501  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
502  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
503  * treat it separately.
504  */
505 static bool trap_loregion(struct kvm_vcpu *vcpu,
506                           struct sys_reg_params *p,
507                           const struct sys_reg_desc *r)
508 {
509         u32 sr = reg_to_encoding(r);
510
511         if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) {
512                 kvm_inject_undefined(vcpu);
513                 return false;
514         }
515
516         if (p->is_write && sr == SYS_LORID_EL1)
517                 return write_to_read_only(vcpu, p, r);
518
519         return trap_raz_wi(vcpu, p, r);
520 }
521
522 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
523                            struct sys_reg_params *p,
524                            const struct sys_reg_desc *r)
525 {
526         u64 oslsr;
527
528         if (!p->is_write)
529                 return read_from_write_only(vcpu, p, r);
530
531         /* Forward the OSLK bit to OSLSR */
532         oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
533         if (p->regval & OSLAR_EL1_OSLK)
534                 oslsr |= OSLSR_EL1_OSLK;
535
536         __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
537         return true;
538 }
539
540 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
541                            struct sys_reg_params *p,
542                            const struct sys_reg_desc *r)
543 {
544         if (p->is_write)
545                 return write_to_read_only(vcpu, p, r);
546
547         p->regval = __vcpu_sys_reg(vcpu, r->reg);
548         return true;
549 }
550
551 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552                          u64 val)
553 {
554         /*
555          * The only modifiable bit is the OSLK bit. Refuse the write if
556          * userspace attempts to change any other bit in the register.
557          */
558         if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
559                 return -EINVAL;
560
561         __vcpu_sys_reg(vcpu, rd->reg) = val;
562         return 0;
563 }
564
565 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
566                                    struct sys_reg_params *p,
567                                    const struct sys_reg_desc *r)
568 {
569         if (p->is_write) {
570                 return ignore_write(vcpu, p);
571         } else {
572                 p->regval = read_sysreg(dbgauthstatus_el1);
573                 return true;
574         }
575 }
576
577 /*
578  * We want to avoid world-switching all the DBG registers all the
579  * time:
580  *
581  * - If we've touched any debug register, it is likely that we're
582  *   going to touch more of them. It then makes sense to disable the
583  *   traps and start doing the save/restore dance
584  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
585  *   then mandatory to save/restore the registers, as the guest
586  *   depends on them.
587  *
588  * For this, we use a DIRTY bit, indicating the guest has modified the
589  * debug registers, used as follow:
590  *
591  * On guest entry:
592  * - If the dirty bit is set (because we're coming back from trapping),
593  *   disable the traps, save host registers, restore guest registers.
594  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
595  *   set the dirty bit, disable the traps, save host registers,
596  *   restore guest registers.
597  * - Otherwise, enable the traps
598  *
599  * On guest exit:
600  * - If the dirty bit is set, save guest registers, restore host
601  *   registers and clear the dirty bit. This ensure that the host can
602  *   now use the debug registers.
603  */
604 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
605                             struct sys_reg_params *p,
606                             const struct sys_reg_desc *r)
607 {
608         access_rw(vcpu, p, r);
609         if (p->is_write)
610                 vcpu_set_flag(vcpu, DEBUG_DIRTY);
611
612         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
613
614         return true;
615 }
616
617 /*
618  * reg_to_dbg/dbg_to_reg
619  *
620  * A 32 bit write to a debug register leave top bits alone
621  * A 32 bit read from a debug register only returns the bottom bits
622  *
623  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
624  * switches between host and guest values in future.
625  */
626 static void reg_to_dbg(struct kvm_vcpu *vcpu,
627                        struct sys_reg_params *p,
628                        const struct sys_reg_desc *rd,
629                        u64 *dbg_reg)
630 {
631         u64 mask, shift, val;
632
633         get_access_mask(rd, &mask, &shift);
634
635         val = *dbg_reg;
636         val &= ~mask;
637         val |= (p->regval & (mask >> shift)) << shift;
638         *dbg_reg = val;
639
640         vcpu_set_flag(vcpu, DEBUG_DIRTY);
641 }
642
643 static void dbg_to_reg(struct kvm_vcpu *vcpu,
644                        struct sys_reg_params *p,
645                        const struct sys_reg_desc *rd,
646                        u64 *dbg_reg)
647 {
648         u64 mask, shift;
649
650         get_access_mask(rd, &mask, &shift);
651         p->regval = (*dbg_reg & mask) >> shift;
652 }
653
654 static bool trap_bvr(struct kvm_vcpu *vcpu,
655                      struct sys_reg_params *p,
656                      const struct sys_reg_desc *rd)
657 {
658         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
659
660         if (p->is_write)
661                 reg_to_dbg(vcpu, p, rd, dbg_reg);
662         else
663                 dbg_to_reg(vcpu, p, rd, dbg_reg);
664
665         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
666
667         return true;
668 }
669
670 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
671                    u64 val)
672 {
673         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
674         return 0;
675 }
676
677 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
678                    u64 *val)
679 {
680         *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
681         return 0;
682 }
683
684 static u64 reset_bvr(struct kvm_vcpu *vcpu,
685                       const struct sys_reg_desc *rd)
686 {
687         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
688         return rd->val;
689 }
690
691 static bool trap_bcr(struct kvm_vcpu *vcpu,
692                      struct sys_reg_params *p,
693                      const struct sys_reg_desc *rd)
694 {
695         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
696
697         if (p->is_write)
698                 reg_to_dbg(vcpu, p, rd, dbg_reg);
699         else
700                 dbg_to_reg(vcpu, p, rd, dbg_reg);
701
702         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
703
704         return true;
705 }
706
707 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
708                    u64 val)
709 {
710         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
711         return 0;
712 }
713
714 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715                    u64 *val)
716 {
717         *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
718         return 0;
719 }
720
721 static u64 reset_bcr(struct kvm_vcpu *vcpu,
722                       const struct sys_reg_desc *rd)
723 {
724         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
725         return rd->val;
726 }
727
728 static bool trap_wvr(struct kvm_vcpu *vcpu,
729                      struct sys_reg_params *p,
730                      const struct sys_reg_desc *rd)
731 {
732         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
733
734         if (p->is_write)
735                 reg_to_dbg(vcpu, p, rd, dbg_reg);
736         else
737                 dbg_to_reg(vcpu, p, rd, dbg_reg);
738
739         trace_trap_reg(__func__, rd->CRm, p->is_write,
740                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
741
742         return true;
743 }
744
745 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
746                    u64 val)
747 {
748         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
749         return 0;
750 }
751
752 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
753                    u64 *val)
754 {
755         *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
756         return 0;
757 }
758
759 static u64 reset_wvr(struct kvm_vcpu *vcpu,
760                       const struct sys_reg_desc *rd)
761 {
762         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
763         return rd->val;
764 }
765
766 static bool trap_wcr(struct kvm_vcpu *vcpu,
767                      struct sys_reg_params *p,
768                      const struct sys_reg_desc *rd)
769 {
770         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
771
772         if (p->is_write)
773                 reg_to_dbg(vcpu, p, rd, dbg_reg);
774         else
775                 dbg_to_reg(vcpu, p, rd, dbg_reg);
776
777         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
778
779         return true;
780 }
781
782 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
783                    u64 val)
784 {
785         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
786         return 0;
787 }
788
789 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
790                    u64 *val)
791 {
792         *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
793         return 0;
794 }
795
796 static u64 reset_wcr(struct kvm_vcpu *vcpu,
797                       const struct sys_reg_desc *rd)
798 {
799         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
800         return rd->val;
801 }
802
803 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
804 {
805         u64 amair = read_sysreg(amair_el1);
806         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
807         return amair;
808 }
809
810 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
811 {
812         u64 actlr = read_sysreg(actlr_el1);
813         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
814         return actlr;
815 }
816
817 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
818 {
819         u64 mpidr;
820
821         /*
822          * Map the vcpu_id into the first three affinity level fields of
823          * the MPIDR. We limit the number of VCPUs in level 0 due to a
824          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
825          * of the GICv3 to be able to address each CPU directly when
826          * sending IPIs.
827          */
828         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
829         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
830         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
831         mpidr |= (1ULL << 31);
832         vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
833
834         return mpidr;
835 }
836
837 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
838                                    const struct sys_reg_desc *r)
839 {
840         if (kvm_vcpu_has_pmu(vcpu))
841                 return 0;
842
843         return REG_HIDDEN;
844 }
845
846 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
847 {
848         u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
849         u8 n = vcpu->kvm->arch.pmcr_n;
850
851         if (n)
852                 mask |= GENMASK(n - 1, 0);
853
854         reset_unknown(vcpu, r);
855         __vcpu_sys_reg(vcpu, r->reg) &= mask;
856
857         return __vcpu_sys_reg(vcpu, r->reg);
858 }
859
860 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
861 {
862         reset_unknown(vcpu, r);
863         __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
864
865         return __vcpu_sys_reg(vcpu, r->reg);
866 }
867
868 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
869 {
870         /* This thing will UNDEF, who cares about the reset value? */
871         if (!kvm_vcpu_has_pmu(vcpu))
872                 return 0;
873
874         reset_unknown(vcpu, r);
875         __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
876
877         return __vcpu_sys_reg(vcpu, r->reg);
878 }
879
880 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
881 {
882         reset_unknown(vcpu, r);
883         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
884
885         return __vcpu_sys_reg(vcpu, r->reg);
886 }
887
888 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
889 {
890         u64 pmcr = 0;
891
892         if (!kvm_supports_32bit_el0())
893                 pmcr |= ARMV8_PMU_PMCR_LC;
894
895         /*
896          * The value of PMCR.N field is included when the
897          * vCPU register is read via kvm_vcpu_read_pmcr().
898          */
899         __vcpu_sys_reg(vcpu, r->reg) = pmcr;
900
901         return __vcpu_sys_reg(vcpu, r->reg);
902 }
903
904 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
905 {
906         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
907         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
908
909         if (!enabled)
910                 kvm_inject_undefined(vcpu);
911
912         return !enabled;
913 }
914
915 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
916 {
917         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
918 }
919
920 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
921 {
922         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
923 }
924
925 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
926 {
927         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
928 }
929
930 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
931 {
932         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
933 }
934
935 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
936                         const struct sys_reg_desc *r)
937 {
938         u64 val;
939
940         if (pmu_access_el0_disabled(vcpu))
941                 return false;
942
943         if (p->is_write) {
944                 /*
945                  * Only update writeable bits of PMCR (continuing into
946                  * kvm_pmu_handle_pmcr() as well)
947                  */
948                 val = kvm_vcpu_read_pmcr(vcpu);
949                 val &= ~ARMV8_PMU_PMCR_MASK;
950                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
951                 if (!kvm_supports_32bit_el0())
952                         val |= ARMV8_PMU_PMCR_LC;
953                 kvm_pmu_handle_pmcr(vcpu, val);
954         } else {
955                 /* PMCR.P & PMCR.C are RAZ */
956                 val = kvm_vcpu_read_pmcr(vcpu)
957                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
958                 p->regval = val;
959         }
960
961         return true;
962 }
963
964 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
965                           const struct sys_reg_desc *r)
966 {
967         if (pmu_access_event_counter_el0_disabled(vcpu))
968                 return false;
969
970         if (p->is_write)
971                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
972         else
973                 /* return PMSELR.SEL field */
974                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
975                             & ARMV8_PMU_COUNTER_MASK;
976
977         return true;
978 }
979
980 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
981                           const struct sys_reg_desc *r)
982 {
983         u64 pmceid, mask, shift;
984
985         BUG_ON(p->is_write);
986
987         if (pmu_access_el0_disabled(vcpu))
988                 return false;
989
990         get_access_mask(r, &mask, &shift);
991
992         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
993         pmceid &= mask;
994         pmceid >>= shift;
995
996         p->regval = pmceid;
997
998         return true;
999 }
1000
1001 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1002 {
1003         u64 pmcr, val;
1004
1005         pmcr = kvm_vcpu_read_pmcr(vcpu);
1006         val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1007         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1008                 kvm_inject_undefined(vcpu);
1009                 return false;
1010         }
1011
1012         return true;
1013 }
1014
1015 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1016                           u64 *val)
1017 {
1018         u64 idx;
1019
1020         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1021                 /* PMCCNTR_EL0 */
1022                 idx = ARMV8_PMU_CYCLE_IDX;
1023         else
1024                 /* PMEVCNTRn_EL0 */
1025                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1026
1027         *val = kvm_pmu_get_counter_value(vcpu, idx);
1028         return 0;
1029 }
1030
1031 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1032                               struct sys_reg_params *p,
1033                               const struct sys_reg_desc *r)
1034 {
1035         u64 idx = ~0UL;
1036
1037         if (r->CRn == 9 && r->CRm == 13) {
1038                 if (r->Op2 == 2) {
1039                         /* PMXEVCNTR_EL0 */
1040                         if (pmu_access_event_counter_el0_disabled(vcpu))
1041                                 return false;
1042
1043                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1044                               & ARMV8_PMU_COUNTER_MASK;
1045                 } else if (r->Op2 == 0) {
1046                         /* PMCCNTR_EL0 */
1047                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
1048                                 return false;
1049
1050                         idx = ARMV8_PMU_CYCLE_IDX;
1051                 }
1052         } else if (r->CRn == 0 && r->CRm == 9) {
1053                 /* PMCCNTR */
1054                 if (pmu_access_event_counter_el0_disabled(vcpu))
1055                         return false;
1056
1057                 idx = ARMV8_PMU_CYCLE_IDX;
1058         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1059                 /* PMEVCNTRn_EL0 */
1060                 if (pmu_access_event_counter_el0_disabled(vcpu))
1061                         return false;
1062
1063                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1064         }
1065
1066         /* Catch any decoding mistake */
1067         WARN_ON(idx == ~0UL);
1068
1069         if (!pmu_counter_idx_valid(vcpu, idx))
1070                 return false;
1071
1072         if (p->is_write) {
1073                 if (pmu_access_el0_disabled(vcpu))
1074                         return false;
1075
1076                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1077         } else {
1078                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1079         }
1080
1081         return true;
1082 }
1083
1084 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085                                const struct sys_reg_desc *r)
1086 {
1087         u64 idx, reg;
1088
1089         if (pmu_access_el0_disabled(vcpu))
1090                 return false;
1091
1092         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1093                 /* PMXEVTYPER_EL0 */
1094                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1095                 reg = PMEVTYPER0_EL0 + idx;
1096         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1097                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1098                 if (idx == ARMV8_PMU_CYCLE_IDX)
1099                         reg = PMCCFILTR_EL0;
1100                 else
1101                         /* PMEVTYPERn_EL0 */
1102                         reg = PMEVTYPER0_EL0 + idx;
1103         } else {
1104                 BUG();
1105         }
1106
1107         if (!pmu_counter_idx_valid(vcpu, idx))
1108                 return false;
1109
1110         if (p->is_write) {
1111                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1112                 kvm_vcpu_pmu_restore_guest(vcpu);
1113         } else {
1114                 p->regval = __vcpu_sys_reg(vcpu, reg);
1115         }
1116
1117         return true;
1118 }
1119
1120 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1121 {
1122         bool set;
1123
1124         val &= kvm_pmu_valid_counter_mask(vcpu);
1125
1126         switch (r->reg) {
1127         case PMOVSSET_EL0:
1128                 /* CRm[1] being set indicates a SET register, and CLR otherwise */
1129                 set = r->CRm & 2;
1130                 break;
1131         default:
1132                 /* Op2[0] being set indicates a SET register, and CLR otherwise */
1133                 set = r->Op2 & 1;
1134                 break;
1135         }
1136
1137         if (set)
1138                 __vcpu_sys_reg(vcpu, r->reg) |= val;
1139         else
1140                 __vcpu_sys_reg(vcpu, r->reg) &= ~val;
1141
1142         return 0;
1143 }
1144
1145 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1146 {
1147         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1148
1149         *val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1150         return 0;
1151 }
1152
1153 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1154                            const struct sys_reg_desc *r)
1155 {
1156         u64 val, mask;
1157
1158         if (pmu_access_el0_disabled(vcpu))
1159                 return false;
1160
1161         mask = kvm_pmu_valid_counter_mask(vcpu);
1162         if (p->is_write) {
1163                 val = p->regval & mask;
1164                 if (r->Op2 & 0x1) {
1165                         /* accessing PMCNTENSET_EL0 */
1166                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1167                         kvm_pmu_enable_counter_mask(vcpu, val);
1168                         kvm_vcpu_pmu_restore_guest(vcpu);
1169                 } else {
1170                         /* accessing PMCNTENCLR_EL0 */
1171                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1172                         kvm_pmu_disable_counter_mask(vcpu, val);
1173                 }
1174         } else {
1175                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1176         }
1177
1178         return true;
1179 }
1180
1181 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182                            const struct sys_reg_desc *r)
1183 {
1184         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1185
1186         if (check_pmu_access_disabled(vcpu, 0))
1187                 return false;
1188
1189         if (p->is_write) {
1190                 u64 val = p->regval & mask;
1191
1192                 if (r->Op2 & 0x1)
1193                         /* accessing PMINTENSET_EL1 */
1194                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1195                 else
1196                         /* accessing PMINTENCLR_EL1 */
1197                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1198         } else {
1199                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1200         }
1201
1202         return true;
1203 }
1204
1205 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1206                          const struct sys_reg_desc *r)
1207 {
1208         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1209
1210         if (pmu_access_el0_disabled(vcpu))
1211                 return false;
1212
1213         if (p->is_write) {
1214                 if (r->CRm & 0x2)
1215                         /* accessing PMOVSSET_EL0 */
1216                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1217                 else
1218                         /* accessing PMOVSCLR_EL0 */
1219                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1220         } else {
1221                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1222         }
1223
1224         return true;
1225 }
1226
1227 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1228                            const struct sys_reg_desc *r)
1229 {
1230         u64 mask;
1231
1232         if (!p->is_write)
1233                 return read_from_write_only(vcpu, p, r);
1234
1235         if (pmu_write_swinc_el0_disabled(vcpu))
1236                 return false;
1237
1238         mask = kvm_pmu_valid_counter_mask(vcpu);
1239         kvm_pmu_software_increment(vcpu, p->regval & mask);
1240         return true;
1241 }
1242
1243 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244                              const struct sys_reg_desc *r)
1245 {
1246         if (p->is_write) {
1247                 if (!vcpu_mode_priv(vcpu)) {
1248                         kvm_inject_undefined(vcpu);
1249                         return false;
1250                 }
1251
1252                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1253                                p->regval & ARMV8_PMU_USERENR_MASK;
1254         } else {
1255                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1256                             & ARMV8_PMU_USERENR_MASK;
1257         }
1258
1259         return true;
1260 }
1261
1262 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1263                     u64 *val)
1264 {
1265         *val = kvm_vcpu_read_pmcr(vcpu);
1266         return 0;
1267 }
1268
1269 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1270                     u64 val)
1271 {
1272         u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1273         struct kvm *kvm = vcpu->kvm;
1274
1275         mutex_lock(&kvm->arch.config_lock);
1276
1277         /*
1278          * The vCPU can't have more counters than the PMU hardware
1279          * implements. Ignore this error to maintain compatibility
1280          * with the existing KVM behavior.
1281          */
1282         if (!kvm_vm_has_ran_once(kvm) &&
1283             new_n <= kvm_arm_pmu_get_max_counters(kvm))
1284                 kvm->arch.pmcr_n = new_n;
1285
1286         mutex_unlock(&kvm->arch.config_lock);
1287
1288         /*
1289          * Ignore writes to RES0 bits, read only bits that are cleared on
1290          * vCPU reset, and writable bits that KVM doesn't support yet.
1291          * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1292          * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1293          * But, we leave the bit as it is here, as the vCPU's PMUver might
1294          * be changed later (NOTE: the bit will be cleared on first vCPU run
1295          * if necessary).
1296          */
1297         val &= ARMV8_PMU_PMCR_MASK;
1298
1299         /* The LC bit is RES1 when AArch32 is not supported */
1300         if (!kvm_supports_32bit_el0())
1301                 val |= ARMV8_PMU_PMCR_LC;
1302
1303         __vcpu_sys_reg(vcpu, r->reg) = val;
1304         return 0;
1305 }
1306
1307 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1308 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1309         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1310           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1311         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1312           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1313         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1314           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1315         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1316           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1317
1318 #define PMU_SYS_REG(name)                                               \
1319         SYS_DESC(SYS_##name), .reset = reset_pmu_reg,                   \
1320         .visibility = pmu_visibility
1321
1322 /* Macro to expand the PMEVCNTRn_EL0 register */
1323 #define PMU_PMEVCNTR_EL0(n)                                             \
1324         { PMU_SYS_REG(PMEVCNTRn_EL0(n)),                                \
1325           .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,          \
1326           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1327
1328 /* Macro to expand the PMEVTYPERn_EL0 register */
1329 #define PMU_PMEVTYPER_EL0(n)                                            \
1330         { PMU_SYS_REG(PMEVTYPERn_EL0(n)),                               \
1331           .reset = reset_pmevtyper,                                     \
1332           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1333
1334 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1335                          const struct sys_reg_desc *r)
1336 {
1337         kvm_inject_undefined(vcpu);
1338
1339         return false;
1340 }
1341
1342 /* Macro to expand the AMU counter and type registers*/
1343 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1344 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1345 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1346 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1347
1348 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1349                         const struct sys_reg_desc *rd)
1350 {
1351         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1352 }
1353
1354 /*
1355  * If we land here on a PtrAuth access, that is because we didn't
1356  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1357  * way this happens is when the guest does not have PtrAuth support
1358  * enabled.
1359  */
1360 #define __PTRAUTH_KEY(k)                                                \
1361         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1362         .visibility = ptrauth_visibility}
1363
1364 #define PTRAUTH_KEY(k)                                                  \
1365         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1366         __PTRAUTH_KEY(k ## KEYHI_EL1)
1367
1368 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1369                               struct sys_reg_params *p,
1370                               const struct sys_reg_desc *r)
1371 {
1372         enum kvm_arch_timers tmr;
1373         enum kvm_arch_timer_regs treg;
1374         u64 reg = reg_to_encoding(r);
1375
1376         switch (reg) {
1377         case SYS_CNTP_TVAL_EL0:
1378         case SYS_AARCH32_CNTP_TVAL:
1379                 tmr = TIMER_PTIMER;
1380                 treg = TIMER_REG_TVAL;
1381                 break;
1382         case SYS_CNTP_CTL_EL0:
1383         case SYS_AARCH32_CNTP_CTL:
1384                 tmr = TIMER_PTIMER;
1385                 treg = TIMER_REG_CTL;
1386                 break;
1387         case SYS_CNTP_CVAL_EL0:
1388         case SYS_AARCH32_CNTP_CVAL:
1389                 tmr = TIMER_PTIMER;
1390                 treg = TIMER_REG_CVAL;
1391                 break;
1392         case SYS_CNTPCT_EL0:
1393         case SYS_CNTPCTSS_EL0:
1394         case SYS_AARCH32_CNTPCT:
1395                 tmr = TIMER_PTIMER;
1396                 treg = TIMER_REG_CNT;
1397                 break;
1398         default:
1399                 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1400                 kvm_inject_undefined(vcpu);
1401                 return false;
1402         }
1403
1404         if (p->is_write)
1405                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1406         else
1407                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1408
1409         return true;
1410 }
1411
1412 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1413                                     s64 new, s64 cur)
1414 {
1415         struct arm64_ftr_bits kvm_ftr = *ftrp;
1416
1417         /* Some features have different safe value type in KVM than host features */
1418         switch (id) {
1419         case SYS_ID_AA64DFR0_EL1:
1420                 switch (kvm_ftr.shift) {
1421                 case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1422                         kvm_ftr.type = FTR_LOWER_SAFE;
1423                         break;
1424                 case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1425                         kvm_ftr.type = FTR_LOWER_SAFE;
1426                         break;
1427                 }
1428                 break;
1429         case SYS_ID_DFR0_EL1:
1430                 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1431                         kvm_ftr.type = FTR_LOWER_SAFE;
1432                 break;
1433         }
1434
1435         return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1436 }
1437
1438 /*
1439  * arm64_check_features() - Check if a feature register value constitutes
1440  * a subset of features indicated by the idreg's KVM sanitised limit.
1441  *
1442  * This function will check if each feature field of @val is the "safe" value
1443  * against idreg's KVM sanitised limit return from reset() callback.
1444  * If a field value in @val is the same as the one in limit, it is always
1445  * considered the safe value regardless For register fields that are not in
1446  * writable, only the value in limit is considered the safe value.
1447  *
1448  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1449  */
1450 static int arm64_check_features(struct kvm_vcpu *vcpu,
1451                                 const struct sys_reg_desc *rd,
1452                                 u64 val)
1453 {
1454         const struct arm64_ftr_reg *ftr_reg;
1455         const struct arm64_ftr_bits *ftrp = NULL;
1456         u32 id = reg_to_encoding(rd);
1457         u64 writable_mask = rd->val;
1458         u64 limit = rd->reset(vcpu, rd);
1459         u64 mask = 0;
1460
1461         /*
1462          * Hidden and unallocated ID registers may not have a corresponding
1463          * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1464          * only safe value is 0.
1465          */
1466         if (sysreg_visible_as_raz(vcpu, rd))
1467                 return val ? -E2BIG : 0;
1468
1469         ftr_reg = get_arm64_ftr_reg(id);
1470         if (!ftr_reg)
1471                 return -EINVAL;
1472
1473         ftrp = ftr_reg->ftr_bits;
1474
1475         for (; ftrp && ftrp->width; ftrp++) {
1476                 s64 f_val, f_lim, safe_val;
1477                 u64 ftr_mask;
1478
1479                 ftr_mask = arm64_ftr_mask(ftrp);
1480                 if ((ftr_mask & writable_mask) != ftr_mask)
1481                         continue;
1482
1483                 f_val = arm64_ftr_value(ftrp, val);
1484                 f_lim = arm64_ftr_value(ftrp, limit);
1485                 mask |= ftr_mask;
1486
1487                 if (f_val == f_lim)
1488                         safe_val = f_val;
1489                 else
1490                         safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1491
1492                 if (safe_val != f_val)
1493                         return -E2BIG;
1494         }
1495
1496         /* For fields that are not writable, values in limit are the safe values. */
1497         if ((val & ~mask) != (limit & ~mask))
1498                 return -E2BIG;
1499
1500         return 0;
1501 }
1502
1503 static u8 pmuver_to_perfmon(u8 pmuver)
1504 {
1505         switch (pmuver) {
1506         case ID_AA64DFR0_EL1_PMUVer_IMP:
1507                 return ID_DFR0_EL1_PerfMon_PMUv3;
1508         case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1509                 return ID_DFR0_EL1_PerfMon_IMPDEF;
1510         default:
1511                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1512                 return pmuver;
1513         }
1514 }
1515
1516 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1517 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1518                                        const struct sys_reg_desc *r)
1519 {
1520         u32 id = reg_to_encoding(r);
1521         u64 val;
1522
1523         if (sysreg_visible_as_raz(vcpu, r))
1524                 return 0;
1525
1526         val = read_sanitised_ftr_reg(id);
1527
1528         switch (id) {
1529         case SYS_ID_AA64PFR1_EL1:
1530                 if (!kvm_has_mte(vcpu->kvm))
1531                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1532
1533                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1534                 break;
1535         case SYS_ID_AA64ISAR1_EL1:
1536                 if (!vcpu_has_ptrauth(vcpu))
1537                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1538                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1539                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1540                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1541                 break;
1542         case SYS_ID_AA64ISAR2_EL1:
1543                 if (!vcpu_has_ptrauth(vcpu))
1544                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1545                                  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1546                 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1547                         val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1548                 break;
1549         case SYS_ID_AA64MMFR2_EL1:
1550                 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1551                 break;
1552         case SYS_ID_MMFR4_EL1:
1553                 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1554                 break;
1555         }
1556
1557         return val;
1558 }
1559
1560 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1561                                      const struct sys_reg_desc *r)
1562 {
1563         return __kvm_read_sanitised_id_reg(vcpu, r);
1564 }
1565
1566 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1567 {
1568         return IDREG(vcpu->kvm, reg_to_encoding(r));
1569 }
1570
1571 /*
1572  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1573  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1574  */
1575 static inline bool is_id_reg(u32 id)
1576 {
1577         return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1578                 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1579                 sys_reg_CRm(id) < 8);
1580 }
1581
1582 static inline bool is_aa32_id_reg(u32 id)
1583 {
1584         return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1585                 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1586                 sys_reg_CRm(id) <= 3);
1587 }
1588
1589 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1590                                   const struct sys_reg_desc *r)
1591 {
1592         u32 id = reg_to_encoding(r);
1593
1594         switch (id) {
1595         case SYS_ID_AA64ZFR0_EL1:
1596                 if (!vcpu_has_sve(vcpu))
1597                         return REG_RAZ;
1598                 break;
1599         }
1600
1601         return 0;
1602 }
1603
1604 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1605                                        const struct sys_reg_desc *r)
1606 {
1607         /*
1608          * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1609          * EL. Promote to RAZ/WI in order to guarantee consistency between
1610          * systems.
1611          */
1612         if (!kvm_supports_32bit_el0())
1613                 return REG_RAZ | REG_USER_WI;
1614
1615         return id_visibility(vcpu, r);
1616 }
1617
1618 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1619                                    const struct sys_reg_desc *r)
1620 {
1621         return REG_RAZ;
1622 }
1623
1624 /* cpufeature ID register access trap handlers */
1625
1626 static bool access_id_reg(struct kvm_vcpu *vcpu,
1627                           struct sys_reg_params *p,
1628                           const struct sys_reg_desc *r)
1629 {
1630         if (p->is_write)
1631                 return write_to_read_only(vcpu, p, r);
1632
1633         p->regval = read_id_reg(vcpu, r);
1634
1635         return true;
1636 }
1637
1638 /* Visibility overrides for SVE-specific control registers */
1639 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1640                                    const struct sys_reg_desc *rd)
1641 {
1642         if (vcpu_has_sve(vcpu))
1643                 return 0;
1644
1645         return REG_HIDDEN;
1646 }
1647
1648 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1649                                           const struct sys_reg_desc *rd)
1650 {
1651         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1652
1653         if (!vcpu_has_sve(vcpu))
1654                 val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1655
1656         /*
1657          * The default is to expose CSV2 == 1 if the HW isn't affected.
1658          * Although this is a per-CPU feature, we make it global because
1659          * asymmetric systems are just a nuisance.
1660          *
1661          * Userspace can override this as long as it doesn't promise
1662          * the impossible.
1663          */
1664         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1665                 val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1666                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1667         }
1668         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1669                 val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1670                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1671         }
1672
1673         if (kvm_vgic_global_state.type == VGIC_V3) {
1674                 val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1675                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1676         }
1677
1678         val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1679
1680         return val;
1681 }
1682
1683 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)                        \
1684 ({                                                                             \
1685         u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);                    \
1686         (val) &= ~reg##_##field##_MASK;                                        \
1687         (val) |= FIELD_PREP(reg##_##field##_MASK,                              \
1688                             min(__f_val,                                       \
1689                                 (u64)SYS_FIELD_VALUE(reg, field, limit)));     \
1690         (val);                                                                 \
1691 })
1692
1693 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1694                                           const struct sys_reg_desc *rd)
1695 {
1696         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1697
1698         val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1699
1700         /*
1701          * Only initialize the PMU version if the vCPU was configured with one.
1702          */
1703         val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1704         if (kvm_vcpu_has_pmu(vcpu))
1705                 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1706                                       kvm_arm_pmu_get_pmuver_limit());
1707
1708         /* Hide SPE from guests */
1709         val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1710
1711         return val;
1712 }
1713
1714 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1715                                const struct sys_reg_desc *rd,
1716                                u64 val)
1717 {
1718         u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1719         u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1720
1721         /*
1722          * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1723          * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1724          * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1725          * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1726          * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1727          *
1728          * At minimum, we're on the hook to allow values that were given to
1729          * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1730          * with a more sensible NI. The value of an ID register changing under
1731          * the nose of the guest is unfortunate, but is certainly no more
1732          * surprising than an ill-guided PMU driver poking at impdef system
1733          * registers that end in an UNDEF...
1734          */
1735         if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1736                 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1737
1738         /*
1739          * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1740          * nonzero minimum safe value.
1741          */
1742         if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1743                 return -EINVAL;
1744
1745         return set_id_reg(vcpu, rd, val);
1746 }
1747
1748 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1749                                       const struct sys_reg_desc *rd)
1750 {
1751         u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1752         u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1753
1754         val &= ~ID_DFR0_EL1_PerfMon_MASK;
1755         if (kvm_vcpu_has_pmu(vcpu))
1756                 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1757
1758         val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1759
1760         return val;
1761 }
1762
1763 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1764                            const struct sys_reg_desc *rd,
1765                            u64 val)
1766 {
1767         u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1768         u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1769
1770         if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1771                 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1772                 perfmon = 0;
1773         }
1774
1775         /*
1776          * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1777          * it doesn't promise more than what the HW gives us on the
1778          * AArch64 side (as everything is emulated with that), and
1779          * that this is a PMUv3.
1780          */
1781         if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1782                 return -EINVAL;
1783
1784         if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1785                 return -EINVAL;
1786
1787         return set_id_reg(vcpu, rd, val);
1788 }
1789
1790 /*
1791  * cpufeature ID register user accessors
1792  *
1793  * For now, these registers are immutable for userspace, so no values
1794  * are stored, and for set_id_reg() we don't allow the effective value
1795  * to be changed.
1796  */
1797 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1798                       u64 *val)
1799 {
1800         /*
1801          * Avoid locking if the VM has already started, as the ID registers are
1802          * guaranteed to be invariant at that point.
1803          */
1804         if (kvm_vm_has_ran_once(vcpu->kvm)) {
1805                 *val = read_id_reg(vcpu, rd);
1806                 return 0;
1807         }
1808
1809         mutex_lock(&vcpu->kvm->arch.config_lock);
1810         *val = read_id_reg(vcpu, rd);
1811         mutex_unlock(&vcpu->kvm->arch.config_lock);
1812
1813         return 0;
1814 }
1815
1816 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1817                       u64 val)
1818 {
1819         u32 id = reg_to_encoding(rd);
1820         int ret;
1821
1822         mutex_lock(&vcpu->kvm->arch.config_lock);
1823
1824         /*
1825          * Once the VM has started the ID registers are immutable. Reject any
1826          * write that does not match the final register value.
1827          */
1828         if (kvm_vm_has_ran_once(vcpu->kvm)) {
1829                 if (val != read_id_reg(vcpu, rd))
1830                         ret = -EBUSY;
1831                 else
1832                         ret = 0;
1833
1834                 mutex_unlock(&vcpu->kvm->arch.config_lock);
1835                 return ret;
1836         }
1837
1838         ret = arm64_check_features(vcpu, rd, val);
1839         if (!ret)
1840                 IDREG(vcpu->kvm, id) = val;
1841
1842         mutex_unlock(&vcpu->kvm->arch.config_lock);
1843
1844         /*
1845          * arm64_check_features() returns -E2BIG to indicate the register's
1846          * feature set is a superset of the maximally-allowed register value.
1847          * While it would be nice to precisely describe this to userspace, the
1848          * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1849          * writes return -EINVAL.
1850          */
1851         if (ret == -E2BIG)
1852                 ret = -EINVAL;
1853         return ret;
1854 }
1855
1856 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1857                        u64 *val)
1858 {
1859         *val = 0;
1860         return 0;
1861 }
1862
1863 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1864                       u64 val)
1865 {
1866         return 0;
1867 }
1868
1869 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1870                        const struct sys_reg_desc *r)
1871 {
1872         if (p->is_write)
1873                 return write_to_read_only(vcpu, p, r);
1874
1875         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1876         return true;
1877 }
1878
1879 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1880                          const struct sys_reg_desc *r)
1881 {
1882         if (p->is_write)
1883                 return write_to_read_only(vcpu, p, r);
1884
1885         p->regval = __vcpu_sys_reg(vcpu, r->reg);
1886         return true;
1887 }
1888
1889 /*
1890  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1891  * by the physical CPU which the vcpu currently resides in.
1892  */
1893 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1894 {
1895         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1896         u64 clidr;
1897         u8 loc;
1898
1899         if ((ctr_el0 & CTR_EL0_IDC)) {
1900                 /*
1901                  * Data cache clean to the PoU is not required so LoUU and LoUIS
1902                  * will not be set and a unified cache, which will be marked as
1903                  * LoC, will be added.
1904                  *
1905                  * If not DIC, let the unified cache L2 so that an instruction
1906                  * cache can be added as L1 later.
1907                  */
1908                 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1909                 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1910         } else {
1911                 /*
1912                  * Data cache clean to the PoU is required so let L1 have a data
1913                  * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1914                  * it can be marked as LoC too.
1915                  */
1916                 loc = 1;
1917                 clidr = 1 << CLIDR_LOUU_SHIFT;
1918                 clidr |= 1 << CLIDR_LOUIS_SHIFT;
1919                 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1920         }
1921
1922         /*
1923          * Instruction cache invalidation to the PoU is required so let L1 have
1924          * an instruction cache. If L1 already has a data cache, it will be
1925          * CACHE_TYPE_SEPARATE.
1926          */
1927         if (!(ctr_el0 & CTR_EL0_DIC))
1928                 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1929
1930         clidr |= loc << CLIDR_LOC_SHIFT;
1931
1932         /*
1933          * Add tag cache unified to data cache. Allocation tags and data are
1934          * unified in a cache line so that it looks valid even if there is only
1935          * one cache line.
1936          */
1937         if (kvm_has_mte(vcpu->kvm))
1938                 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1939
1940         __vcpu_sys_reg(vcpu, r->reg) = clidr;
1941
1942         return __vcpu_sys_reg(vcpu, r->reg);
1943 }
1944
1945 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1946                       u64 val)
1947 {
1948         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1949         u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1950
1951         if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1952                 return -EINVAL;
1953
1954         __vcpu_sys_reg(vcpu, rd->reg) = val;
1955
1956         return 0;
1957 }
1958
1959 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1960                           const struct sys_reg_desc *r)
1961 {
1962         int reg = r->reg;
1963
1964         if (p->is_write)
1965                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1966         else
1967                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1968         return true;
1969 }
1970
1971 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1972                           const struct sys_reg_desc *r)
1973 {
1974         u32 csselr;
1975
1976         if (p->is_write)
1977                 return write_to_read_only(vcpu, p, r);
1978
1979         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1980         csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1981         if (csselr < CSSELR_MAX)
1982                 p->regval = get_ccsidr(vcpu, csselr);
1983
1984         return true;
1985 }
1986
1987 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1988                                    const struct sys_reg_desc *rd)
1989 {
1990         if (kvm_has_mte(vcpu->kvm))
1991                 return 0;
1992
1993         return REG_HIDDEN;
1994 }
1995
1996 #define MTE_REG(name) {                         \
1997         SYS_DESC(SYS_##name),                   \
1998         .access = undef_access,                 \
1999         .reset = reset_unknown,                 \
2000         .reg = name,                            \
2001         .visibility = mte_visibility,           \
2002 }
2003
2004 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2005                                    const struct sys_reg_desc *rd)
2006 {
2007         if (vcpu_has_nv(vcpu))
2008                 return 0;
2009
2010         return REG_HIDDEN;
2011 }
2012
2013 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2014                           struct sys_reg_params *p,
2015                           const struct sys_reg_desc *r)
2016 {
2017         /*
2018          * We really shouldn't be here, and this is likely the result
2019          * of a misconfigured trap, as this register should target the
2020          * VNCR page, and nothing else.
2021          */
2022         return bad_trap(vcpu, p, r,
2023                         "trap of VNCR-backed register");
2024 }
2025
2026 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2027                            struct sys_reg_params *p,
2028                            const struct sys_reg_desc *r)
2029 {
2030         /*
2031          * We really shouldn't be here, and this is likely the result
2032          * of a misconfigured trap, as this register should target the
2033          * corresponding EL1, and nothing else.
2034          */
2035         return bad_trap(vcpu, p, r,
2036                         "trap of EL2 register redirected to EL1");
2037 }
2038
2039 #define EL2_REG(name, acc, rst, v) {            \
2040         SYS_DESC(SYS_##name),                   \
2041         .access = acc,                          \
2042         .reset = rst,                           \
2043         .reg = name,                            \
2044         .visibility = el2_visibility,           \
2045         .val = v,                               \
2046 }
2047
2048 #define EL2_REG_VNCR(name, rst, v)      EL2_REG(name, bad_vncr_trap, rst, v)
2049 #define EL2_REG_REDIR(name, rst, v)     EL2_REG(name, bad_redir_trap, rst, v)
2050
2051 /*
2052  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2053  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2054  * handling traps. Given that, they are always hidden from userspace.
2055  */
2056 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2057                                            const struct sys_reg_desc *rd)
2058 {
2059         return REG_HIDDEN_USER;
2060 }
2061
2062 #define EL12_REG(name, acc, rst, v) {           \
2063         SYS_DESC(SYS_##name##_EL12),            \
2064         .access = acc,                          \
2065         .reset = rst,                           \
2066         .reg = name##_EL1,                      \
2067         .val = v,                               \
2068         .visibility = hidden_user_visibility,   \
2069 }
2070
2071 /*
2072  * Since reset() callback and field val are not used for idregs, they will be
2073  * used for specific purposes for idregs.
2074  * The reset() would return KVM sanitised register value. The value would be the
2075  * same as the host kernel sanitised value if there is no KVM sanitisation.
2076  * The val would be used as a mask indicating writable fields for the idreg.
2077  * Only bits with 1 are writable from userspace. This mask might not be
2078  * necessary in the future whenever all ID registers are enabled as writable
2079  * from userspace.
2080  */
2081
2082 #define ID_DESC(name)                           \
2083         SYS_DESC(SYS_##name),                   \
2084         .access = access_id_reg,                \
2085         .get_user = get_id_reg                  \
2086
2087 /* sys_reg_desc initialiser for known cpufeature ID registers */
2088 #define ID_SANITISED(name) {                    \
2089         ID_DESC(name),                          \
2090         .set_user = set_id_reg,                 \
2091         .visibility = id_visibility,            \
2092         .reset = kvm_read_sanitised_id_reg,     \
2093         .val = 0,                               \
2094 }
2095
2096 /* sys_reg_desc initialiser for known cpufeature ID registers */
2097 #define AA32_ID_SANITISED(name) {               \
2098         ID_DESC(name),                          \
2099         .set_user = set_id_reg,                 \
2100         .visibility = aa32_id_visibility,       \
2101         .reset = kvm_read_sanitised_id_reg,     \
2102         .val = 0,                               \
2103 }
2104
2105 /* sys_reg_desc initialiser for writable ID registers */
2106 #define ID_WRITABLE(name, mask) {               \
2107         ID_DESC(name),                          \
2108         .set_user = set_id_reg,                 \
2109         .visibility = id_visibility,            \
2110         .reset = kvm_read_sanitised_id_reg,     \
2111         .val = mask,                            \
2112 }
2113
2114 /*
2115  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2116  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2117  * (1 <= crm < 8, 0 <= Op2 < 8).
2118  */
2119 #define ID_UNALLOCATED(crm, op2) {                      \
2120         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
2121         .access = access_id_reg,                        \
2122         .get_user = get_id_reg,                         \
2123         .set_user = set_id_reg,                         \
2124         .visibility = raz_visibility,                   \
2125         .reset = kvm_read_sanitised_id_reg,             \
2126         .val = 0,                                       \
2127 }
2128
2129 /*
2130  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2131  * For now, these are exposed just like unallocated ID regs: they appear
2132  * RAZ for the guest.
2133  */
2134 #define ID_HIDDEN(name) {                       \
2135         ID_DESC(name),                          \
2136         .set_user = set_id_reg,                 \
2137         .visibility = raz_visibility,           \
2138         .reset = kvm_read_sanitised_id_reg,     \
2139         .val = 0,                               \
2140 }
2141
2142 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2143                           struct sys_reg_params *p,
2144                           const struct sys_reg_desc *r)
2145 {
2146         if (p->is_write)
2147                 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2148         else
2149                 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2150
2151         return true;
2152 }
2153
2154 static bool access_elr(struct kvm_vcpu *vcpu,
2155                        struct sys_reg_params *p,
2156                        const struct sys_reg_desc *r)
2157 {
2158         if (p->is_write)
2159                 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2160         else
2161                 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2162
2163         return true;
2164 }
2165
2166 static bool access_spsr(struct kvm_vcpu *vcpu,
2167                         struct sys_reg_params *p,
2168                         const struct sys_reg_desc *r)
2169 {
2170         if (p->is_write)
2171                 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2172         else
2173                 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2174
2175         return true;
2176 }
2177
2178 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2179 {
2180         u64 val = r->val;
2181
2182         if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2183                 val |= HCR_E2H;
2184
2185         return __vcpu_sys_reg(vcpu, r->reg) = val;
2186 }
2187
2188 /*
2189  * Architected system registers.
2190  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2191  *
2192  * Debug handling: We do trap most, if not all debug related system
2193  * registers. The implementation is good enough to ensure that a guest
2194  * can use these with minimal performance degradation. The drawback is
2195  * that we don't implement any of the external debug architecture.
2196  * This should be revisited if we ever encounter a more demanding
2197  * guest...
2198  */
2199 static const struct sys_reg_desc sys_reg_descs[] = {
2200         DBG_BCR_BVR_WCR_WVR_EL1(0),
2201         DBG_BCR_BVR_WCR_WVR_EL1(1),
2202         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2203         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2204         DBG_BCR_BVR_WCR_WVR_EL1(2),
2205         DBG_BCR_BVR_WCR_WVR_EL1(3),
2206         DBG_BCR_BVR_WCR_WVR_EL1(4),
2207         DBG_BCR_BVR_WCR_WVR_EL1(5),
2208         DBG_BCR_BVR_WCR_WVR_EL1(6),
2209         DBG_BCR_BVR_WCR_WVR_EL1(7),
2210         DBG_BCR_BVR_WCR_WVR_EL1(8),
2211         DBG_BCR_BVR_WCR_WVR_EL1(9),
2212         DBG_BCR_BVR_WCR_WVR_EL1(10),
2213         DBG_BCR_BVR_WCR_WVR_EL1(11),
2214         DBG_BCR_BVR_WCR_WVR_EL1(12),
2215         DBG_BCR_BVR_WCR_WVR_EL1(13),
2216         DBG_BCR_BVR_WCR_WVR_EL1(14),
2217         DBG_BCR_BVR_WCR_WVR_EL1(15),
2218
2219         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2220         { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2221         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2222                 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2223         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2224         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2225         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2226         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2227         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2228
2229         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2230         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2231         // DBGDTR[TR]X_EL0 share the same encoding
2232         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2233
2234         { SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2235
2236         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2237
2238         /*
2239          * ID regs: all ID_SANITISED() entries here must have corresponding
2240          * entries in arm64_ftr_regs[].
2241          */
2242
2243         /* AArch64 mappings of the AArch32 ID registers */
2244         /* CRm=1 */
2245         AA32_ID_SANITISED(ID_PFR0_EL1),
2246         AA32_ID_SANITISED(ID_PFR1_EL1),
2247         { SYS_DESC(SYS_ID_DFR0_EL1),
2248           .access = access_id_reg,
2249           .get_user = get_id_reg,
2250           .set_user = set_id_dfr0_el1,
2251           .visibility = aa32_id_visibility,
2252           .reset = read_sanitised_id_dfr0_el1,
2253           .val = ID_DFR0_EL1_PerfMon_MASK |
2254                  ID_DFR0_EL1_CopDbg_MASK, },
2255         ID_HIDDEN(ID_AFR0_EL1),
2256         AA32_ID_SANITISED(ID_MMFR0_EL1),
2257         AA32_ID_SANITISED(ID_MMFR1_EL1),
2258         AA32_ID_SANITISED(ID_MMFR2_EL1),
2259         AA32_ID_SANITISED(ID_MMFR3_EL1),
2260
2261         /* CRm=2 */
2262         AA32_ID_SANITISED(ID_ISAR0_EL1),
2263         AA32_ID_SANITISED(ID_ISAR1_EL1),
2264         AA32_ID_SANITISED(ID_ISAR2_EL1),
2265         AA32_ID_SANITISED(ID_ISAR3_EL1),
2266         AA32_ID_SANITISED(ID_ISAR4_EL1),
2267         AA32_ID_SANITISED(ID_ISAR5_EL1),
2268         AA32_ID_SANITISED(ID_MMFR4_EL1),
2269         AA32_ID_SANITISED(ID_ISAR6_EL1),
2270
2271         /* CRm=3 */
2272         AA32_ID_SANITISED(MVFR0_EL1),
2273         AA32_ID_SANITISED(MVFR1_EL1),
2274         AA32_ID_SANITISED(MVFR2_EL1),
2275         ID_UNALLOCATED(3,3),
2276         AA32_ID_SANITISED(ID_PFR2_EL1),
2277         ID_HIDDEN(ID_DFR1_EL1),
2278         AA32_ID_SANITISED(ID_MMFR5_EL1),
2279         ID_UNALLOCATED(3,7),
2280
2281         /* AArch64 ID registers */
2282         /* CRm=4 */
2283         { SYS_DESC(SYS_ID_AA64PFR0_EL1),
2284           .access = access_id_reg,
2285           .get_user = get_id_reg,
2286           .set_user = set_id_reg,
2287           .reset = read_sanitised_id_aa64pfr0_el1,
2288           .val = ~(ID_AA64PFR0_EL1_AMU |
2289                    ID_AA64PFR0_EL1_MPAM |
2290                    ID_AA64PFR0_EL1_SVE |
2291                    ID_AA64PFR0_EL1_RAS |
2292                    ID_AA64PFR0_EL1_GIC |
2293                    ID_AA64PFR0_EL1_AdvSIMD |
2294                    ID_AA64PFR0_EL1_FP), },
2295         ID_SANITISED(ID_AA64PFR1_EL1),
2296         ID_UNALLOCATED(4,2),
2297         ID_UNALLOCATED(4,3),
2298         ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2299         ID_HIDDEN(ID_AA64SMFR0_EL1),
2300         ID_UNALLOCATED(4,6),
2301         ID_UNALLOCATED(4,7),
2302
2303         /* CRm=5 */
2304         { SYS_DESC(SYS_ID_AA64DFR0_EL1),
2305           .access = access_id_reg,
2306           .get_user = get_id_reg,
2307           .set_user = set_id_aa64dfr0_el1,
2308           .reset = read_sanitised_id_aa64dfr0_el1,
2309           .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2310                  ID_AA64DFR0_EL1_DebugVer_MASK, },
2311         ID_SANITISED(ID_AA64DFR1_EL1),
2312         ID_UNALLOCATED(5,2),
2313         ID_UNALLOCATED(5,3),
2314         ID_HIDDEN(ID_AA64AFR0_EL1),
2315         ID_HIDDEN(ID_AA64AFR1_EL1),
2316         ID_UNALLOCATED(5,6),
2317         ID_UNALLOCATED(5,7),
2318
2319         /* CRm=6 */
2320         ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2321         ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2322                                         ID_AA64ISAR1_EL1_GPA |
2323                                         ID_AA64ISAR1_EL1_API |
2324                                         ID_AA64ISAR1_EL1_APA)),
2325         ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2326                                         ID_AA64ISAR2_EL1_APA3 |
2327                                         ID_AA64ISAR2_EL1_GPA3)),
2328         ID_UNALLOCATED(6,3),
2329         ID_UNALLOCATED(6,4),
2330         ID_UNALLOCATED(6,5),
2331         ID_UNALLOCATED(6,6),
2332         ID_UNALLOCATED(6,7),
2333
2334         /* CRm=7 */
2335         ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2336                                         ID_AA64MMFR0_EL1_TGRAN4_2 |
2337                                         ID_AA64MMFR0_EL1_TGRAN64_2 |
2338                                         ID_AA64MMFR0_EL1_TGRAN16_2)),
2339         ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2340                                         ID_AA64MMFR1_EL1_HCX |
2341                                         ID_AA64MMFR1_EL1_XNX |
2342                                         ID_AA64MMFR1_EL1_TWED |
2343                                         ID_AA64MMFR1_EL1_XNX |
2344                                         ID_AA64MMFR1_EL1_VH |
2345                                         ID_AA64MMFR1_EL1_VMIDBits)),
2346         ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2347                                         ID_AA64MMFR2_EL1_EVT |
2348                                         ID_AA64MMFR2_EL1_FWB |
2349                                         ID_AA64MMFR2_EL1_IDS |
2350                                         ID_AA64MMFR2_EL1_NV |
2351                                         ID_AA64MMFR2_EL1_CCIDX)),
2352         ID_SANITISED(ID_AA64MMFR3_EL1),
2353         ID_SANITISED(ID_AA64MMFR4_EL1),
2354         ID_UNALLOCATED(7,5),
2355         ID_UNALLOCATED(7,6),
2356         ID_UNALLOCATED(7,7),
2357
2358         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2359         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2360         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2361
2362         MTE_REG(RGSR_EL1),
2363         MTE_REG(GCR_EL1),
2364
2365         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2366         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
2367         { SYS_DESC(SYS_SMPRI_EL1), undef_access },
2368         { SYS_DESC(SYS_SMCR_EL1), undef_access },
2369         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2370         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2371         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2372         { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2373
2374         PTRAUTH_KEY(APIA),
2375         PTRAUTH_KEY(APIB),
2376         PTRAUTH_KEY(APDA),
2377         PTRAUTH_KEY(APDB),
2378         PTRAUTH_KEY(APGA),
2379
2380         { SYS_DESC(SYS_SPSR_EL1), access_spsr},
2381         { SYS_DESC(SYS_ELR_EL1), access_elr},
2382
2383         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2384         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2385         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2386
2387         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2388         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2389         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2390         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2391         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2392         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2393         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2394         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2395
2396         MTE_REG(TFSR_EL1),
2397         MTE_REG(TFSRE0_EL1),
2398
2399         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2400         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2401
2402         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
2403         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2404         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
2405         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2406         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2407         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2408         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2409         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2410         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2411         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2412         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
2413         /* PMBIDR_EL1 is not trapped */
2414
2415         { PMU_SYS_REG(PMINTENSET_EL1),
2416           .access = access_pminten, .reg = PMINTENSET_EL1,
2417           .get_user = get_pmreg, .set_user = set_pmreg },
2418         { PMU_SYS_REG(PMINTENCLR_EL1),
2419           .access = access_pminten, .reg = PMINTENSET_EL1,
2420           .get_user = get_pmreg, .set_user = set_pmreg },
2421         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2422
2423         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2424         { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2425         { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2426         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2427
2428         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2429         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2430         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
2431         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
2432         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
2433
2434         { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2435         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2436
2437         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2438         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2439         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2440         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2441         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2442         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2443         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2444         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2445         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2446         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2447         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2448         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2449
2450         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2451         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2452
2453         { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2454
2455         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2456
2457         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2458
2459         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2460         { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2461           .set_user = set_clidr },
2462         { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2463         { SYS_DESC(SYS_SMIDR_EL1), undef_access },
2464         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2465         { SYS_DESC(SYS_CTR_EL0), access_ctr },
2466         { SYS_DESC(SYS_SVCR), undef_access },
2467
2468         { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2469           .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2470         { PMU_SYS_REG(PMCNTENSET_EL0),
2471           .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2472           .get_user = get_pmreg, .set_user = set_pmreg },
2473         { PMU_SYS_REG(PMCNTENCLR_EL0),
2474           .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2475           .get_user = get_pmreg, .set_user = set_pmreg },
2476         { PMU_SYS_REG(PMOVSCLR_EL0),
2477           .access = access_pmovs, .reg = PMOVSSET_EL0,
2478           .get_user = get_pmreg, .set_user = set_pmreg },
2479         /*
2480          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2481          * previously (and pointlessly) advertised in the past...
2482          */
2483         { PMU_SYS_REG(PMSWINC_EL0),
2484           .get_user = get_raz_reg, .set_user = set_wi_reg,
2485           .access = access_pmswinc, .reset = NULL },
2486         { PMU_SYS_REG(PMSELR_EL0),
2487           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2488         { PMU_SYS_REG(PMCEID0_EL0),
2489           .access = access_pmceid, .reset = NULL },
2490         { PMU_SYS_REG(PMCEID1_EL0),
2491           .access = access_pmceid, .reset = NULL },
2492         { PMU_SYS_REG(PMCCNTR_EL0),
2493           .access = access_pmu_evcntr, .reset = reset_unknown,
2494           .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2495         { PMU_SYS_REG(PMXEVTYPER_EL0),
2496           .access = access_pmu_evtyper, .reset = NULL },
2497         { PMU_SYS_REG(PMXEVCNTR_EL0),
2498           .access = access_pmu_evcntr, .reset = NULL },
2499         /*
2500          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2501          * in 32bit mode. Here we choose to reset it as zero for consistency.
2502          */
2503         { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2504           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2505         { PMU_SYS_REG(PMOVSSET_EL0),
2506           .access = access_pmovs, .reg = PMOVSSET_EL0,
2507           .get_user = get_pmreg, .set_user = set_pmreg },
2508
2509         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2510         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2511         { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2512
2513         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2514
2515         { SYS_DESC(SYS_AMCR_EL0), undef_access },
2516         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2517         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2518         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2519         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2520         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2521         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2522         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2523         AMU_AMEVCNTR0_EL0(0),
2524         AMU_AMEVCNTR0_EL0(1),
2525         AMU_AMEVCNTR0_EL0(2),
2526         AMU_AMEVCNTR0_EL0(3),
2527         AMU_AMEVCNTR0_EL0(4),
2528         AMU_AMEVCNTR0_EL0(5),
2529         AMU_AMEVCNTR0_EL0(6),
2530         AMU_AMEVCNTR0_EL0(7),
2531         AMU_AMEVCNTR0_EL0(8),
2532         AMU_AMEVCNTR0_EL0(9),
2533         AMU_AMEVCNTR0_EL0(10),
2534         AMU_AMEVCNTR0_EL0(11),
2535         AMU_AMEVCNTR0_EL0(12),
2536         AMU_AMEVCNTR0_EL0(13),
2537         AMU_AMEVCNTR0_EL0(14),
2538         AMU_AMEVCNTR0_EL0(15),
2539         AMU_AMEVTYPER0_EL0(0),
2540         AMU_AMEVTYPER0_EL0(1),
2541         AMU_AMEVTYPER0_EL0(2),
2542         AMU_AMEVTYPER0_EL0(3),
2543         AMU_AMEVTYPER0_EL0(4),
2544         AMU_AMEVTYPER0_EL0(5),
2545         AMU_AMEVTYPER0_EL0(6),
2546         AMU_AMEVTYPER0_EL0(7),
2547         AMU_AMEVTYPER0_EL0(8),
2548         AMU_AMEVTYPER0_EL0(9),
2549         AMU_AMEVTYPER0_EL0(10),
2550         AMU_AMEVTYPER0_EL0(11),
2551         AMU_AMEVTYPER0_EL0(12),
2552         AMU_AMEVTYPER0_EL0(13),
2553         AMU_AMEVTYPER0_EL0(14),
2554         AMU_AMEVTYPER0_EL0(15),
2555         AMU_AMEVCNTR1_EL0(0),
2556         AMU_AMEVCNTR1_EL0(1),
2557         AMU_AMEVCNTR1_EL0(2),
2558         AMU_AMEVCNTR1_EL0(3),
2559         AMU_AMEVCNTR1_EL0(4),
2560         AMU_AMEVCNTR1_EL0(5),
2561         AMU_AMEVCNTR1_EL0(6),
2562         AMU_AMEVCNTR1_EL0(7),
2563         AMU_AMEVCNTR1_EL0(8),
2564         AMU_AMEVCNTR1_EL0(9),
2565         AMU_AMEVCNTR1_EL0(10),
2566         AMU_AMEVCNTR1_EL0(11),
2567         AMU_AMEVCNTR1_EL0(12),
2568         AMU_AMEVCNTR1_EL0(13),
2569         AMU_AMEVCNTR1_EL0(14),
2570         AMU_AMEVCNTR1_EL0(15),
2571         AMU_AMEVTYPER1_EL0(0),
2572         AMU_AMEVTYPER1_EL0(1),
2573         AMU_AMEVTYPER1_EL0(2),
2574         AMU_AMEVTYPER1_EL0(3),
2575         AMU_AMEVTYPER1_EL0(4),
2576         AMU_AMEVTYPER1_EL0(5),
2577         AMU_AMEVTYPER1_EL0(6),
2578         AMU_AMEVTYPER1_EL0(7),
2579         AMU_AMEVTYPER1_EL0(8),
2580         AMU_AMEVTYPER1_EL0(9),
2581         AMU_AMEVTYPER1_EL0(10),
2582         AMU_AMEVTYPER1_EL0(11),
2583         AMU_AMEVTYPER1_EL0(12),
2584         AMU_AMEVTYPER1_EL0(13),
2585         AMU_AMEVTYPER1_EL0(14),
2586         AMU_AMEVTYPER1_EL0(15),
2587
2588         { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2589         { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2590         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2591         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2592         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2593
2594         /* PMEVCNTRn_EL0 */
2595         PMU_PMEVCNTR_EL0(0),
2596         PMU_PMEVCNTR_EL0(1),
2597         PMU_PMEVCNTR_EL0(2),
2598         PMU_PMEVCNTR_EL0(3),
2599         PMU_PMEVCNTR_EL0(4),
2600         PMU_PMEVCNTR_EL0(5),
2601         PMU_PMEVCNTR_EL0(6),
2602         PMU_PMEVCNTR_EL0(7),
2603         PMU_PMEVCNTR_EL0(8),
2604         PMU_PMEVCNTR_EL0(9),
2605         PMU_PMEVCNTR_EL0(10),
2606         PMU_PMEVCNTR_EL0(11),
2607         PMU_PMEVCNTR_EL0(12),
2608         PMU_PMEVCNTR_EL0(13),
2609         PMU_PMEVCNTR_EL0(14),
2610         PMU_PMEVCNTR_EL0(15),
2611         PMU_PMEVCNTR_EL0(16),
2612         PMU_PMEVCNTR_EL0(17),
2613         PMU_PMEVCNTR_EL0(18),
2614         PMU_PMEVCNTR_EL0(19),
2615         PMU_PMEVCNTR_EL0(20),
2616         PMU_PMEVCNTR_EL0(21),
2617         PMU_PMEVCNTR_EL0(22),
2618         PMU_PMEVCNTR_EL0(23),
2619         PMU_PMEVCNTR_EL0(24),
2620         PMU_PMEVCNTR_EL0(25),
2621         PMU_PMEVCNTR_EL0(26),
2622         PMU_PMEVCNTR_EL0(27),
2623         PMU_PMEVCNTR_EL0(28),
2624         PMU_PMEVCNTR_EL0(29),
2625         PMU_PMEVCNTR_EL0(30),
2626         /* PMEVTYPERn_EL0 */
2627         PMU_PMEVTYPER_EL0(0),
2628         PMU_PMEVTYPER_EL0(1),
2629         PMU_PMEVTYPER_EL0(2),
2630         PMU_PMEVTYPER_EL0(3),
2631         PMU_PMEVTYPER_EL0(4),
2632         PMU_PMEVTYPER_EL0(5),
2633         PMU_PMEVTYPER_EL0(6),
2634         PMU_PMEVTYPER_EL0(7),
2635         PMU_PMEVTYPER_EL0(8),
2636         PMU_PMEVTYPER_EL0(9),
2637         PMU_PMEVTYPER_EL0(10),
2638         PMU_PMEVTYPER_EL0(11),
2639         PMU_PMEVTYPER_EL0(12),
2640         PMU_PMEVTYPER_EL0(13),
2641         PMU_PMEVTYPER_EL0(14),
2642         PMU_PMEVTYPER_EL0(15),
2643         PMU_PMEVTYPER_EL0(16),
2644         PMU_PMEVTYPER_EL0(17),
2645         PMU_PMEVTYPER_EL0(18),
2646         PMU_PMEVTYPER_EL0(19),
2647         PMU_PMEVTYPER_EL0(20),
2648         PMU_PMEVTYPER_EL0(21),
2649         PMU_PMEVTYPER_EL0(22),
2650         PMU_PMEVTYPER_EL0(23),
2651         PMU_PMEVTYPER_EL0(24),
2652         PMU_PMEVTYPER_EL0(25),
2653         PMU_PMEVTYPER_EL0(26),
2654         PMU_PMEVTYPER_EL0(27),
2655         PMU_PMEVTYPER_EL0(28),
2656         PMU_PMEVTYPER_EL0(29),
2657         PMU_PMEVTYPER_EL0(30),
2658         /*
2659          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2660          * in 32bit mode. Here we choose to reset it as zero for consistency.
2661          */
2662         { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2663           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2664
2665         EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2666         EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2667         EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2668         EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2669         EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
2670         EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2671         EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2672         EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2673         EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2674         EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2675         EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2676         EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2677
2678         EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2679
2680         EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2681         EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2682         EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2683         EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2684         EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2685
2686         { SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2687         EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2688         EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2689         EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2690         EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2691         EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2692         { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2693
2694         /* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2695         { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2696           .visibility = hidden_user_visibility },
2697         { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2698           .visibility = hidden_user_visibility },
2699         { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2700           .visibility = hidden_user_visibility },
2701         { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2702           .visibility = hidden_user_visibility },
2703
2704         { SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2705         EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2706         EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2707         EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2708         { SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2709
2710         EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2711         EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2712
2713         EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2714         EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2715
2716         EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2717         EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2718         { SYS_DESC(SYS_RMR_EL2), trap_undef },
2719
2720         EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2721         EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2722
2723         EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2724         EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2725
2726         EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2727
2728         EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2729 };
2730
2731 static struct sys_reg_desc sys_insn_descs[] = {
2732         { SYS_DESC(SYS_DC_ISW), access_dcsw },
2733         { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2734         { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2735         { SYS_DESC(SYS_DC_CSW), access_dcsw },
2736         { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2737         { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2738         { SYS_DESC(SYS_DC_CISW), access_dcsw },
2739         { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2740         { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2741 };
2742
2743 static const struct sys_reg_desc *first_idreg;
2744
2745 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2746                         struct sys_reg_params *p,
2747                         const struct sys_reg_desc *r)
2748 {
2749         if (p->is_write) {
2750                 return ignore_write(vcpu, p);
2751         } else {
2752                 u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2753                 u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
2754
2755                 p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2756                              (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2757                              (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2758                              (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2759                              (1 << 15) | (el3 << 14) | (el3 << 12));
2760                 return true;
2761         }
2762 }
2763
2764 /*
2765  * AArch32 debug register mappings
2766  *
2767  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2768  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2769  *
2770  * None of the other registers share their location, so treat them as
2771  * if they were 64bit.
2772  */
2773 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
2774         /* DBGBVRn */                                                         \
2775         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2776         /* DBGBCRn */                                                         \
2777         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
2778         /* DBGWVRn */                                                         \
2779         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
2780         /* DBGWCRn */                                                         \
2781         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2782
2783 #define DBGBXVR(n)                                                            \
2784         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2785
2786 /*
2787  * Trapped cp14 registers. We generally ignore most of the external
2788  * debug, on the principle that they don't really make sense to a
2789  * guest. Revisit this one day, would this principle change.
2790  */
2791 static const struct sys_reg_desc cp14_regs[] = {
2792         /* DBGDIDR */
2793         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2794         /* DBGDTRRXext */
2795         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2796
2797         DBG_BCR_BVR_WCR_WVR(0),
2798         /* DBGDSCRint */
2799         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2800         DBG_BCR_BVR_WCR_WVR(1),
2801         /* DBGDCCINT */
2802         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2803         /* DBGDSCRext */
2804         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2805         DBG_BCR_BVR_WCR_WVR(2),
2806         /* DBGDTR[RT]Xint */
2807         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2808         /* DBGDTR[RT]Xext */
2809         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2810         DBG_BCR_BVR_WCR_WVR(3),
2811         DBG_BCR_BVR_WCR_WVR(4),
2812         DBG_BCR_BVR_WCR_WVR(5),
2813         /* DBGWFAR */
2814         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2815         /* DBGOSECCR */
2816         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2817         DBG_BCR_BVR_WCR_WVR(6),
2818         /* DBGVCR */
2819         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2820         DBG_BCR_BVR_WCR_WVR(7),
2821         DBG_BCR_BVR_WCR_WVR(8),
2822         DBG_BCR_BVR_WCR_WVR(9),
2823         DBG_BCR_BVR_WCR_WVR(10),
2824         DBG_BCR_BVR_WCR_WVR(11),
2825         DBG_BCR_BVR_WCR_WVR(12),
2826         DBG_BCR_BVR_WCR_WVR(13),
2827         DBG_BCR_BVR_WCR_WVR(14),
2828         DBG_BCR_BVR_WCR_WVR(15),
2829
2830         /* DBGDRAR (32bit) */
2831         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2832
2833         DBGBXVR(0),
2834         /* DBGOSLAR */
2835         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2836         DBGBXVR(1),
2837         /* DBGOSLSR */
2838         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2839         DBGBXVR(2),
2840         DBGBXVR(3),
2841         /* DBGOSDLR */
2842         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2843         DBGBXVR(4),
2844         /* DBGPRCR */
2845         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2846         DBGBXVR(5),
2847         DBGBXVR(6),
2848         DBGBXVR(7),
2849         DBGBXVR(8),
2850         DBGBXVR(9),
2851         DBGBXVR(10),
2852         DBGBXVR(11),
2853         DBGBXVR(12),
2854         DBGBXVR(13),
2855         DBGBXVR(14),
2856         DBGBXVR(15),
2857
2858         /* DBGDSAR (32bit) */
2859         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2860
2861         /* DBGDEVID2 */
2862         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2863         /* DBGDEVID1 */
2864         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2865         /* DBGDEVID */
2866         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2867         /* DBGCLAIMSET */
2868         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2869         /* DBGCLAIMCLR */
2870         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2871         /* DBGAUTHSTATUS */
2872         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2873 };
2874
2875 /* Trapped cp14 64bit registers */
2876 static const struct sys_reg_desc cp14_64_regs[] = {
2877         /* DBGDRAR (64bit) */
2878         { Op1( 0), CRm( 1), .access = trap_raz_wi },
2879
2880         /* DBGDSAR (64bit) */
2881         { Op1( 0), CRm( 2), .access = trap_raz_wi },
2882 };
2883
2884 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)                  \
2885         AA32(_map),                                                     \
2886         Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),                     \
2887         .visibility = pmu_visibility
2888
2889 /* Macro to expand the PMEVCNTRn register */
2890 #define PMU_PMEVCNTR(n)                                                 \
2891         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2892           (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2893           .access = access_pmu_evcntr }
2894
2895 /* Macro to expand the PMEVTYPERn register */
2896 #define PMU_PMEVTYPER(n)                                                \
2897         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2898           (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2899           .access = access_pmu_evtyper }
2900 /*
2901  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2902  * depending on the way they are accessed (as a 32bit or a 64bit
2903  * register).
2904  */
2905 static const struct sys_reg_desc cp15_regs[] = {
2906         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2907         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2908         /* ACTLR */
2909         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2910         /* ACTLR2 */
2911         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2912         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2913         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2914         /* TTBCR */
2915         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2916         /* TTBCR2 */
2917         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2918         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2919         /* DFSR */
2920         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2921         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2922         /* ADFSR */
2923         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2924         /* AIFSR */
2925         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2926         /* DFAR */
2927         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2928         /* IFAR */
2929         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2930
2931         /*
2932          * DC{C,I,CI}SW operations:
2933          */
2934         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2935         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2936         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2937
2938         /* PMU */
2939         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2940         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2941         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2942         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2943         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2944         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2945         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2946         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2947         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2948         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2949         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2950         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2951         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2952         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2953         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2954         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2955         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2956         /* PMMIR */
2957         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2958
2959         /* PRRR/MAIR0 */
2960         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2961         /* NMRR/MAIR1 */
2962         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2963         /* AMAIR0 */
2964         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2965         /* AMAIR1 */
2966         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2967
2968         /* ICC_SRE */
2969         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2970
2971         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2972
2973         /* Arch Tmers */
2974         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2975         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2976
2977         /* PMEVCNTRn */
2978         PMU_PMEVCNTR(0),
2979         PMU_PMEVCNTR(1),
2980         PMU_PMEVCNTR(2),
2981         PMU_PMEVCNTR(3),
2982         PMU_PMEVCNTR(4),
2983         PMU_PMEVCNTR(5),
2984         PMU_PMEVCNTR(6),
2985         PMU_PMEVCNTR(7),
2986         PMU_PMEVCNTR(8),
2987         PMU_PMEVCNTR(9),
2988         PMU_PMEVCNTR(10),
2989         PMU_PMEVCNTR(11),
2990         PMU_PMEVCNTR(12),
2991         PMU_PMEVCNTR(13),
2992         PMU_PMEVCNTR(14),
2993         PMU_PMEVCNTR(15),
2994         PMU_PMEVCNTR(16),
2995         PMU_PMEVCNTR(17),
2996         PMU_PMEVCNTR(18),
2997         PMU_PMEVCNTR(19),
2998         PMU_PMEVCNTR(20),
2999         PMU_PMEVCNTR(21),
3000         PMU_PMEVCNTR(22),
3001         PMU_PMEVCNTR(23),
3002         PMU_PMEVCNTR(24),
3003         PMU_PMEVCNTR(25),
3004         PMU_PMEVCNTR(26),
3005         PMU_PMEVCNTR(27),
3006         PMU_PMEVCNTR(28),
3007         PMU_PMEVCNTR(29),
3008         PMU_PMEVCNTR(30),
3009         /* PMEVTYPERn */
3010         PMU_PMEVTYPER(0),
3011         PMU_PMEVTYPER(1),
3012         PMU_PMEVTYPER(2),
3013         PMU_PMEVTYPER(3),
3014         PMU_PMEVTYPER(4),
3015         PMU_PMEVTYPER(5),
3016         PMU_PMEVTYPER(6),
3017         PMU_PMEVTYPER(7),
3018         PMU_PMEVTYPER(8),
3019         PMU_PMEVTYPER(9),
3020         PMU_PMEVTYPER(10),
3021         PMU_PMEVTYPER(11),
3022         PMU_PMEVTYPER(12),
3023         PMU_PMEVTYPER(13),
3024         PMU_PMEVTYPER(14),
3025         PMU_PMEVTYPER(15),
3026         PMU_PMEVTYPER(16),
3027         PMU_PMEVTYPER(17),
3028         PMU_PMEVTYPER(18),
3029         PMU_PMEVTYPER(19),
3030         PMU_PMEVTYPER(20),
3031         PMU_PMEVTYPER(21),
3032         PMU_PMEVTYPER(22),
3033         PMU_PMEVTYPER(23),
3034         PMU_PMEVTYPER(24),
3035         PMU_PMEVTYPER(25),
3036         PMU_PMEVTYPER(26),
3037         PMU_PMEVTYPER(27),
3038         PMU_PMEVTYPER(28),
3039         PMU_PMEVTYPER(29),
3040         PMU_PMEVTYPER(30),
3041         /* PMCCFILTR */
3042         { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3043
3044         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3045         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3046
3047         /* CCSIDR2 */
3048         { Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3049
3050         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3051 };
3052
3053 static const struct sys_reg_desc cp15_64_regs[] = {
3054         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3055         { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3056         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3057         { SYS_DESC(SYS_AARCH32_CNTPCT),       access_arch_timer },
3058         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3059         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3060         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3061         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3062         { SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3063 };
3064
3065 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3066                                bool is_32)
3067 {
3068         unsigned int i;
3069
3070         for (i = 0; i < n; i++) {
3071                 if (!is_32 && table[i].reg && !table[i].reset) {
3072                         kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
3073                         return false;
3074                 }
3075
3076                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3077                         kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
3078                         return false;
3079                 }
3080         }
3081
3082         return true;
3083 }
3084
3085 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3086 {
3087         kvm_inject_undefined(vcpu);
3088         return 1;
3089 }
3090
3091 static void perform_access(struct kvm_vcpu *vcpu,
3092                            struct sys_reg_params *params,
3093                            const struct sys_reg_desc *r)
3094 {
3095         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3096
3097         /* Check for regs disabled by runtime config */
3098         if (sysreg_hidden(vcpu, r)) {
3099                 kvm_inject_undefined(vcpu);
3100                 return;
3101         }
3102
3103         /*
3104          * Not having an accessor means that we have configured a trap
3105          * that we don't know how to handle. This certainly qualifies
3106          * as a gross bug that should be fixed right away.
3107          */
3108         BUG_ON(!r->access);
3109
3110         /* Skip instruction if instructed so */
3111         if (likely(r->access(vcpu, params, r)))
3112                 kvm_incr_pc(vcpu);
3113 }
3114
3115 /*
3116  * emulate_cp --  tries to match a sys_reg access in a handling table, and
3117  *                call the corresponding trap handler.
3118  *
3119  * @params: pointer to the descriptor of the access
3120  * @table: array of trap descriptors
3121  * @num: size of the trap descriptor array
3122  *
3123  * Return true if the access has been handled, false if not.
3124  */
3125 static bool emulate_cp(struct kvm_vcpu *vcpu,
3126                        struct sys_reg_params *params,
3127                        const struct sys_reg_desc *table,
3128                        size_t num)
3129 {
3130         const struct sys_reg_desc *r;
3131
3132         if (!table)
3133                 return false;   /* Not handled */
3134
3135         r = find_reg(params, table, num);
3136
3137         if (r) {
3138                 perform_access(vcpu, params, r);
3139                 return true;
3140         }
3141
3142         /* Not handled */
3143         return false;
3144 }
3145
3146 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3147                                 struct sys_reg_params *params)
3148 {
3149         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3150         int cp = -1;
3151
3152         switch (esr_ec) {
3153         case ESR_ELx_EC_CP15_32:
3154         case ESR_ELx_EC_CP15_64:
3155                 cp = 15;
3156                 break;
3157         case ESR_ELx_EC_CP14_MR:
3158         case ESR_ELx_EC_CP14_64:
3159                 cp = 14;
3160                 break;
3161         default:
3162                 WARN_ON(1);
3163         }
3164
3165         print_sys_reg_msg(params,
3166                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3167                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3168         kvm_inject_undefined(vcpu);
3169 }
3170
3171 /**
3172  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3173  * @vcpu: The VCPU pointer
3174  * @global: &struct sys_reg_desc
3175  * @nr_global: size of the @global array
3176  */
3177 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3178                             const struct sys_reg_desc *global,
3179                             size_t nr_global)
3180 {
3181         struct sys_reg_params params;
3182         u64 esr = kvm_vcpu_get_esr(vcpu);
3183         int Rt = kvm_vcpu_sys_get_rt(vcpu);
3184         int Rt2 = (esr >> 10) & 0x1f;
3185
3186         params.CRm = (esr >> 1) & 0xf;
3187         params.is_write = ((esr & 1) == 0);
3188
3189         params.Op0 = 0;
3190         params.Op1 = (esr >> 16) & 0xf;
3191         params.Op2 = 0;
3192         params.CRn = 0;
3193
3194         /*
3195          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3196          * backends between AArch32 and AArch64, we get away with it.
3197          */
3198         if (params.is_write) {
3199                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3200                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3201         }
3202
3203         /*
3204          * If the table contains a handler, handle the
3205          * potential register operation in the case of a read and return
3206          * with success.
3207          */
3208         if (emulate_cp(vcpu, &params, global, nr_global)) {
3209                 /* Split up the value between registers for the read side */
3210                 if (!params.is_write) {
3211                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3212                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3213                 }
3214
3215                 return 1;
3216         }
3217
3218         unhandled_cp_access(vcpu, &params);
3219         return 1;
3220 }
3221
3222 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3223
3224 /*
3225  * The CP10 ID registers are architecturally mapped to AArch64 feature
3226  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3227  * from AArch32.
3228  */
3229 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3230 {
3231         u8 reg_id = (esr >> 10) & 0xf;
3232         bool valid;
3233
3234         params->is_write = ((esr & 1) == 0);
3235         params->Op0 = 3;
3236         params->Op1 = 0;
3237         params->CRn = 0;
3238         params->CRm = 3;
3239
3240         /* CP10 ID registers are read-only */
3241         valid = !params->is_write;
3242
3243         switch (reg_id) {
3244         /* MVFR0 */
3245         case 0b0111:
3246                 params->Op2 = 0;
3247                 break;
3248         /* MVFR1 */
3249         case 0b0110:
3250                 params->Op2 = 1;
3251                 break;
3252         /* MVFR2 */
3253         case 0b0101:
3254                 params->Op2 = 2;
3255                 break;
3256         default:
3257                 valid = false;
3258         }
3259
3260         if (valid)
3261                 return true;
3262
3263         kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3264                       params->is_write ? "write" : "read", reg_id);
3265         return false;
3266 }
3267
3268 /**
3269  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3270  *                        VFP Register' from AArch32.
3271  * @vcpu: The vCPU pointer
3272  *
3273  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3274  * Work out the correct AArch64 system register encoding and reroute to the
3275  * AArch64 system register emulation.
3276  */
3277 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3278 {
3279         int Rt = kvm_vcpu_sys_get_rt(vcpu);
3280         u64 esr = kvm_vcpu_get_esr(vcpu);
3281         struct sys_reg_params params;
3282
3283         /* UNDEF on any unhandled register access */
3284         if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3285                 kvm_inject_undefined(vcpu);
3286                 return 1;
3287         }
3288
3289         if (emulate_sys_reg(vcpu, &params))
3290                 vcpu_set_reg(vcpu, Rt, params.regval);
3291
3292         return 1;
3293 }
3294
3295 /**
3296  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3297  *                             CRn=0, which corresponds to the AArch32 feature
3298  *                             registers.
3299  * @vcpu: the vCPU pointer
3300  * @params: the system register access parameters.
3301  *
3302  * Our cp15 system register tables do not enumerate the AArch32 feature
3303  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3304  * register encoding can be trivially remapped into the AArch64 for the feature
3305  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3306  *
3307  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3308  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3309  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3310  * treat undefined registers in this range as RAZ.
3311  */
3312 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3313                                    struct sys_reg_params *params)
3314 {
3315         int Rt = kvm_vcpu_sys_get_rt(vcpu);
3316
3317         /* Treat impossible writes to RO registers as UNDEFINED */
3318         if (params->is_write) {
3319                 unhandled_cp_access(vcpu, params);
3320                 return 1;
3321         }
3322
3323         params->Op0 = 3;
3324
3325         /*
3326          * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3327          * Avoid conflicting with future expansion of AArch64 feature registers
3328          * and simply treat them as RAZ here.
3329          */
3330         if (params->CRm > 3)
3331                 params->regval = 0;
3332         else if (!emulate_sys_reg(vcpu, params))
3333                 return 1;
3334
3335         vcpu_set_reg(vcpu, Rt, params->regval);
3336         return 1;
3337 }
3338
3339 /**
3340  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3341  * @vcpu: The VCPU pointer
3342  * @params: &struct sys_reg_params
3343  * @global: &struct sys_reg_desc
3344  * @nr_global: size of the @global array
3345  */
3346 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3347                             struct sys_reg_params *params,
3348                             const struct sys_reg_desc *global,
3349                             size_t nr_global)
3350 {
3351         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3352
3353         params->regval = vcpu_get_reg(vcpu, Rt);
3354
3355         if (emulate_cp(vcpu, params, global, nr_global)) {
3356                 if (!params->is_write)
3357                         vcpu_set_reg(vcpu, Rt, params->regval);
3358                 return 1;
3359         }
3360
3361         unhandled_cp_access(vcpu, params);
3362         return 1;
3363 }
3364
3365 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3366 {
3367         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3368 }
3369
3370 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3371 {
3372         struct sys_reg_params params;
3373
3374         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3375
3376         /*
3377          * Certain AArch32 ID registers are handled by rerouting to the AArch64
3378          * system register table. Registers in the ID range where CRm=0 are
3379          * excluded from this scheme as they do not trivially map into AArch64
3380          * system register encodings.
3381          */
3382         if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3383                 return kvm_emulate_cp15_id_reg(vcpu, &params);
3384
3385         return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3386 }
3387
3388 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3389 {
3390         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3391 }
3392
3393 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3394 {
3395         struct sys_reg_params params;
3396
3397         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3398
3399         return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3400 }
3401
3402 /**
3403  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3404  * @vcpu: The VCPU pointer
3405  * @params: Decoded system register parameters
3406  *
3407  * Return: true if the system register access was successful, false otherwise.
3408  */
3409 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3410                             struct sys_reg_params *params)
3411 {
3412         const struct sys_reg_desc *r;
3413
3414         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3415         if (likely(r)) {
3416                 perform_access(vcpu, params, r);
3417                 return true;
3418         }
3419
3420         print_sys_reg_msg(params,
3421                           "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3422                           *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3423         kvm_inject_undefined(vcpu);
3424
3425         return false;
3426 }
3427
3428 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
3429 {
3430         struct kvm *kvm = s->private;
3431         u8 *iter;
3432
3433         mutex_lock(&kvm->arch.config_lock);
3434
3435         iter = &kvm->arch.idreg_debugfs_iter;
3436         if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
3437             *iter == (u8)~0) {
3438                 *iter = *pos;
3439                 if (*iter >= KVM_ARM_ID_REG_NUM)
3440                         iter = NULL;
3441         } else {
3442                 iter = ERR_PTR(-EBUSY);
3443         }
3444
3445         mutex_unlock(&kvm->arch.config_lock);
3446
3447         return iter;
3448 }
3449
3450 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
3451 {
3452         struct kvm *kvm = s->private;
3453
3454         (*pos)++;
3455
3456         if ((kvm->arch.idreg_debugfs_iter + 1) < KVM_ARM_ID_REG_NUM) {
3457                 kvm->arch.idreg_debugfs_iter++;
3458
3459                 return &kvm->arch.idreg_debugfs_iter;
3460         }
3461
3462         return NULL;
3463 }
3464
3465 static void idregs_debug_stop(struct seq_file *s, void *v)
3466 {
3467         struct kvm *kvm = s->private;
3468
3469         if (IS_ERR(v))
3470                 return;
3471
3472         mutex_lock(&kvm->arch.config_lock);
3473
3474         kvm->arch.idreg_debugfs_iter = ~0;
3475
3476         mutex_unlock(&kvm->arch.config_lock);
3477 }
3478
3479 static int idregs_debug_show(struct seq_file *s, void *v)
3480 {
3481         struct kvm *kvm = s->private;
3482         const struct sys_reg_desc *desc;
3483
3484         desc = first_idreg + kvm->arch.idreg_debugfs_iter;
3485
3486         if (!desc->name)
3487                 return 0;
3488
3489         seq_printf(s, "%20s:\t%016llx\n",
3490                    desc->name, IDREG(kvm, IDX_IDREG(kvm->arch.idreg_debugfs_iter)));
3491
3492         return 0;
3493 }
3494
3495 static const struct seq_operations idregs_debug_sops = {
3496         .start  = idregs_debug_start,
3497         .next   = idregs_debug_next,
3498         .stop   = idregs_debug_stop,
3499         .show   = idregs_debug_show,
3500 };
3501
3502 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
3503
3504 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
3505 {
3506         kvm->arch.idreg_debugfs_iter = ~0;
3507
3508         debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
3509                             &idregs_debug_fops);
3510 }
3511
3512 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3513 {
3514         const struct sys_reg_desc *idreg = first_idreg;
3515         u32 id = reg_to_encoding(idreg);
3516         struct kvm *kvm = vcpu->kvm;
3517
3518         if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3519                 return;
3520
3521         lockdep_assert_held(&kvm->arch.config_lock);
3522
3523         /* Initialize all idregs */
3524         while (is_id_reg(id)) {
3525                 IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3526
3527                 idreg++;
3528                 id = reg_to_encoding(idreg);
3529         }
3530
3531         set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3532 }
3533
3534 /**
3535  * kvm_reset_sys_regs - sets system registers to reset value
3536  * @vcpu: The VCPU pointer
3537  *
3538  * This function finds the right table above and sets the registers on the
3539  * virtual CPU struct to their architecturally defined reset values.
3540  */
3541 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3542 {
3543         unsigned long i;
3544
3545         kvm_reset_id_regs(vcpu);
3546
3547         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3548                 const struct sys_reg_desc *r = &sys_reg_descs[i];
3549
3550                 if (is_id_reg(reg_to_encoding(r)))
3551                         continue;
3552
3553                 if (r->reset)
3554                         r->reset(vcpu, r);
3555         }
3556 }
3557
3558 /**
3559  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
3560  *                       trap on a guest execution
3561  * @vcpu: The VCPU pointer
3562  */
3563 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3564 {
3565         const struct sys_reg_desc *desc = NULL;
3566         struct sys_reg_params params;
3567         unsigned long esr = kvm_vcpu_get_esr(vcpu);
3568         int Rt = kvm_vcpu_sys_get_rt(vcpu);
3569         int sr_idx;
3570
3571         trace_kvm_handle_sys_reg(esr);
3572
3573         if (triage_sysreg_trap(vcpu, &sr_idx))
3574                 return 1;
3575
3576         params = esr_sys64_to_params(esr);
3577         params.regval = vcpu_get_reg(vcpu, Rt);
3578
3579         /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
3580         if (params.Op0 == 2 || params.Op0 == 3)
3581                 desc = &sys_reg_descs[sr_idx];
3582         else
3583                 desc = &sys_insn_descs[sr_idx];
3584
3585         perform_access(vcpu, &params, desc);
3586
3587         /* Read from system register? */
3588         if (!params.is_write &&
3589             (params.Op0 == 2 || params.Op0 == 3))
3590                 vcpu_set_reg(vcpu, Rt, params.regval);
3591
3592         return 1;
3593 }
3594
3595 /******************************************************************************
3596  * Userspace API
3597  *****************************************************************************/
3598
3599 static bool index_to_params(u64 id, struct sys_reg_params *params)
3600 {
3601         switch (id & KVM_REG_SIZE_MASK) {
3602         case KVM_REG_SIZE_U64:
3603                 /* Any unused index bits means it's not valid. */
3604                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3605                               | KVM_REG_ARM_COPROC_MASK
3606                               | KVM_REG_ARM64_SYSREG_OP0_MASK
3607                               | KVM_REG_ARM64_SYSREG_OP1_MASK
3608                               | KVM_REG_ARM64_SYSREG_CRN_MASK
3609                               | KVM_REG_ARM64_SYSREG_CRM_MASK
3610                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
3611                         return false;
3612                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3613                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3614                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3615                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3616                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3617                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3618                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3619                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3620                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3621                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3622                 return true;
3623         default:
3624                 return false;
3625         }
3626 }
3627
3628 const struct sys_reg_desc *get_reg_by_id(u64 id,
3629                                          const struct sys_reg_desc table[],
3630                                          unsigned int num)
3631 {
3632         struct sys_reg_params params;
3633
3634         if (!index_to_params(id, &params))
3635                 return NULL;
3636
3637         return find_reg(&params, table, num);
3638 }
3639
3640 /* Decode an index value, and find the sys_reg_desc entry. */
3641 static const struct sys_reg_desc *
3642 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3643                    const struct sys_reg_desc table[], unsigned int num)
3644
3645 {
3646         const struct sys_reg_desc *r;
3647
3648         /* We only do sys_reg for now. */
3649         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3650                 return NULL;
3651
3652         r = get_reg_by_id(id, table, num);
3653
3654         /* Not saved in the sys_reg array and not otherwise accessible? */
3655         if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3656                 r = NULL;
3657
3658         return r;
3659 }
3660
3661 /*
3662  * These are the invariant sys_reg registers: we let the guest see the
3663  * host versions of these, so they're part of the guest state.
3664  *
3665  * A future CPU may provide a mechanism to present different values to
3666  * the guest, or a future kvm may trap them.
3667  */
3668
3669 #define FUNCTION_INVARIANT(reg)                                         \
3670         static u64 get_##reg(struct kvm_vcpu *v,                        \
3671                               const struct sys_reg_desc *r)             \
3672         {                                                               \
3673                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
3674                 return ((struct sys_reg_desc *)r)->val;                 \
3675         }
3676
3677 FUNCTION_INVARIANT(midr_el1)
3678 FUNCTION_INVARIANT(revidr_el1)
3679 FUNCTION_INVARIANT(aidr_el1)
3680
3681 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3682 {
3683         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3684         return ((struct sys_reg_desc *)r)->val;
3685 }
3686
3687 /* ->val is filled in by kvm_sys_reg_table_init() */
3688 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3689         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3690         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3691         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3692         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3693 };
3694
3695 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3696 {
3697         const struct sys_reg_desc *r;
3698
3699         r = get_reg_by_id(id, invariant_sys_regs,
3700                           ARRAY_SIZE(invariant_sys_regs));
3701         if (!r)
3702                 return -ENOENT;
3703
3704         return put_user(r->val, uaddr);
3705 }
3706
3707 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3708 {
3709         const struct sys_reg_desc *r;
3710         u64 val;
3711
3712         r = get_reg_by_id(id, invariant_sys_regs,
3713                           ARRAY_SIZE(invariant_sys_regs));
3714         if (!r)
3715                 return -ENOENT;
3716
3717         if (get_user(val, uaddr))
3718                 return -EFAULT;
3719
3720         /* This is what we mean by invariant: you can't change it. */
3721         if (r->val != val)
3722                 return -EINVAL;
3723
3724         return 0;
3725 }
3726
3727 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3728 {
3729         u32 val;
3730         u32 __user *uval = uaddr;
3731
3732         /* Fail if we have unknown bits set. */
3733         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3734                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3735                 return -ENOENT;
3736
3737         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3738         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3739                 if (KVM_REG_SIZE(id) != 4)
3740                         return -ENOENT;
3741                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3742                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3743                 if (val >= CSSELR_MAX)
3744                         return -ENOENT;
3745
3746                 return put_user(get_ccsidr(vcpu, val), uval);
3747         default:
3748                 return -ENOENT;
3749         }
3750 }
3751
3752 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3753 {
3754         u32 val, newval;
3755         u32 __user *uval = uaddr;
3756
3757         /* Fail if we have unknown bits set. */
3758         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3759                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3760                 return -ENOENT;
3761
3762         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3763         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3764                 if (KVM_REG_SIZE(id) != 4)
3765                         return -ENOENT;
3766                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3767                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3768                 if (val >= CSSELR_MAX)
3769                         return -ENOENT;
3770
3771                 if (get_user(newval, uval))
3772                         return -EFAULT;
3773
3774                 return set_ccsidr(vcpu, val, newval);
3775         default:
3776                 return -ENOENT;
3777         }
3778 }
3779
3780 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3781                          const struct sys_reg_desc table[], unsigned int num)
3782 {
3783         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3784         const struct sys_reg_desc *r;
3785         u64 val;
3786         int ret;
3787
3788         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3789         if (!r || sysreg_hidden_user(vcpu, r))
3790                 return -ENOENT;
3791
3792         if (r->get_user) {
3793                 ret = (r->get_user)(vcpu, r, &val);
3794         } else {
3795                 val = __vcpu_sys_reg(vcpu, r->reg);
3796                 ret = 0;
3797         }
3798
3799         if (!ret)
3800                 ret = put_user(val, uaddr);
3801
3802         return ret;
3803 }
3804
3805 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3806 {
3807         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3808         int err;
3809
3810         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3811                 return demux_c15_get(vcpu, reg->id, uaddr);
3812
3813         err = get_invariant_sys_reg(reg->id, uaddr);
3814         if (err != -ENOENT)
3815                 return err;
3816
3817         return kvm_sys_reg_get_user(vcpu, reg,
3818                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3819 }
3820
3821 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3822                          const struct sys_reg_desc table[], unsigned int num)
3823 {
3824         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3825         const struct sys_reg_desc *r;
3826         u64 val;
3827         int ret;
3828
3829         if (get_user(val, uaddr))
3830                 return -EFAULT;
3831
3832         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3833         if (!r || sysreg_hidden_user(vcpu, r))
3834                 return -ENOENT;
3835
3836         if (sysreg_user_write_ignore(vcpu, r))
3837                 return 0;
3838
3839         if (r->set_user) {
3840                 ret = (r->set_user)(vcpu, r, val);
3841         } else {
3842                 __vcpu_sys_reg(vcpu, r->reg) = val;
3843                 ret = 0;
3844         }
3845
3846         return ret;
3847 }
3848
3849 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3850 {
3851         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3852         int err;
3853
3854         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3855                 return demux_c15_set(vcpu, reg->id, uaddr);
3856
3857         err = set_invariant_sys_reg(reg->id, uaddr);
3858         if (err != -ENOENT)
3859                 return err;
3860
3861         return kvm_sys_reg_set_user(vcpu, reg,
3862                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3863 }
3864
3865 static unsigned int num_demux_regs(void)
3866 {
3867         return CSSELR_MAX;
3868 }
3869
3870 static int write_demux_regids(u64 __user *uindices)
3871 {
3872         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3873         unsigned int i;
3874
3875         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3876         for (i = 0; i < CSSELR_MAX; i++) {
3877                 if (put_user(val | i, uindices))
3878                         return -EFAULT;
3879                 uindices++;
3880         }
3881         return 0;
3882 }
3883
3884 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3885 {
3886         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3887                 KVM_REG_ARM64_SYSREG |
3888                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3889                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3890                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3891                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3892                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3893 }
3894
3895 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3896 {
3897         if (!*uind)
3898                 return true;
3899
3900         if (put_user(sys_reg_to_index(reg), *uind))
3901                 return false;
3902
3903         (*uind)++;
3904         return true;
3905 }
3906
3907 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3908                             const struct sys_reg_desc *rd,
3909                             u64 __user **uind,
3910                             unsigned int *total)
3911 {
3912         /*
3913          * Ignore registers we trap but don't save,
3914          * and for which no custom user accessor is provided.
3915          */
3916         if (!(rd->reg || rd->get_user))
3917                 return 0;
3918
3919         if (sysreg_hidden_user(vcpu, rd))
3920                 return 0;
3921
3922         if (!copy_reg_to_user(rd, uind))
3923                 return -EFAULT;
3924
3925         (*total)++;
3926         return 0;
3927 }
3928
3929 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3930 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3931 {
3932         const struct sys_reg_desc *i2, *end2;
3933         unsigned int total = 0;
3934         int err;
3935
3936         i2 = sys_reg_descs;
3937         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3938
3939         while (i2 != end2) {
3940                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3941                 if (err)
3942                         return err;
3943         }
3944         return total;
3945 }
3946
3947 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3948 {
3949         return ARRAY_SIZE(invariant_sys_regs)
3950                 + num_demux_regs()
3951                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3952 }
3953
3954 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3955 {
3956         unsigned int i;
3957         int err;
3958
3959         /* Then give them all the invariant registers' indices. */
3960         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3961                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3962                         return -EFAULT;
3963                 uindices++;
3964         }
3965
3966         err = walk_sys_regs(vcpu, uindices);
3967         if (err < 0)
3968                 return err;
3969         uindices += err;
3970
3971         return write_demux_regids(uindices);
3972 }
3973
3974 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)                       \
3975         KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),            \
3976                 sys_reg_Op1(r),                                 \
3977                 sys_reg_CRn(r),                                 \
3978                 sys_reg_CRm(r),                                 \
3979                 sys_reg_Op2(r))
3980
3981 static bool is_feature_id_reg(u32 encoding)
3982 {
3983         return (sys_reg_Op0(encoding) == 3 &&
3984                 (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
3985                 sys_reg_CRn(encoding) == 0 &&
3986                 sys_reg_CRm(encoding) <= 7);
3987 }
3988
3989 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
3990 {
3991         const void *zero_page = page_to_virt(ZERO_PAGE(0));
3992         u64 __user *masks = (u64 __user *)range->addr;
3993
3994         /* Only feature id range is supported, reserved[13] must be zero. */
3995         if (range->range ||
3996             memcmp(range->reserved, zero_page, sizeof(range->reserved)))
3997                 return -EINVAL;
3998
3999         /* Wipe the whole thing first */
4000         if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
4001                 return -EFAULT;
4002
4003         for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4004                 const struct sys_reg_desc *reg = &sys_reg_descs[i];
4005                 u32 encoding = reg_to_encoding(reg);
4006                 u64 val;
4007
4008                 if (!is_feature_id_reg(encoding) || !reg->set_user)
4009                         continue;
4010
4011                 /*
4012                  * For ID registers, we return the writable mask. Other feature
4013                  * registers return a full 64bit mask. That's not necessary
4014                  * compliant with a given revision of the architecture, but the
4015                  * RES0/RES1 definitions allow us to do that.
4016                  */
4017                 if (is_id_reg(encoding)) {
4018                         if (!reg->val ||
4019                             (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
4020                                 continue;
4021                         val = reg->val;
4022                 } else {
4023                         val = ~0UL;
4024                 }
4025
4026                 if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
4027                         return -EFAULT;
4028         }
4029
4030         return 0;
4031 }
4032
4033 void kvm_init_sysreg(struct kvm_vcpu *vcpu)
4034 {
4035         struct kvm *kvm = vcpu->kvm;
4036
4037         mutex_lock(&kvm->arch.config_lock);
4038
4039         /*
4040          * In the absence of FGT, we cannot independently trap TLBI
4041          * Range instructions. This isn't great, but trapping all
4042          * TLBIs would be far worse. Live with it...
4043          */
4044         if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4045                 vcpu->arch.hcr_el2 |= HCR_TTLBOS;
4046
4047         if (cpus_have_final_cap(ARM64_HAS_HCX)) {
4048                 vcpu->arch.hcrx_el2 = HCRX_GUEST_FLAGS;
4049
4050                 if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
4051                         vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
4052         }
4053
4054         if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
4055                 goto out;
4056
4057         kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1           |
4058                                        HFGxTR_EL2_nMAIR2_EL1            |
4059                                        HFGxTR_EL2_nS2POR_EL1            |
4060                                        HFGxTR_EL2_nPOR_EL1              |
4061                                        HFGxTR_EL2_nPOR_EL0              |
4062                                        HFGxTR_EL2_nACCDATA_EL1          |
4063                                        HFGxTR_EL2_nSMPRI_EL1_MASK       |
4064                                        HFGxTR_EL2_nTPIDR2_EL0_MASK);
4065
4066         if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4067                 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
4068                                                 HFGITR_EL2_TLBIRVALE1OS |
4069                                                 HFGITR_EL2_TLBIRVAAE1OS |
4070                                                 HFGITR_EL2_TLBIRVAE1OS  |
4071                                                 HFGITR_EL2_TLBIVAALE1OS |
4072                                                 HFGITR_EL2_TLBIVALE1OS  |
4073                                                 HFGITR_EL2_TLBIVAAE1OS  |
4074                                                 HFGITR_EL2_TLBIASIDE1OS |
4075                                                 HFGITR_EL2_TLBIVAE1OS   |
4076                                                 HFGITR_EL2_TLBIVMALLE1OS);
4077
4078         if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
4079                 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1  |
4080                                                 HFGITR_EL2_TLBIRVALE1   |
4081                                                 HFGITR_EL2_TLBIRVAAE1   |
4082                                                 HFGITR_EL2_TLBIRVAE1    |
4083                                                 HFGITR_EL2_TLBIRVAALE1IS|
4084                                                 HFGITR_EL2_TLBIRVALE1IS |
4085                                                 HFGITR_EL2_TLBIRVAAE1IS |
4086                                                 HFGITR_EL2_TLBIRVAE1IS  |
4087                                                 HFGITR_EL2_TLBIRVAALE1OS|
4088                                                 HFGITR_EL2_TLBIRVALE1OS |
4089                                                 HFGITR_EL2_TLBIRVAAE1OS |
4090                                                 HFGITR_EL2_TLBIRVAE1OS);
4091
4092         if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
4093                 kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
4094                                                 HFGxTR_EL2_nPIR_EL1);
4095
4096         if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
4097                 kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
4098                                                   HAFGRTR_EL2_RES1);
4099
4100         set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
4101 out:
4102         mutex_unlock(&kvm->arch.config_lock);
4103 }
4104
4105 int __init kvm_sys_reg_table_init(void)
4106 {
4107         struct sys_reg_params params;
4108         bool valid = true;
4109         unsigned int i;
4110         int ret = 0;
4111
4112         /* Make sure tables are unique and in order. */
4113         valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
4114         valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
4115         valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
4116         valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
4117         valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
4118         valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
4119         valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
4120
4121         if (!valid)
4122                 return -EINVAL;
4123
4124         /* We abuse the reset function to overwrite the table itself. */
4125         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
4126                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
4127
4128         /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
4129         params = encoding_to_params(SYS_ID_PFR0_EL1);
4130         first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4131         if (!first_idreg)
4132                 return -EINVAL;
4133
4134         ret = populate_nv_trap_config();
4135
4136         for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
4137                 ret = populate_sysreg_config(sys_reg_descs + i, i);
4138
4139         for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
4140                 ret = populate_sysreg_config(sys_insn_descs + i, i);
4141
4142         return ret;
4143 }