GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/perf_event.h>
29 #include <asm/sysreg.h>
30
31 #include <trace/events/kvm.h>
32
33 #include "sys_regs.h"
34
35 #include "trace.h"
36
37 /*
38  * All of this file is extremly similar to the ARM coproc.c, but the
39  * types are different. My gut feeling is that it should be pretty
40  * easy to merge, but that would be an ABI breakage -- again. VFP
41  * would also need to be abstracted.
42  *
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47
48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49                                  struct sys_reg_params *params,
50                                  const struct sys_reg_desc *r)
51 {
52         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53         print_sys_reg_instr(params);
54         kvm_inject_undefined(vcpu);
55         return false;
56 }
57
58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59                                struct sys_reg_params *params,
60                                const struct sys_reg_desc *r)
61 {
62         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63         print_sys_reg_instr(params);
64         kvm_inject_undefined(vcpu);
65         return false;
66 }
67
68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69 {
70         if (!vcpu->arch.sysregs_loaded_on_cpu)
71                 goto immediate_read;
72
73         /*
74          * System registers listed in the switch are not saved on every
75          * exit from the guest but are only saved on vcpu_put.
76          *
77          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
78          * should never be listed below, because the guest cannot modify its
79          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
80          * thread when emulating cross-VCPU communication.
81          */
82         switch (reg) {
83         case CSSELR_EL1:        return read_sysreg_s(SYS_CSSELR_EL1);
84         case SCTLR_EL1:         return read_sysreg_s(SYS_SCTLR_EL12);
85         case ACTLR_EL1:         return read_sysreg_s(SYS_ACTLR_EL1);
86         case CPACR_EL1:         return read_sysreg_s(SYS_CPACR_EL12);
87         case TTBR0_EL1:         return read_sysreg_s(SYS_TTBR0_EL12);
88         case TTBR1_EL1:         return read_sysreg_s(SYS_TTBR1_EL12);
89         case TCR_EL1:           return read_sysreg_s(SYS_TCR_EL12);
90         case ESR_EL1:           return read_sysreg_s(SYS_ESR_EL12);
91         case AFSR0_EL1:         return read_sysreg_s(SYS_AFSR0_EL12);
92         case AFSR1_EL1:         return read_sysreg_s(SYS_AFSR1_EL12);
93         case FAR_EL1:           return read_sysreg_s(SYS_FAR_EL12);
94         case MAIR_EL1:          return read_sysreg_s(SYS_MAIR_EL12);
95         case VBAR_EL1:          return read_sysreg_s(SYS_VBAR_EL12);
96         case CONTEXTIDR_EL1:    return read_sysreg_s(SYS_CONTEXTIDR_EL12);
97         case TPIDR_EL0:         return read_sysreg_s(SYS_TPIDR_EL0);
98         case TPIDRRO_EL0:       return read_sysreg_s(SYS_TPIDRRO_EL0);
99         case TPIDR_EL1:         return read_sysreg_s(SYS_TPIDR_EL1);
100         case AMAIR_EL1:         return read_sysreg_s(SYS_AMAIR_EL12);
101         case CNTKCTL_EL1:       return read_sysreg_s(SYS_CNTKCTL_EL12);
102         case PAR_EL1:           return read_sysreg_s(SYS_PAR_EL1);
103         case DACR32_EL2:        return read_sysreg_s(SYS_DACR32_EL2);
104         case IFSR32_EL2:        return read_sysreg_s(SYS_IFSR32_EL2);
105         case DBGVCR32_EL2:      return read_sysreg_s(SYS_DBGVCR32_EL2);
106         }
107
108 immediate_read:
109         return __vcpu_sys_reg(vcpu, reg);
110 }
111
112 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
113 {
114         if (!vcpu->arch.sysregs_loaded_on_cpu)
115                 goto immediate_write;
116
117         /*
118          * System registers listed in the switch are not restored on every
119          * entry to the guest but are only restored on vcpu_load.
120          *
121          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
122          * should never be listed below, because the the MPIDR should only be
123          * set once, before running the VCPU, and never changed later.
124          */
125         switch (reg) {
126         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    return;
127         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    return;
128         case ACTLR_EL1:         write_sysreg_s(val, SYS_ACTLR_EL1);     return;
129         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    return;
130         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    return;
131         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    return;
132         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      return;
133         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      return;
134         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    return;
135         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    return;
136         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      return;
137         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     return;
138         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     return;
139         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
140         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     return;
141         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   return;
142         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     return;
143         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    return;
144         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  return;
145         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       return;
146         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    return;
147         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    return;
148         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  return;
149         }
150
151 immediate_write:
152          __vcpu_sys_reg(vcpu, reg) = val;
153 }
154
155 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
156 static u32 cache_levels;
157
158 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
159 #define CSSELR_MAX 12
160
161 /* Which cache CCSIDR represents depends on CSSELR value. */
162 static u32 get_ccsidr(u32 csselr)
163 {
164         u32 ccsidr;
165
166         /* Make sure noone else changes CSSELR during this! */
167         local_irq_disable();
168         write_sysreg(csselr, csselr_el1);
169         isb();
170         ccsidr = read_sysreg(ccsidr_el1);
171         local_irq_enable();
172
173         return ccsidr;
174 }
175
176 /*
177  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
178  */
179 static bool access_dcsw(struct kvm_vcpu *vcpu,
180                         struct sys_reg_params *p,
181                         const struct sys_reg_desc *r)
182 {
183         if (!p->is_write)
184                 return read_from_write_only(vcpu, p, r);
185
186         /*
187          * Only track S/W ops if we don't have FWB. It still indicates
188          * that the guest is a bit broken (S/W operations should only
189          * be done by firmware, knowing that there is only a single
190          * CPU left in the system, and certainly not from non-secure
191          * software).
192          */
193         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
194                 kvm_set_way_flush(vcpu);
195
196         return true;
197 }
198
199 /*
200  * Generic accessor for VM registers. Only called as long as HCR_TVM
201  * is set. If the guest enables the MMU, we stop trapping the VM
202  * sys_regs and leave it in complete control of the caches.
203  */
204 static bool access_vm_reg(struct kvm_vcpu *vcpu,
205                           struct sys_reg_params *p,
206                           const struct sys_reg_desc *r)
207 {
208         bool was_enabled = vcpu_has_cache_enabled(vcpu);
209         u64 val;
210         int reg = r->reg;
211
212         BUG_ON(!p->is_write);
213
214         /* See the 32bit mapping in kvm_host.h */
215         if (p->is_aarch32)
216                 reg = r->reg / 2;
217
218         if (!p->is_aarch32 || !p->is_32bit) {
219                 val = p->regval;
220         } else {
221                 val = vcpu_read_sys_reg(vcpu, reg);
222                 if (r->reg % 2)
223                         val = (p->regval << 32) | (u64)lower_32_bits(val);
224                 else
225                         val = ((u64)upper_32_bits(val) << 32) |
226                                 lower_32_bits(p->regval);
227         }
228         vcpu_write_sys_reg(vcpu, val, reg);
229
230         kvm_toggle_cache(vcpu, was_enabled);
231         return true;
232 }
233
234 /*
235  * Trap handler for the GICv3 SGI generation system register.
236  * Forward the request to the VGIC emulation.
237  * The cp15_64 code makes sure this automatically works
238  * for both AArch64 and AArch32 accesses.
239  */
240 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
241                            struct sys_reg_params *p,
242                            const struct sys_reg_desc *r)
243 {
244         bool g1;
245
246         if (!p->is_write)
247                 return read_from_write_only(vcpu, p, r);
248
249         /*
250          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
251          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
252          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
253          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
254          * group.
255          */
256         if (p->is_aarch32) {
257                 switch (p->Op1) {
258                 default:                /* Keep GCC quiet */
259                 case 0:                 /* ICC_SGI1R */
260                         g1 = true;
261                         break;
262                 case 1:                 /* ICC_ASGI1R */
263                 case 2:                 /* ICC_SGI0R */
264                         g1 = false;
265                         break;
266                 }
267         } else {
268                 switch (p->Op2) {
269                 default:                /* Keep GCC quiet */
270                 case 5:                 /* ICC_SGI1R_EL1 */
271                         g1 = true;
272                         break;
273                 case 6:                 /* ICC_ASGI1R_EL1 */
274                 case 7:                 /* ICC_SGI0R_EL1 */
275                         g1 = false;
276                         break;
277                 }
278         }
279
280         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
281
282         return true;
283 }
284
285 static bool access_gic_sre(struct kvm_vcpu *vcpu,
286                            struct sys_reg_params *p,
287                            const struct sys_reg_desc *r)
288 {
289         if (p->is_write)
290                 return ignore_write(vcpu, p);
291
292         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
293         return true;
294 }
295
296 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
297                         struct sys_reg_params *p,
298                         const struct sys_reg_desc *r)
299 {
300         if (p->is_write)
301                 return ignore_write(vcpu, p);
302         else
303                 return read_zero(vcpu, p);
304 }
305
306 /*
307  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
308  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
309  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
310  * treat it separately.
311  */
312 static bool trap_loregion(struct kvm_vcpu *vcpu,
313                           struct sys_reg_params *p,
314                           const struct sys_reg_desc *r)
315 {
316         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
317         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
318                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
319
320         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
321                 kvm_inject_undefined(vcpu);
322                 return false;
323         }
324
325         if (p->is_write && sr == SYS_LORID_EL1)
326                 return write_to_read_only(vcpu, p, r);
327
328         return trap_raz_wi(vcpu, p, r);
329 }
330
331 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
332                            struct sys_reg_params *p,
333                            const struct sys_reg_desc *r)
334 {
335         if (p->is_write) {
336                 return ignore_write(vcpu, p);
337         } else {
338                 p->regval = (1 << 3);
339                 return true;
340         }
341 }
342
343 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
344                                    struct sys_reg_params *p,
345                                    const struct sys_reg_desc *r)
346 {
347         if (p->is_write) {
348                 return ignore_write(vcpu, p);
349         } else {
350                 p->regval = read_sysreg(dbgauthstatus_el1);
351                 return true;
352         }
353 }
354
355 /*
356  * We want to avoid world-switching all the DBG registers all the
357  * time:
358  * 
359  * - If we've touched any debug register, it is likely that we're
360  *   going to touch more of them. It then makes sense to disable the
361  *   traps and start doing the save/restore dance
362  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
363  *   then mandatory to save/restore the registers, as the guest
364  *   depends on them.
365  * 
366  * For this, we use a DIRTY bit, indicating the guest has modified the
367  * debug registers, used as follow:
368  *
369  * On guest entry:
370  * - If the dirty bit is set (because we're coming back from trapping),
371  *   disable the traps, save host registers, restore guest registers.
372  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
373  *   set the dirty bit, disable the traps, save host registers,
374  *   restore guest registers.
375  * - Otherwise, enable the traps
376  *
377  * On guest exit:
378  * - If the dirty bit is set, save guest registers, restore host
379  *   registers and clear the dirty bit. This ensure that the host can
380  *   now use the debug registers.
381  */
382 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
383                             struct sys_reg_params *p,
384                             const struct sys_reg_desc *r)
385 {
386         if (p->is_write) {
387                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
388                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
389         } else {
390                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
391         }
392
393         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
394
395         return true;
396 }
397
398 /*
399  * reg_to_dbg/dbg_to_reg
400  *
401  * A 32 bit write to a debug register leave top bits alone
402  * A 32 bit read from a debug register only returns the bottom bits
403  *
404  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
405  * hyp.S code switches between host and guest values in future.
406  */
407 static void reg_to_dbg(struct kvm_vcpu *vcpu,
408                        struct sys_reg_params *p,
409                        u64 *dbg_reg)
410 {
411         u64 val = p->regval;
412
413         if (p->is_32bit) {
414                 val &= 0xffffffffUL;
415                 val |= ((*dbg_reg >> 32) << 32);
416         }
417
418         *dbg_reg = val;
419         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
420 }
421
422 static void dbg_to_reg(struct kvm_vcpu *vcpu,
423                        struct sys_reg_params *p,
424                        u64 *dbg_reg)
425 {
426         p->regval = *dbg_reg;
427         if (p->is_32bit)
428                 p->regval &= 0xffffffffUL;
429 }
430
431 static bool trap_bvr(struct kvm_vcpu *vcpu,
432                      struct sys_reg_params *p,
433                      const struct sys_reg_desc *rd)
434 {
435         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
436
437         if (p->is_write)
438                 reg_to_dbg(vcpu, p, dbg_reg);
439         else
440                 dbg_to_reg(vcpu, p, dbg_reg);
441
442         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
443
444         return true;
445 }
446
447 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
448                 const struct kvm_one_reg *reg, void __user *uaddr)
449 {
450         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
451
452         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
453                 return -EFAULT;
454         return 0;
455 }
456
457 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
458         const struct kvm_one_reg *reg, void __user *uaddr)
459 {
460         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
461
462         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
463                 return -EFAULT;
464         return 0;
465 }
466
467 static void reset_bvr(struct kvm_vcpu *vcpu,
468                       const struct sys_reg_desc *rd)
469 {
470         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
471 }
472
473 static bool trap_bcr(struct kvm_vcpu *vcpu,
474                      struct sys_reg_params *p,
475                      const struct sys_reg_desc *rd)
476 {
477         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
478
479         if (p->is_write)
480                 reg_to_dbg(vcpu, p, dbg_reg);
481         else
482                 dbg_to_reg(vcpu, p, dbg_reg);
483
484         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
485
486         return true;
487 }
488
489 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490                 const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
493
494         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
495                 return -EFAULT;
496
497         return 0;
498 }
499
500 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501         const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
504
505         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
506                 return -EFAULT;
507         return 0;
508 }
509
510 static void reset_bcr(struct kvm_vcpu *vcpu,
511                       const struct sys_reg_desc *rd)
512 {
513         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
514 }
515
516 static bool trap_wvr(struct kvm_vcpu *vcpu,
517                      struct sys_reg_params *p,
518                      const struct sys_reg_desc *rd)
519 {
520         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
521
522         if (p->is_write)
523                 reg_to_dbg(vcpu, p, dbg_reg);
524         else
525                 dbg_to_reg(vcpu, p, dbg_reg);
526
527         trace_trap_reg(__func__, rd->CRm, p->is_write,
528                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
529
530         return true;
531 }
532
533 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
534                 const struct kvm_one_reg *reg, void __user *uaddr)
535 {
536         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
537
538         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
539                 return -EFAULT;
540         return 0;
541 }
542
543 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
544         const struct kvm_one_reg *reg, void __user *uaddr)
545 {
546         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
547
548         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
549                 return -EFAULT;
550         return 0;
551 }
552
553 static void reset_wvr(struct kvm_vcpu *vcpu,
554                       const struct sys_reg_desc *rd)
555 {
556         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
557 }
558
559 static bool trap_wcr(struct kvm_vcpu *vcpu,
560                      struct sys_reg_params *p,
561                      const struct sys_reg_desc *rd)
562 {
563         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
564
565         if (p->is_write)
566                 reg_to_dbg(vcpu, p, dbg_reg);
567         else
568                 dbg_to_reg(vcpu, p, dbg_reg);
569
570         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
571
572         return true;
573 }
574
575 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576                 const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
579
580         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
581                 return -EFAULT;
582         return 0;
583 }
584
585 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
586         const struct kvm_one_reg *reg, void __user *uaddr)
587 {
588         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
589
590         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
591                 return -EFAULT;
592         return 0;
593 }
594
595 static void reset_wcr(struct kvm_vcpu *vcpu,
596                       const struct sys_reg_desc *rd)
597 {
598         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
599 }
600
601 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602 {
603         u64 amair = read_sysreg(amair_el1);
604         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
605 }
606
607 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609         u64 mpidr;
610
611         /*
612          * Map the vcpu_id into the first three affinity level fields of
613          * the MPIDR. We limit the number of VCPUs in level 0 due to a
614          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
615          * of the GICv3 to be able to address each CPU directly when
616          * sending IPIs.
617          */
618         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
619         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
620         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
621         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
622 }
623
624 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
625 {
626         u64 pmcr, val;
627
628         /* No PMU available, PMCR_EL0 may UNDEF... */
629         if (!kvm_arm_support_pmu_v3())
630                 return;
631
632         pmcr = read_sysreg(pmcr_el0);
633         /*
634          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
635          * except PMCR.E resetting to zero.
636          */
637         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
638                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
639         if (!system_supports_32bit_el0())
640                 val |= ARMV8_PMU_PMCR_LC;
641         __vcpu_sys_reg(vcpu, r->reg) = val;
642 }
643
644 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
645 {
646         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
647         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
648
649         if (!enabled)
650                 kvm_inject_undefined(vcpu);
651
652         return !enabled;
653 }
654
655 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
656 {
657         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
658 }
659
660 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
661 {
662         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
663 }
664
665 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
666 {
667         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
668 }
669
670 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
671 {
672         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
673 }
674
675 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
676                         const struct sys_reg_desc *r)
677 {
678         u64 val;
679
680         if (!kvm_arm_pmu_v3_ready(vcpu))
681                 return trap_raz_wi(vcpu, p, r);
682
683         if (pmu_access_el0_disabled(vcpu))
684                 return false;
685
686         if (p->is_write) {
687                 /* Only update writeable bits of PMCR */
688                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
689                 val &= ~ARMV8_PMU_PMCR_MASK;
690                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
691                 if (!system_supports_32bit_el0())
692                         val |= ARMV8_PMU_PMCR_LC;
693                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
694                 kvm_pmu_handle_pmcr(vcpu, val);
695                 kvm_vcpu_pmu_restore_guest(vcpu);
696         } else {
697                 /* PMCR.P & PMCR.C are RAZ */
698                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
699                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
700                 p->regval = val;
701         }
702
703         return true;
704 }
705
706 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
707                           const struct sys_reg_desc *r)
708 {
709         if (!kvm_arm_pmu_v3_ready(vcpu))
710                 return trap_raz_wi(vcpu, p, r);
711
712         if (pmu_access_event_counter_el0_disabled(vcpu))
713                 return false;
714
715         if (p->is_write)
716                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
717         else
718                 /* return PMSELR.SEL field */
719                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
720                             & ARMV8_PMU_COUNTER_MASK;
721
722         return true;
723 }
724
725 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
726                           const struct sys_reg_desc *r)
727 {
728         u64 pmceid;
729
730         if (!kvm_arm_pmu_v3_ready(vcpu))
731                 return trap_raz_wi(vcpu, p, r);
732
733         BUG_ON(p->is_write);
734
735         if (pmu_access_el0_disabled(vcpu))
736                 return false;
737
738         if (!(p->Op2 & 1))
739                 pmceid = read_sysreg(pmceid0_el0);
740         else
741                 pmceid = read_sysreg(pmceid1_el0);
742
743         p->regval = pmceid;
744
745         return true;
746 }
747
748 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
749 {
750         u64 pmcr, val;
751
752         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
753         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
754         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
755                 kvm_inject_undefined(vcpu);
756                 return false;
757         }
758
759         return true;
760 }
761
762 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
763                               struct sys_reg_params *p,
764                               const struct sys_reg_desc *r)
765 {
766         u64 idx;
767
768         if (!kvm_arm_pmu_v3_ready(vcpu))
769                 return trap_raz_wi(vcpu, p, r);
770
771         if (r->CRn == 9 && r->CRm == 13) {
772                 if (r->Op2 == 2) {
773                         /* PMXEVCNTR_EL0 */
774                         if (pmu_access_event_counter_el0_disabled(vcpu))
775                                 return false;
776
777                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
778                               & ARMV8_PMU_COUNTER_MASK;
779                 } else if (r->Op2 == 0) {
780                         /* PMCCNTR_EL0 */
781                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
782                                 return false;
783
784                         idx = ARMV8_PMU_CYCLE_IDX;
785                 } else {
786                         return false;
787                 }
788         } else if (r->CRn == 0 && r->CRm == 9) {
789                 /* PMCCNTR */
790                 if (pmu_access_event_counter_el0_disabled(vcpu))
791                         return false;
792
793                 idx = ARMV8_PMU_CYCLE_IDX;
794         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
795                 /* PMEVCNTRn_EL0 */
796                 if (pmu_access_event_counter_el0_disabled(vcpu))
797                         return false;
798
799                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
800         } else {
801                 return false;
802         }
803
804         if (!pmu_counter_idx_valid(vcpu, idx))
805                 return false;
806
807         if (p->is_write) {
808                 if (pmu_access_el0_disabled(vcpu))
809                         return false;
810
811                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
812         } else {
813                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
814         }
815
816         return true;
817 }
818
819 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
820                                const struct sys_reg_desc *r)
821 {
822         u64 idx, reg;
823
824         if (!kvm_arm_pmu_v3_ready(vcpu))
825                 return trap_raz_wi(vcpu, p, r);
826
827         if (pmu_access_el0_disabled(vcpu))
828                 return false;
829
830         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
831                 /* PMXEVTYPER_EL0 */
832                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
833                 reg = PMEVTYPER0_EL0 + idx;
834         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
835                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
836                 if (idx == ARMV8_PMU_CYCLE_IDX)
837                         reg = PMCCFILTR_EL0;
838                 else
839                         /* PMEVTYPERn_EL0 */
840                         reg = PMEVTYPER0_EL0 + idx;
841         } else {
842                 BUG();
843         }
844
845         if (!pmu_counter_idx_valid(vcpu, idx))
846                 return false;
847
848         if (p->is_write) {
849                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
850                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
851                 kvm_vcpu_pmu_restore_guest(vcpu);
852         } else {
853                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
854         }
855
856         return true;
857 }
858
859 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
860                            const struct sys_reg_desc *r)
861 {
862         u64 val, mask;
863
864         if (!kvm_arm_pmu_v3_ready(vcpu))
865                 return trap_raz_wi(vcpu, p, r);
866
867         if (pmu_access_el0_disabled(vcpu))
868                 return false;
869
870         mask = kvm_pmu_valid_counter_mask(vcpu);
871         if (p->is_write) {
872                 val = p->regval & mask;
873                 if (r->Op2 & 0x1) {
874                         /* accessing PMCNTENSET_EL0 */
875                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
876                         kvm_pmu_enable_counter_mask(vcpu, val);
877                         kvm_vcpu_pmu_restore_guest(vcpu);
878                 } else {
879                         /* accessing PMCNTENCLR_EL0 */
880                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
881                         kvm_pmu_disable_counter_mask(vcpu, val);
882                 }
883         } else {
884                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
885         }
886
887         return true;
888 }
889
890 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
891                            const struct sys_reg_desc *r)
892 {
893         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
894
895         if (!kvm_arm_pmu_v3_ready(vcpu))
896                 return trap_raz_wi(vcpu, p, r);
897
898         if (!vcpu_mode_priv(vcpu)) {
899                 kvm_inject_undefined(vcpu);
900                 return false;
901         }
902
903         if (p->is_write) {
904                 u64 val = p->regval & mask;
905
906                 if (r->Op2 & 0x1)
907                         /* accessing PMINTENSET_EL1 */
908                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
909                 else
910                         /* accessing PMINTENCLR_EL1 */
911                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
912         } else {
913                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
914         }
915
916         return true;
917 }
918
919 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
920                          const struct sys_reg_desc *r)
921 {
922         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
923
924         if (!kvm_arm_pmu_v3_ready(vcpu))
925                 return trap_raz_wi(vcpu, p, r);
926
927         if (pmu_access_el0_disabled(vcpu))
928                 return false;
929
930         if (p->is_write) {
931                 if (r->CRm & 0x2)
932                         /* accessing PMOVSSET_EL0 */
933                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
934                 else
935                         /* accessing PMOVSCLR_EL0 */
936                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
937         } else {
938                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
939         }
940
941         return true;
942 }
943
944 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
945                            const struct sys_reg_desc *r)
946 {
947         u64 mask;
948
949         if (!kvm_arm_pmu_v3_ready(vcpu))
950                 return trap_raz_wi(vcpu, p, r);
951
952         if (!p->is_write)
953                 return read_from_write_only(vcpu, p, r);
954
955         if (pmu_write_swinc_el0_disabled(vcpu))
956                 return false;
957
958         mask = kvm_pmu_valid_counter_mask(vcpu);
959         kvm_pmu_software_increment(vcpu, p->regval & mask);
960         return true;
961 }
962
963 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
964                              const struct sys_reg_desc *r)
965 {
966         if (!kvm_arm_pmu_v3_ready(vcpu))
967                 return trap_raz_wi(vcpu, p, r);
968
969         if (p->is_write) {
970                 if (!vcpu_mode_priv(vcpu)) {
971                         kvm_inject_undefined(vcpu);
972                         return false;
973                 }
974
975                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
976                                p->regval & ARMV8_PMU_USERENR_MASK;
977         } else {
978                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
979                             & ARMV8_PMU_USERENR_MASK;
980         }
981
982         return true;
983 }
984
985 #define reg_to_encoding(x)                                              \
986         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
987                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
988
989 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
990 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
991         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
992           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
993         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
994           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
995         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
996           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
997         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
998           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
999
1000 /* Macro to expand the PMEVCNTRn_EL0 register */
1001 #define PMU_PMEVCNTR_EL0(n)                                             \
1002         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
1003           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1004
1005 /* Macro to expand the PMEVTYPERn_EL0 register */
1006 #define PMU_PMEVTYPER_EL0(n)                                            \
1007         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1008           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1009
1010 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1011                          struct sys_reg_params *p,
1012                          const struct sys_reg_desc *rd)
1013 {
1014         kvm_arm_vcpu_ptrauth_trap(vcpu);
1015
1016         /*
1017          * Return false for both cases as we never skip the trapped
1018          * instruction:
1019          *
1020          * - Either we re-execute the same key register access instruction
1021          *   after enabling ptrauth.
1022          * - Or an UNDEF is injected as ptrauth is not supported/enabled.
1023          */
1024         return false;
1025 }
1026
1027 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1028                         const struct sys_reg_desc *rd)
1029 {
1030         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1031 }
1032
1033 #define __PTRAUTH_KEY(k)                                                \
1034         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1035         .visibility = ptrauth_visibility}
1036
1037 #define PTRAUTH_KEY(k)                                                  \
1038         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1039         __PTRAUTH_KEY(k ## KEYHI_EL1)
1040
1041 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1042                               struct sys_reg_params *p,
1043                               const struct sys_reg_desc *r)
1044 {
1045         enum kvm_arch_timers tmr;
1046         enum kvm_arch_timer_regs treg;
1047         u64 reg = reg_to_encoding(r);
1048
1049         switch (reg) {
1050         case SYS_CNTP_TVAL_EL0:
1051         case SYS_AARCH32_CNTP_TVAL:
1052                 tmr = TIMER_PTIMER;
1053                 treg = TIMER_REG_TVAL;
1054                 break;
1055         case SYS_CNTP_CTL_EL0:
1056         case SYS_AARCH32_CNTP_CTL:
1057                 tmr = TIMER_PTIMER;
1058                 treg = TIMER_REG_CTL;
1059                 break;
1060         case SYS_CNTP_CVAL_EL0:
1061         case SYS_AARCH32_CNTP_CVAL:
1062                 tmr = TIMER_PTIMER;
1063                 treg = TIMER_REG_CVAL;
1064                 break;
1065         default:
1066                 BUG();
1067         }
1068
1069         if (p->is_write)
1070                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1071         else
1072                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1073
1074         return true;
1075 }
1076
1077 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1078 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1079                 struct sys_reg_desc const *r, bool raz)
1080 {
1081         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1082                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1083         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1084
1085         if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1086                 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1087         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1088                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1089                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1090                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1091                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1092         } else if (id == SYS_ID_AA64DFR0_EL1) {
1093                 /* Limit guests to PMUv3 for ARMv8.1 */
1094                 val = cpuid_feature_cap_perfmon_field(val,
1095                                                 ID_AA64DFR0_PMUVER_SHIFT,
1096                                                 ID_AA64DFR0_PMUVER_8_1);
1097         } else if (id == SYS_ID_DFR0_EL1) {
1098                 /* Limit guests to PMUv3 for ARMv8.1 */
1099                 val = cpuid_feature_cap_perfmon_field(val,
1100                                                 ID_DFR0_PERFMON_SHIFT,
1101                                                 ID_DFR0_PERFMON_8_1);
1102         }
1103
1104         return val;
1105 }
1106
1107 /* cpufeature ID register access trap handlers */
1108
1109 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1110                             struct sys_reg_params *p,
1111                             const struct sys_reg_desc *r,
1112                             bool raz)
1113 {
1114         if (p->is_write)
1115                 return write_to_read_only(vcpu, p, r);
1116
1117         p->regval = read_id_reg(vcpu, r, raz);
1118         return true;
1119 }
1120
1121 static bool access_id_reg(struct kvm_vcpu *vcpu,
1122                           struct sys_reg_params *p,
1123                           const struct sys_reg_desc *r)
1124 {
1125         return __access_id_reg(vcpu, p, r, false);
1126 }
1127
1128 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1129                               struct sys_reg_params *p,
1130                               const struct sys_reg_desc *r)
1131 {
1132         return __access_id_reg(vcpu, p, r, true);
1133 }
1134
1135 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1136 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1137 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1138
1139 /* Visibility overrides for SVE-specific control registers */
1140 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1141                                    const struct sys_reg_desc *rd)
1142 {
1143         if (vcpu_has_sve(vcpu))
1144                 return 0;
1145
1146         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1147 }
1148
1149 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1150 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1151 {
1152         if (!vcpu_has_sve(vcpu))
1153                 return 0;
1154
1155         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1156 }
1157
1158 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1159                                    struct sys_reg_params *p,
1160                                    const struct sys_reg_desc *rd)
1161 {
1162         if (p->is_write)
1163                 return write_to_read_only(vcpu, p, rd);
1164
1165         p->regval = guest_id_aa64zfr0_el1(vcpu);
1166         return true;
1167 }
1168
1169 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1170                 const struct sys_reg_desc *rd,
1171                 const struct kvm_one_reg *reg, void __user *uaddr)
1172 {
1173         u64 val;
1174
1175         val = guest_id_aa64zfr0_el1(vcpu);
1176         return reg_to_user(uaddr, &val, reg->id);
1177 }
1178
1179 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1180                 const struct sys_reg_desc *rd,
1181                 const struct kvm_one_reg *reg, void __user *uaddr)
1182 {
1183         const u64 id = sys_reg_to_index(rd);
1184         int err;
1185         u64 val;
1186
1187         err = reg_from_user(&val, uaddr, id);
1188         if (err)
1189                 return err;
1190
1191         /* This is what we mean by invariant: you can't change it. */
1192         if (val != guest_id_aa64zfr0_el1(vcpu))
1193                 return -EINVAL;
1194
1195         return 0;
1196 }
1197
1198 /*
1199  * cpufeature ID register user accessors
1200  *
1201  * For now, these registers are immutable for userspace, so no values
1202  * are stored, and for set_id_reg() we don't allow the effective value
1203  * to be changed.
1204  */
1205 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1206                         const struct sys_reg_desc *rd, void __user *uaddr,
1207                         bool raz)
1208 {
1209         const u64 id = sys_reg_to_index(rd);
1210         const u64 val = read_id_reg(vcpu, rd, raz);
1211
1212         return reg_to_user(uaddr, &val, id);
1213 }
1214
1215 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1216                         const struct sys_reg_desc *rd, void __user *uaddr,
1217                         bool raz)
1218 {
1219         const u64 id = sys_reg_to_index(rd);
1220         int err;
1221         u64 val;
1222
1223         err = reg_from_user(&val, uaddr, id);
1224         if (err)
1225                 return err;
1226
1227         /* This is what we mean by invariant: you can't change it. */
1228         if (val != read_id_reg(vcpu, rd, raz))
1229                 return -EINVAL;
1230
1231         return 0;
1232 }
1233
1234 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1235                       const struct kvm_one_reg *reg, void __user *uaddr)
1236 {
1237         return __get_id_reg(vcpu, rd, uaddr, false);
1238 }
1239
1240 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1241                       const struct kvm_one_reg *reg, void __user *uaddr)
1242 {
1243         return __set_id_reg(vcpu, rd, uaddr, false);
1244 }
1245
1246 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1247                           const struct kvm_one_reg *reg, void __user *uaddr)
1248 {
1249         return __get_id_reg(vcpu, rd, uaddr, true);
1250 }
1251
1252 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1253                           const struct kvm_one_reg *reg, void __user *uaddr)
1254 {
1255         return __set_id_reg(vcpu, rd, uaddr, true);
1256 }
1257
1258 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1259                        const struct sys_reg_desc *r)
1260 {
1261         if (p->is_write)
1262                 return write_to_read_only(vcpu, p, r);
1263
1264         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1265         return true;
1266 }
1267
1268 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1269                          const struct sys_reg_desc *r)
1270 {
1271         if (p->is_write)
1272                 return write_to_read_only(vcpu, p, r);
1273
1274         p->regval = read_sysreg(clidr_el1);
1275         return true;
1276 }
1277
1278 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1279                           const struct sys_reg_desc *r)
1280 {
1281         int reg = r->reg;
1282
1283         /* See the 32bit mapping in kvm_host.h */
1284         if (p->is_aarch32)
1285                 reg = r->reg / 2;
1286
1287         if (p->is_write)
1288                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1289         else
1290                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1291         return true;
1292 }
1293
1294 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1295                           const struct sys_reg_desc *r)
1296 {
1297         u32 csselr;
1298
1299         if (p->is_write)
1300                 return write_to_read_only(vcpu, p, r);
1301
1302         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1303         p->regval = get_ccsidr(csselr);
1304
1305         /*
1306          * Guests should not be doing cache operations by set/way at all, and
1307          * for this reason, we trap them and attempt to infer the intent, so
1308          * that we can flush the entire guest's address space at the appropriate
1309          * time.
1310          * To prevent this trapping from causing performance problems, let's
1311          * expose the geometry of all data and unified caches (which are
1312          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1313          * [If guests should attempt to infer aliasing properties from the
1314          * geometry (which is not permitted by the architecture), they would
1315          * only do so for virtually indexed caches.]
1316          */
1317         if (!(csselr & 1)) // data or unified cache
1318                 p->regval &= ~GENMASK(27, 3);
1319         return true;
1320 }
1321
1322 /* sys_reg_desc initialiser for known cpufeature ID registers */
1323 #define ID_SANITISED(name) {                    \
1324         SYS_DESC(SYS_##name),                   \
1325         .access = access_id_reg,                \
1326         .get_user = get_id_reg,                 \
1327         .set_user = set_id_reg,                 \
1328 }
1329
1330 /*
1331  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1332  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1333  * (1 <= crm < 8, 0 <= Op2 < 8).
1334  */
1335 #define ID_UNALLOCATED(crm, op2) {                      \
1336         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1337         .access = access_raz_id_reg,                    \
1338         .get_user = get_raz_id_reg,                     \
1339         .set_user = set_raz_id_reg,                     \
1340 }
1341
1342 /*
1343  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1344  * For now, these are exposed just like unallocated ID regs: they appear
1345  * RAZ for the guest.
1346  */
1347 #define ID_HIDDEN(name) {                       \
1348         SYS_DESC(SYS_##name),                   \
1349         .access = access_raz_id_reg,            \
1350         .get_user = get_raz_id_reg,             \
1351         .set_user = set_raz_id_reg,             \
1352 }
1353
1354 /*
1355  * Architected system registers.
1356  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1357  *
1358  * Debug handling: We do trap most, if not all debug related system
1359  * registers. The implementation is good enough to ensure that a guest
1360  * can use these with minimal performance degradation. The drawback is
1361  * that we don't implement any of the external debug, none of the
1362  * OSlock protocol. This should be revisited if we ever encounter a
1363  * more demanding guest...
1364  */
1365 static const struct sys_reg_desc sys_reg_descs[] = {
1366         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1367         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1368         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1369
1370         DBG_BCR_BVR_WCR_WVR_EL1(0),
1371         DBG_BCR_BVR_WCR_WVR_EL1(1),
1372         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1373         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1374         DBG_BCR_BVR_WCR_WVR_EL1(2),
1375         DBG_BCR_BVR_WCR_WVR_EL1(3),
1376         DBG_BCR_BVR_WCR_WVR_EL1(4),
1377         DBG_BCR_BVR_WCR_WVR_EL1(5),
1378         DBG_BCR_BVR_WCR_WVR_EL1(6),
1379         DBG_BCR_BVR_WCR_WVR_EL1(7),
1380         DBG_BCR_BVR_WCR_WVR_EL1(8),
1381         DBG_BCR_BVR_WCR_WVR_EL1(9),
1382         DBG_BCR_BVR_WCR_WVR_EL1(10),
1383         DBG_BCR_BVR_WCR_WVR_EL1(11),
1384         DBG_BCR_BVR_WCR_WVR_EL1(12),
1385         DBG_BCR_BVR_WCR_WVR_EL1(13),
1386         DBG_BCR_BVR_WCR_WVR_EL1(14),
1387         DBG_BCR_BVR_WCR_WVR_EL1(15),
1388
1389         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1390         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1391         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1392         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1393         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1394         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1395         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1396         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1397
1398         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1399         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1400         // DBGDTR[TR]X_EL0 share the same encoding
1401         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1402
1403         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1404
1405         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1406
1407         /*
1408          * ID regs: all ID_SANITISED() entries here must have corresponding
1409          * entries in arm64_ftr_regs[].
1410          */
1411
1412         /* AArch64 mappings of the AArch32 ID registers */
1413         /* CRm=1 */
1414         ID_SANITISED(ID_PFR0_EL1),
1415         ID_SANITISED(ID_PFR1_EL1),
1416         ID_SANITISED(ID_DFR0_EL1),
1417         ID_HIDDEN(ID_AFR0_EL1),
1418         ID_SANITISED(ID_MMFR0_EL1),
1419         ID_SANITISED(ID_MMFR1_EL1),
1420         ID_SANITISED(ID_MMFR2_EL1),
1421         ID_SANITISED(ID_MMFR3_EL1),
1422
1423         /* CRm=2 */
1424         ID_SANITISED(ID_ISAR0_EL1),
1425         ID_SANITISED(ID_ISAR1_EL1),
1426         ID_SANITISED(ID_ISAR2_EL1),
1427         ID_SANITISED(ID_ISAR3_EL1),
1428         ID_SANITISED(ID_ISAR4_EL1),
1429         ID_SANITISED(ID_ISAR5_EL1),
1430         ID_SANITISED(ID_MMFR4_EL1),
1431         ID_UNALLOCATED(2,7),
1432
1433         /* CRm=3 */
1434         ID_SANITISED(MVFR0_EL1),
1435         ID_SANITISED(MVFR1_EL1),
1436         ID_SANITISED(MVFR2_EL1),
1437         ID_UNALLOCATED(3,3),
1438         ID_UNALLOCATED(3,4),
1439         ID_UNALLOCATED(3,5),
1440         ID_UNALLOCATED(3,6),
1441         ID_UNALLOCATED(3,7),
1442
1443         /* AArch64 ID registers */
1444         /* CRm=4 */
1445         ID_SANITISED(ID_AA64PFR0_EL1),
1446         ID_SANITISED(ID_AA64PFR1_EL1),
1447         ID_UNALLOCATED(4,2),
1448         ID_UNALLOCATED(4,3),
1449         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, },
1450         ID_UNALLOCATED(4,5),
1451         ID_UNALLOCATED(4,6),
1452         ID_UNALLOCATED(4,7),
1453
1454         /* CRm=5 */
1455         ID_SANITISED(ID_AA64DFR0_EL1),
1456         ID_SANITISED(ID_AA64DFR1_EL1),
1457         ID_UNALLOCATED(5,2),
1458         ID_UNALLOCATED(5,3),
1459         ID_HIDDEN(ID_AA64AFR0_EL1),
1460         ID_HIDDEN(ID_AA64AFR1_EL1),
1461         ID_UNALLOCATED(5,6),
1462         ID_UNALLOCATED(5,7),
1463
1464         /* CRm=6 */
1465         ID_SANITISED(ID_AA64ISAR0_EL1),
1466         ID_SANITISED(ID_AA64ISAR1_EL1),
1467         ID_SANITISED(ID_AA64ISAR2_EL1),
1468         ID_UNALLOCATED(6,3),
1469         ID_UNALLOCATED(6,4),
1470         ID_UNALLOCATED(6,5),
1471         ID_UNALLOCATED(6,6),
1472         ID_UNALLOCATED(6,7),
1473
1474         /* CRm=7 */
1475         ID_SANITISED(ID_AA64MMFR0_EL1),
1476         ID_SANITISED(ID_AA64MMFR1_EL1),
1477         ID_SANITISED(ID_AA64MMFR2_EL1),
1478         ID_UNALLOCATED(7,3),
1479         ID_UNALLOCATED(7,4),
1480         ID_UNALLOCATED(7,5),
1481         ID_UNALLOCATED(7,6),
1482         ID_UNALLOCATED(7,7),
1483
1484         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1485         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1486         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1487         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1488         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1489         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1490
1491         PTRAUTH_KEY(APIA),
1492         PTRAUTH_KEY(APIB),
1493         PTRAUTH_KEY(APDA),
1494         PTRAUTH_KEY(APDB),
1495         PTRAUTH_KEY(APGA),
1496
1497         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1498         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1499         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1500
1501         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1502         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1503         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1504         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1505         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1506         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1507         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1508         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1509
1510         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1511         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1512
1513         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1514         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1515
1516         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1517         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1518
1519         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1520         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1521         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1522         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1523         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1524
1525         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1526         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1527
1528         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1529         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1530         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1531         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1532         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1533         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1534         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1535         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1536         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1537         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1538         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1539         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1540
1541         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1542         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1543
1544         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1545
1546         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1547         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1548         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1549         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1550
1551         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1552         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1553         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1554         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1555         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1556         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1557         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1558         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1559         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1560         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1561         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1562         /*
1563          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1564          * in 32bit mode. Here we choose to reset it as zero for consistency.
1565          */
1566         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1567         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1568
1569         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1570         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1571
1572         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1573         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1574         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1575
1576         /* PMEVCNTRn_EL0 */
1577         PMU_PMEVCNTR_EL0(0),
1578         PMU_PMEVCNTR_EL0(1),
1579         PMU_PMEVCNTR_EL0(2),
1580         PMU_PMEVCNTR_EL0(3),
1581         PMU_PMEVCNTR_EL0(4),
1582         PMU_PMEVCNTR_EL0(5),
1583         PMU_PMEVCNTR_EL0(6),
1584         PMU_PMEVCNTR_EL0(7),
1585         PMU_PMEVCNTR_EL0(8),
1586         PMU_PMEVCNTR_EL0(9),
1587         PMU_PMEVCNTR_EL0(10),
1588         PMU_PMEVCNTR_EL0(11),
1589         PMU_PMEVCNTR_EL0(12),
1590         PMU_PMEVCNTR_EL0(13),
1591         PMU_PMEVCNTR_EL0(14),
1592         PMU_PMEVCNTR_EL0(15),
1593         PMU_PMEVCNTR_EL0(16),
1594         PMU_PMEVCNTR_EL0(17),
1595         PMU_PMEVCNTR_EL0(18),
1596         PMU_PMEVCNTR_EL0(19),
1597         PMU_PMEVCNTR_EL0(20),
1598         PMU_PMEVCNTR_EL0(21),
1599         PMU_PMEVCNTR_EL0(22),
1600         PMU_PMEVCNTR_EL0(23),
1601         PMU_PMEVCNTR_EL0(24),
1602         PMU_PMEVCNTR_EL0(25),
1603         PMU_PMEVCNTR_EL0(26),
1604         PMU_PMEVCNTR_EL0(27),
1605         PMU_PMEVCNTR_EL0(28),
1606         PMU_PMEVCNTR_EL0(29),
1607         PMU_PMEVCNTR_EL0(30),
1608         /* PMEVTYPERn_EL0 */
1609         PMU_PMEVTYPER_EL0(0),
1610         PMU_PMEVTYPER_EL0(1),
1611         PMU_PMEVTYPER_EL0(2),
1612         PMU_PMEVTYPER_EL0(3),
1613         PMU_PMEVTYPER_EL0(4),
1614         PMU_PMEVTYPER_EL0(5),
1615         PMU_PMEVTYPER_EL0(6),
1616         PMU_PMEVTYPER_EL0(7),
1617         PMU_PMEVTYPER_EL0(8),
1618         PMU_PMEVTYPER_EL0(9),
1619         PMU_PMEVTYPER_EL0(10),
1620         PMU_PMEVTYPER_EL0(11),
1621         PMU_PMEVTYPER_EL0(12),
1622         PMU_PMEVTYPER_EL0(13),
1623         PMU_PMEVTYPER_EL0(14),
1624         PMU_PMEVTYPER_EL0(15),
1625         PMU_PMEVTYPER_EL0(16),
1626         PMU_PMEVTYPER_EL0(17),
1627         PMU_PMEVTYPER_EL0(18),
1628         PMU_PMEVTYPER_EL0(19),
1629         PMU_PMEVTYPER_EL0(20),
1630         PMU_PMEVTYPER_EL0(21),
1631         PMU_PMEVTYPER_EL0(22),
1632         PMU_PMEVTYPER_EL0(23),
1633         PMU_PMEVTYPER_EL0(24),
1634         PMU_PMEVTYPER_EL0(25),
1635         PMU_PMEVTYPER_EL0(26),
1636         PMU_PMEVTYPER_EL0(27),
1637         PMU_PMEVTYPER_EL0(28),
1638         PMU_PMEVTYPER_EL0(29),
1639         PMU_PMEVTYPER_EL0(30),
1640         /*
1641          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1642          * in 32bit mode. Here we choose to reset it as zero for consistency.
1643          */
1644         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1645
1646         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1647         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1648         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1649 };
1650
1651 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1652                         struct sys_reg_params *p,
1653                         const struct sys_reg_desc *r)
1654 {
1655         if (p->is_write) {
1656                 return ignore_write(vcpu, p);
1657         } else {
1658                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1659                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1660                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1661
1662                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1663                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1664                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1665                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1666                 return true;
1667         }
1668 }
1669
1670 static bool trap_debug32(struct kvm_vcpu *vcpu,
1671                          struct sys_reg_params *p,
1672                          const struct sys_reg_desc *r)
1673 {
1674         if (p->is_write) {
1675                 vcpu_cp14(vcpu, r->reg) = p->regval;
1676                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1677         } else {
1678                 p->regval = vcpu_cp14(vcpu, r->reg);
1679         }
1680
1681         return true;
1682 }
1683
1684 /* AArch32 debug register mappings
1685  *
1686  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1687  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1688  *
1689  * All control registers and watchpoint value registers are mapped to
1690  * the lower 32 bits of their AArch64 equivalents. We share the trap
1691  * handlers with the above AArch64 code which checks what mode the
1692  * system is in.
1693  */
1694
1695 static bool trap_xvr(struct kvm_vcpu *vcpu,
1696                      struct sys_reg_params *p,
1697                      const struct sys_reg_desc *rd)
1698 {
1699         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1700
1701         if (p->is_write) {
1702                 u64 val = *dbg_reg;
1703
1704                 val &= 0xffffffffUL;
1705                 val |= p->regval << 32;
1706                 *dbg_reg = val;
1707
1708                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1709         } else {
1710                 p->regval = *dbg_reg >> 32;
1711         }
1712
1713         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1714
1715         return true;
1716 }
1717
1718 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1719         /* DBGBVRn */                                                   \
1720         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1721         /* DBGBCRn */                                                   \
1722         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1723         /* DBGWVRn */                                                   \
1724         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1725         /* DBGWCRn */                                                   \
1726         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1727
1728 #define DBGBXVR(n)                                                      \
1729         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1730
1731 /*
1732  * Trapped cp14 registers. We generally ignore most of the external
1733  * debug, on the principle that they don't really make sense to a
1734  * guest. Revisit this one day, would this principle change.
1735  */
1736 static const struct sys_reg_desc cp14_regs[] = {
1737         /* DBGIDR */
1738         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1739         /* DBGDTRRXext */
1740         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1741
1742         DBG_BCR_BVR_WCR_WVR(0),
1743         /* DBGDSCRint */
1744         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1745         DBG_BCR_BVR_WCR_WVR(1),
1746         /* DBGDCCINT */
1747         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
1748         /* DBGDSCRext */
1749         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
1750         DBG_BCR_BVR_WCR_WVR(2),
1751         /* DBGDTR[RT]Xint */
1752         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1753         /* DBGDTR[RT]Xext */
1754         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1755         DBG_BCR_BVR_WCR_WVR(3),
1756         DBG_BCR_BVR_WCR_WVR(4),
1757         DBG_BCR_BVR_WCR_WVR(5),
1758         /* DBGWFAR */
1759         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1760         /* DBGOSECCR */
1761         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1762         DBG_BCR_BVR_WCR_WVR(6),
1763         /* DBGVCR */
1764         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
1765         DBG_BCR_BVR_WCR_WVR(7),
1766         DBG_BCR_BVR_WCR_WVR(8),
1767         DBG_BCR_BVR_WCR_WVR(9),
1768         DBG_BCR_BVR_WCR_WVR(10),
1769         DBG_BCR_BVR_WCR_WVR(11),
1770         DBG_BCR_BVR_WCR_WVR(12),
1771         DBG_BCR_BVR_WCR_WVR(13),
1772         DBG_BCR_BVR_WCR_WVR(14),
1773         DBG_BCR_BVR_WCR_WVR(15),
1774
1775         /* DBGDRAR (32bit) */
1776         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1777
1778         DBGBXVR(0),
1779         /* DBGOSLAR */
1780         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1781         DBGBXVR(1),
1782         /* DBGOSLSR */
1783         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1784         DBGBXVR(2),
1785         DBGBXVR(3),
1786         /* DBGOSDLR */
1787         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1788         DBGBXVR(4),
1789         /* DBGPRCR */
1790         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1791         DBGBXVR(5),
1792         DBGBXVR(6),
1793         DBGBXVR(7),
1794         DBGBXVR(8),
1795         DBGBXVR(9),
1796         DBGBXVR(10),
1797         DBGBXVR(11),
1798         DBGBXVR(12),
1799         DBGBXVR(13),
1800         DBGBXVR(14),
1801         DBGBXVR(15),
1802
1803         /* DBGDSAR (32bit) */
1804         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1805
1806         /* DBGDEVID2 */
1807         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1808         /* DBGDEVID1 */
1809         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1810         /* DBGDEVID */
1811         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1812         /* DBGCLAIMSET */
1813         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1814         /* DBGCLAIMCLR */
1815         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1816         /* DBGAUTHSTATUS */
1817         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1818 };
1819
1820 /* Trapped cp14 64bit registers */
1821 static const struct sys_reg_desc cp14_64_regs[] = {
1822         /* DBGDRAR (64bit) */
1823         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1824
1825         /* DBGDSAR (64bit) */
1826         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1827 };
1828
1829 /* Macro to expand the PMEVCNTRn register */
1830 #define PMU_PMEVCNTR(n)                                                 \
1831         /* PMEVCNTRn */                                                 \
1832         { Op1(0), CRn(0b1110),                                          \
1833           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1834           access_pmu_evcntr }
1835
1836 /* Macro to expand the PMEVTYPERn register */
1837 #define PMU_PMEVTYPER(n)                                                \
1838         /* PMEVTYPERn */                                                \
1839         { Op1(0), CRn(0b1110),                                          \
1840           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1841           access_pmu_evtyper }
1842
1843 /*
1844  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1845  * depending on the way they are accessed (as a 32bit or a 64bit
1846  * register).
1847  */
1848 static const struct sys_reg_desc cp15_regs[] = {
1849         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1850         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1851         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1852         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1853         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1854         { Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, c2_TTBCR2 },
1855         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1856         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1857         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1858         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1859         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1860         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1861         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1862
1863         /*
1864          * DC{C,I,CI}SW operations:
1865          */
1866         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1867         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1868         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1869
1870         /* PMU */
1871         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1872         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1873         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1874         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1875         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1876         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1877         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1878         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1879         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1880         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1881         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1882         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1883         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1884         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1885         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1886
1887         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1888         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1889         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1890         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1891
1892         /* ICC_SRE */
1893         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1894
1895         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1896
1897         /* Arch Tmers */
1898         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1899         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1900
1901         /* PMEVCNTRn */
1902         PMU_PMEVCNTR(0),
1903         PMU_PMEVCNTR(1),
1904         PMU_PMEVCNTR(2),
1905         PMU_PMEVCNTR(3),
1906         PMU_PMEVCNTR(4),
1907         PMU_PMEVCNTR(5),
1908         PMU_PMEVCNTR(6),
1909         PMU_PMEVCNTR(7),
1910         PMU_PMEVCNTR(8),
1911         PMU_PMEVCNTR(9),
1912         PMU_PMEVCNTR(10),
1913         PMU_PMEVCNTR(11),
1914         PMU_PMEVCNTR(12),
1915         PMU_PMEVCNTR(13),
1916         PMU_PMEVCNTR(14),
1917         PMU_PMEVCNTR(15),
1918         PMU_PMEVCNTR(16),
1919         PMU_PMEVCNTR(17),
1920         PMU_PMEVCNTR(18),
1921         PMU_PMEVCNTR(19),
1922         PMU_PMEVCNTR(20),
1923         PMU_PMEVCNTR(21),
1924         PMU_PMEVCNTR(22),
1925         PMU_PMEVCNTR(23),
1926         PMU_PMEVCNTR(24),
1927         PMU_PMEVCNTR(25),
1928         PMU_PMEVCNTR(26),
1929         PMU_PMEVCNTR(27),
1930         PMU_PMEVCNTR(28),
1931         PMU_PMEVCNTR(29),
1932         PMU_PMEVCNTR(30),
1933         /* PMEVTYPERn */
1934         PMU_PMEVTYPER(0),
1935         PMU_PMEVTYPER(1),
1936         PMU_PMEVTYPER(2),
1937         PMU_PMEVTYPER(3),
1938         PMU_PMEVTYPER(4),
1939         PMU_PMEVTYPER(5),
1940         PMU_PMEVTYPER(6),
1941         PMU_PMEVTYPER(7),
1942         PMU_PMEVTYPER(8),
1943         PMU_PMEVTYPER(9),
1944         PMU_PMEVTYPER(10),
1945         PMU_PMEVTYPER(11),
1946         PMU_PMEVTYPER(12),
1947         PMU_PMEVTYPER(13),
1948         PMU_PMEVTYPER(14),
1949         PMU_PMEVTYPER(15),
1950         PMU_PMEVTYPER(16),
1951         PMU_PMEVTYPER(17),
1952         PMU_PMEVTYPER(18),
1953         PMU_PMEVTYPER(19),
1954         PMU_PMEVTYPER(20),
1955         PMU_PMEVTYPER(21),
1956         PMU_PMEVTYPER(22),
1957         PMU_PMEVTYPER(23),
1958         PMU_PMEVTYPER(24),
1959         PMU_PMEVTYPER(25),
1960         PMU_PMEVTYPER(26),
1961         PMU_PMEVTYPER(27),
1962         PMU_PMEVTYPER(28),
1963         PMU_PMEVTYPER(29),
1964         PMU_PMEVTYPER(30),
1965         /* PMCCFILTR */
1966         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1967
1968         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1969         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1970         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1971 };
1972
1973 static const struct sys_reg_desc cp15_64_regs[] = {
1974         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1975         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1976         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1977         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1978         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1979         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1980         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
1981 };
1982
1983 /* Target specific emulation tables */
1984 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1985
1986 void kvm_register_target_sys_reg_table(unsigned int target,
1987                                        struct kvm_sys_reg_target_table *table)
1988 {
1989         target_tables[target] = table;
1990 }
1991
1992 /* Get specific register table for this target. */
1993 static const struct sys_reg_desc *get_target_table(unsigned target,
1994                                                    bool mode_is_64,
1995                                                    size_t *num)
1996 {
1997         struct kvm_sys_reg_target_table *table;
1998
1999         table = target_tables[target];
2000         if (mode_is_64) {
2001                 *num = table->table64.num;
2002                 return table->table64.table;
2003         } else {
2004                 *num = table->table32.num;
2005                 return table->table32.table;
2006         }
2007 }
2008
2009 static int match_sys_reg(const void *key, const void *elt)
2010 {
2011         const unsigned long pval = (unsigned long)key;
2012         const struct sys_reg_desc *r = elt;
2013
2014         return pval - reg_to_encoding(r);
2015 }
2016
2017 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2018                                          const struct sys_reg_desc table[],
2019                                          unsigned int num)
2020 {
2021         unsigned long pval = reg_to_encoding(params);
2022
2023         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2024 }
2025
2026 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2027 {
2028         kvm_inject_undefined(vcpu);
2029         return 1;
2030 }
2031
2032 static void perform_access(struct kvm_vcpu *vcpu,
2033                            struct sys_reg_params *params,
2034                            const struct sys_reg_desc *r)
2035 {
2036         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2037
2038         /* Check for regs disabled by runtime config */
2039         if (sysreg_hidden_from_guest(vcpu, r)) {
2040                 kvm_inject_undefined(vcpu);
2041                 return;
2042         }
2043
2044         /*
2045          * Not having an accessor means that we have configured a trap
2046          * that we don't know how to handle. This certainly qualifies
2047          * as a gross bug that should be fixed right away.
2048          */
2049         BUG_ON(!r->access);
2050
2051         /* Skip instruction if instructed so */
2052         if (likely(r->access(vcpu, params, r)))
2053                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2054 }
2055
2056 /*
2057  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2058  *                call the corresponding trap handler.
2059  *
2060  * @params: pointer to the descriptor of the access
2061  * @table: array of trap descriptors
2062  * @num: size of the trap descriptor array
2063  *
2064  * Return 0 if the access has been handled, and -1 if not.
2065  */
2066 static int emulate_cp(struct kvm_vcpu *vcpu,
2067                       struct sys_reg_params *params,
2068                       const struct sys_reg_desc *table,
2069                       size_t num)
2070 {
2071         const struct sys_reg_desc *r;
2072
2073         if (!table)
2074                 return -1;      /* Not handled */
2075
2076         r = find_reg(params, table, num);
2077
2078         if (r) {
2079                 perform_access(vcpu, params, r);
2080                 return 0;
2081         }
2082
2083         /* Not handled */
2084         return -1;
2085 }
2086
2087 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2088                                 struct sys_reg_params *params)
2089 {
2090         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2091         int cp = -1;
2092
2093         switch(hsr_ec) {
2094         case ESR_ELx_EC_CP15_32:
2095         case ESR_ELx_EC_CP15_64:
2096                 cp = 15;
2097                 break;
2098         case ESR_ELx_EC_CP14_MR:
2099         case ESR_ELx_EC_CP14_64:
2100                 cp = 14;
2101                 break;
2102         default:
2103                 WARN_ON(1);
2104         }
2105
2106         kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
2107                 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2108         print_sys_reg_instr(params);
2109         kvm_inject_undefined(vcpu);
2110 }
2111
2112 /**
2113  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2114  * @vcpu: The VCPU pointer
2115  * @run:  The kvm_run struct
2116  */
2117 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2118                             const struct sys_reg_desc *global,
2119                             size_t nr_global,
2120                             const struct sys_reg_desc *target_specific,
2121                             size_t nr_specific)
2122 {
2123         struct sys_reg_params params;
2124         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2125         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2126         int Rt2 = (hsr >> 10) & 0x1f;
2127
2128         params.is_aarch32 = true;
2129         params.is_32bit = false;
2130         params.CRm = (hsr >> 1) & 0xf;
2131         params.is_write = ((hsr & 1) == 0);
2132
2133         params.Op0 = 0;
2134         params.Op1 = (hsr >> 16) & 0xf;
2135         params.Op2 = 0;
2136         params.CRn = 0;
2137
2138         /*
2139          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2140          * backends between AArch32 and AArch64, we get away with it.
2141          */
2142         if (params.is_write) {
2143                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2144                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2145         }
2146
2147         /*
2148          * Try to emulate the coprocessor access using the target
2149          * specific table first, and using the global table afterwards.
2150          * If either of the tables contains a handler, handle the
2151          * potential register operation in the case of a read and return
2152          * with success.
2153          */
2154         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2155             !emulate_cp(vcpu, &params, global, nr_global)) {
2156                 /* Split up the value between registers for the read side */
2157                 if (!params.is_write) {
2158                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2159                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2160                 }
2161
2162                 return 1;
2163         }
2164
2165         unhandled_cp_access(vcpu, &params);
2166         return 1;
2167 }
2168
2169 /**
2170  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2171  * @vcpu: The VCPU pointer
2172  * @run:  The kvm_run struct
2173  */
2174 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2175                             const struct sys_reg_desc *global,
2176                             size_t nr_global,
2177                             const struct sys_reg_desc *target_specific,
2178                             size_t nr_specific)
2179 {
2180         struct sys_reg_params params;
2181         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2182         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2183
2184         params.is_aarch32 = true;
2185         params.is_32bit = true;
2186         params.CRm = (hsr >> 1) & 0xf;
2187         params.regval = vcpu_get_reg(vcpu, Rt);
2188         params.is_write = ((hsr & 1) == 0);
2189         params.CRn = (hsr >> 10) & 0xf;
2190         params.Op0 = 0;
2191         params.Op1 = (hsr >> 14) & 0x7;
2192         params.Op2 = (hsr >> 17) & 0x7;
2193
2194         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2195             !emulate_cp(vcpu, &params, global, nr_global)) {
2196                 if (!params.is_write)
2197                         vcpu_set_reg(vcpu, Rt, params.regval);
2198                 return 1;
2199         }
2200
2201         unhandled_cp_access(vcpu, &params);
2202         return 1;
2203 }
2204
2205 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2206 {
2207         const struct sys_reg_desc *target_specific;
2208         size_t num;
2209
2210         target_specific = get_target_table(vcpu->arch.target, false, &num);
2211         return kvm_handle_cp_64(vcpu,
2212                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2213                                 target_specific, num);
2214 }
2215
2216 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2217 {
2218         const struct sys_reg_desc *target_specific;
2219         size_t num;
2220
2221         target_specific = get_target_table(vcpu->arch.target, false, &num);
2222         return kvm_handle_cp_32(vcpu,
2223                                 cp15_regs, ARRAY_SIZE(cp15_regs),
2224                                 target_specific, num);
2225 }
2226
2227 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2228 {
2229         return kvm_handle_cp_64(vcpu,
2230                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2231                                 NULL, 0);
2232 }
2233
2234 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2235 {
2236         return kvm_handle_cp_32(vcpu,
2237                                 cp14_regs, ARRAY_SIZE(cp14_regs),
2238                                 NULL, 0);
2239 }
2240
2241 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2242                            struct sys_reg_params *params)
2243 {
2244         size_t num;
2245         const struct sys_reg_desc *table, *r;
2246
2247         table = get_target_table(vcpu->arch.target, true, &num);
2248
2249         /* Search target-specific then generic table. */
2250         r = find_reg(params, table, num);
2251         if (!r)
2252                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2253
2254         if (likely(r)) {
2255                 perform_access(vcpu, params, r);
2256         } else {
2257                 kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2258                         *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2259                 print_sys_reg_instr(params);
2260                 kvm_inject_undefined(vcpu);
2261         }
2262         return 1;
2263 }
2264
2265 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2266                                 const struct sys_reg_desc *table, size_t num,
2267                                 unsigned long *bmap)
2268 {
2269         unsigned long i;
2270
2271         for (i = 0; i < num; i++)
2272                 if (table[i].reset) {
2273                         int reg = table[i].reg;
2274
2275                         table[i].reset(vcpu, &table[i]);
2276                         if (reg > 0 && reg < NR_SYS_REGS)
2277                                 set_bit(reg, bmap);
2278                 }
2279 }
2280
2281 /**
2282  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2283  * @vcpu: The VCPU pointer
2284  * @run:  The kvm_run struct
2285  */
2286 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2287 {
2288         struct sys_reg_params params;
2289         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2290         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2291         int ret;
2292
2293         trace_kvm_handle_sys_reg(esr);
2294
2295         params.is_aarch32 = false;
2296         params.is_32bit = false;
2297         params.Op0 = (esr >> 20) & 3;
2298         params.Op1 = (esr >> 14) & 0x7;
2299         params.CRn = (esr >> 10) & 0xf;
2300         params.CRm = (esr >> 1) & 0xf;
2301         params.Op2 = (esr >> 17) & 0x7;
2302         params.regval = vcpu_get_reg(vcpu, Rt);
2303         params.is_write = !(esr & 1);
2304
2305         ret = emulate_sys_reg(vcpu, &params);
2306
2307         if (!params.is_write)
2308                 vcpu_set_reg(vcpu, Rt, params.regval);
2309         return ret;
2310 }
2311
2312 /******************************************************************************
2313  * Userspace API
2314  *****************************************************************************/
2315
2316 static bool index_to_params(u64 id, struct sys_reg_params *params)
2317 {
2318         switch (id & KVM_REG_SIZE_MASK) {
2319         case KVM_REG_SIZE_U64:
2320                 /* Any unused index bits means it's not valid. */
2321                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2322                               | KVM_REG_ARM_COPROC_MASK
2323                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2324                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2325                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2326                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2327                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2328                         return false;
2329                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2330                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2331                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2332                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2333                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2334                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2335                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2336                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2337                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2338                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2339                 return true;
2340         default:
2341                 return false;
2342         }
2343 }
2344
2345 const struct sys_reg_desc *find_reg_by_id(u64 id,
2346                                           struct sys_reg_params *params,
2347                                           const struct sys_reg_desc table[],
2348                                           unsigned int num)
2349 {
2350         if (!index_to_params(id, params))
2351                 return NULL;
2352
2353         return find_reg(params, table, num);
2354 }
2355
2356 /* Decode an index value, and find the sys_reg_desc entry. */
2357 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2358                                                     u64 id)
2359 {
2360         size_t num;
2361         const struct sys_reg_desc *table, *r;
2362         struct sys_reg_params params;
2363
2364         /* We only do sys_reg for now. */
2365         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2366                 return NULL;
2367
2368         if (!index_to_params(id, &params))
2369                 return NULL;
2370
2371         table = get_target_table(vcpu->arch.target, true, &num);
2372         r = find_reg(&params, table, num);
2373         if (!r)
2374                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2375
2376         /* Not saved in the sys_reg array and not otherwise accessible? */
2377         if (r && !(r->reg || r->get_user))
2378                 r = NULL;
2379
2380         return r;
2381 }
2382
2383 /*
2384  * These are the invariant sys_reg registers: we let the guest see the
2385  * host versions of these, so they're part of the guest state.
2386  *
2387  * A future CPU may provide a mechanism to present different values to
2388  * the guest, or a future kvm may trap them.
2389  */
2390
2391 #define FUNCTION_INVARIANT(reg)                                         \
2392         static void get_##reg(struct kvm_vcpu *v,                       \
2393                               const struct sys_reg_desc *r)             \
2394         {                                                               \
2395                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2396         }
2397
2398 FUNCTION_INVARIANT(midr_el1)
2399 FUNCTION_INVARIANT(revidr_el1)
2400 FUNCTION_INVARIANT(clidr_el1)
2401 FUNCTION_INVARIANT(aidr_el1)
2402
2403 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2404 {
2405         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2406 }
2407
2408 /* ->val is filled in by kvm_sys_reg_table_init() */
2409 static struct sys_reg_desc invariant_sys_regs[] = {
2410         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2411         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2412         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2413         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2414         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2415 };
2416
2417 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2418 {
2419         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2420                 return -EFAULT;
2421         return 0;
2422 }
2423
2424 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2425 {
2426         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2427                 return -EFAULT;
2428         return 0;
2429 }
2430
2431 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2432 {
2433         struct sys_reg_params params;
2434         const struct sys_reg_desc *r;
2435
2436         r = find_reg_by_id(id, &params, invariant_sys_regs,
2437                            ARRAY_SIZE(invariant_sys_regs));
2438         if (!r)
2439                 return -ENOENT;
2440
2441         return reg_to_user(uaddr, &r->val, id);
2442 }
2443
2444 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2445 {
2446         struct sys_reg_params params;
2447         const struct sys_reg_desc *r;
2448         int err;
2449         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2450
2451         r = find_reg_by_id(id, &params, invariant_sys_regs,
2452                            ARRAY_SIZE(invariant_sys_regs));
2453         if (!r)
2454                 return -ENOENT;
2455
2456         err = reg_from_user(&val, uaddr, id);
2457         if (err)
2458                 return err;
2459
2460         /* This is what we mean by invariant: you can't change it. */
2461         if (r->val != val)
2462                 return -EINVAL;
2463
2464         return 0;
2465 }
2466
2467 static bool is_valid_cache(u32 val)
2468 {
2469         u32 level, ctype;
2470
2471         if (val >= CSSELR_MAX)
2472                 return false;
2473
2474         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2475         level = (val >> 1);
2476         ctype = (cache_levels >> (level * 3)) & 7;
2477
2478         switch (ctype) {
2479         case 0: /* No cache */
2480                 return false;
2481         case 1: /* Instruction cache only */
2482                 return (val & 1);
2483         case 2: /* Data cache only */
2484         case 4: /* Unified cache */
2485                 return !(val & 1);
2486         case 3: /* Separate instruction and data caches */
2487                 return true;
2488         default: /* Reserved: we can't know instruction or data. */
2489                 return false;
2490         }
2491 }
2492
2493 static int demux_c15_get(u64 id, void __user *uaddr)
2494 {
2495         u32 val;
2496         u32 __user *uval = uaddr;
2497
2498         /* Fail if we have unknown bits set. */
2499         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2500                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2501                 return -ENOENT;
2502
2503         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2504         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2505                 if (KVM_REG_SIZE(id) != 4)
2506                         return -ENOENT;
2507                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2508                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2509                 if (!is_valid_cache(val))
2510                         return -ENOENT;
2511
2512                 return put_user(get_ccsidr(val), uval);
2513         default:
2514                 return -ENOENT;
2515         }
2516 }
2517
2518 static int demux_c15_set(u64 id, void __user *uaddr)
2519 {
2520         u32 val, newval;
2521         u32 __user *uval = uaddr;
2522
2523         /* Fail if we have unknown bits set. */
2524         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2525                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2526                 return -ENOENT;
2527
2528         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2529         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2530                 if (KVM_REG_SIZE(id) != 4)
2531                         return -ENOENT;
2532                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2533                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2534                 if (!is_valid_cache(val))
2535                         return -ENOENT;
2536
2537                 if (get_user(newval, uval))
2538                         return -EFAULT;
2539
2540                 /* This is also invariant: you can't change it. */
2541                 if (newval != get_ccsidr(val))
2542                         return -EINVAL;
2543                 return 0;
2544         default:
2545                 return -ENOENT;
2546         }
2547 }
2548
2549 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2550 {
2551         const struct sys_reg_desc *r;
2552         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2553
2554         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2555                 return demux_c15_get(reg->id, uaddr);
2556
2557         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2558                 return -ENOENT;
2559
2560         r = index_to_sys_reg_desc(vcpu, reg->id);
2561         if (!r)
2562                 return get_invariant_sys_reg(reg->id, uaddr);
2563
2564         /* Check for regs disabled by runtime config */
2565         if (sysreg_hidden_from_user(vcpu, r))
2566                 return -ENOENT;
2567
2568         if (r->get_user)
2569                 return (r->get_user)(vcpu, r, reg, uaddr);
2570
2571         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2572 }
2573
2574 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2575 {
2576         const struct sys_reg_desc *r;
2577         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2578
2579         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2580                 return demux_c15_set(reg->id, uaddr);
2581
2582         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2583                 return -ENOENT;
2584
2585         r = index_to_sys_reg_desc(vcpu, reg->id);
2586         if (!r)
2587                 return set_invariant_sys_reg(reg->id, uaddr);
2588
2589         /* Check for regs disabled by runtime config */
2590         if (sysreg_hidden_from_user(vcpu, r))
2591                 return -ENOENT;
2592
2593         if (r->set_user)
2594                 return (r->set_user)(vcpu, r, reg, uaddr);
2595
2596         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2597 }
2598
2599 static unsigned int num_demux_regs(void)
2600 {
2601         unsigned int i, count = 0;
2602
2603         for (i = 0; i < CSSELR_MAX; i++)
2604                 if (is_valid_cache(i))
2605                         count++;
2606
2607         return count;
2608 }
2609
2610 static int write_demux_regids(u64 __user *uindices)
2611 {
2612         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2613         unsigned int i;
2614
2615         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2616         for (i = 0; i < CSSELR_MAX; i++) {
2617                 if (!is_valid_cache(i))
2618                         continue;
2619                 if (put_user(val | i, uindices))
2620                         return -EFAULT;
2621                 uindices++;
2622         }
2623         return 0;
2624 }
2625
2626 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2627 {
2628         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2629                 KVM_REG_ARM64_SYSREG |
2630                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2631                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2632                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2633                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2634                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2635 }
2636
2637 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2638 {
2639         if (!*uind)
2640                 return true;
2641
2642         if (put_user(sys_reg_to_index(reg), *uind))
2643                 return false;
2644
2645         (*uind)++;
2646         return true;
2647 }
2648
2649 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2650                             const struct sys_reg_desc *rd,
2651                             u64 __user **uind,
2652                             unsigned int *total)
2653 {
2654         /*
2655          * Ignore registers we trap but don't save,
2656          * and for which no custom user accessor is provided.
2657          */
2658         if (!(rd->reg || rd->get_user))
2659                 return 0;
2660
2661         if (sysreg_hidden_from_user(vcpu, rd))
2662                 return 0;
2663
2664         if (!copy_reg_to_user(rd, uind))
2665                 return -EFAULT;
2666
2667         (*total)++;
2668         return 0;
2669 }
2670
2671 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2672 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2673 {
2674         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2675         unsigned int total = 0;
2676         size_t num;
2677         int err;
2678
2679         /* We check for duplicates here, to allow arch-specific overrides. */
2680         i1 = get_target_table(vcpu->arch.target, true, &num);
2681         end1 = i1 + num;
2682         i2 = sys_reg_descs;
2683         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2684
2685         BUG_ON(i1 == end1 || i2 == end2);
2686
2687         /* Walk carefully, as both tables may refer to the same register. */
2688         while (i1 || i2) {
2689                 int cmp = cmp_sys_reg(i1, i2);
2690                 /* target-specific overrides generic entry. */
2691                 if (cmp <= 0)
2692                         err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2693                 else
2694                         err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2695
2696                 if (err)
2697                         return err;
2698
2699                 if (cmp <= 0 && ++i1 == end1)
2700                         i1 = NULL;
2701                 if (cmp >= 0 && ++i2 == end2)
2702                         i2 = NULL;
2703         }
2704         return total;
2705 }
2706
2707 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2708 {
2709         return ARRAY_SIZE(invariant_sys_regs)
2710                 + num_demux_regs()
2711                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2712 }
2713
2714 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2715 {
2716         unsigned int i;
2717         int err;
2718
2719         /* Then give them all the invariant registers' indices. */
2720         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2721                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2722                         return -EFAULT;
2723                 uindices++;
2724         }
2725
2726         err = walk_sys_regs(vcpu, uindices);
2727         if (err < 0)
2728                 return err;
2729         uindices += err;
2730
2731         return write_demux_regids(uindices);
2732 }
2733
2734 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2735 {
2736         unsigned int i;
2737
2738         for (i = 1; i < n; i++) {
2739                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2740                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2741                         return 1;
2742                 }
2743         }
2744
2745         return 0;
2746 }
2747
2748 void kvm_sys_reg_table_init(void)
2749 {
2750         unsigned int i;
2751         struct sys_reg_desc clidr;
2752
2753         /* Make sure tables are unique and in order. */
2754         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2755         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2756         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2757         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2758         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2759         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2760
2761         /* We abuse the reset function to overwrite the table itself. */
2762         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2763                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2764
2765         /*
2766          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2767          *
2768          *   If software reads the Cache Type fields from Ctype1
2769          *   upwards, once it has seen a value of 0b000, no caches
2770          *   exist at further-out levels of the hierarchy. So, for
2771          *   example, if Ctype3 is the first Cache Type field with a
2772          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2773          *   ignored.
2774          */
2775         get_clidr_el1(NULL, &clidr); /* Ugly... */
2776         cache_levels = clidr.val;
2777         for (i = 0; i < 7; i++)
2778                 if (((cache_levels >> (i*3)) & 7) == 0)
2779                         break;
2780         /* Clear all higher bits. */
2781         cache_levels &= (1 << (i*3))-1;
2782 }
2783
2784 /**
2785  * kvm_reset_sys_regs - sets system registers to reset value
2786  * @vcpu: The VCPU pointer
2787  *
2788  * This function finds the right table above and sets the registers on the
2789  * virtual CPU struct to their architecturally defined reset values.
2790  */
2791 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2792 {
2793         size_t num;
2794         const struct sys_reg_desc *table;
2795         DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2796
2797         /* Generic chip reset first (so target could override). */
2798         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2799
2800         table = get_target_table(vcpu->arch.target, true, &num);
2801         reset_sys_reg_descs(vcpu, table, num, bmap);
2802
2803         for (num = 1; num < NR_SYS_REGS; num++) {
2804                 if (WARN(!test_bit(num, bmap),
2805                          "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2806                         break;
2807         }
2808 }