GNU Linux-libre 6.8.7-gnu
[releases.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31
32 #include <trace/events/kvm.h>
33
34 #include "sys_regs.h"
35
36 #include "trace.h"
37
38 /*
39  * For AArch32, we only take care of what is being trapped. Anything
40  * that has to do with init and userspace access has to go via the
41  * 64bit interface.
42  */
43
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
46                       u64 val);
47
48 static bool bad_trap(struct kvm_vcpu *vcpu,
49                      struct sys_reg_params *params,
50                      const struct sys_reg_desc *r,
51                      const char *msg)
52 {
53         WARN_ONCE(1, "Unexpected %s\n", msg);
54         print_sys_reg_instr(params);
55         kvm_inject_undefined(vcpu);
56         return false;
57 }
58
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60                                  struct sys_reg_params *params,
61                                  const struct sys_reg_desc *r)
62 {
63         return bad_trap(vcpu, params, r,
64                         "sys_reg read to write-only register");
65 }
66
67 static bool write_to_read_only(struct kvm_vcpu *vcpu,
68                                struct sys_reg_params *params,
69                                const struct sys_reg_desc *r)
70 {
71         return bad_trap(vcpu, params, r,
72                         "sys_reg write to read-only register");
73 }
74
75 #define PURE_EL2_SYSREG(el2)                                            \
76         case el2: {                                                     \
77                 *el1r = el2;                                            \
78                 return true;                                            \
79         }
80
81 #define MAPPED_EL2_SYSREG(el2, el1, fn)                                 \
82         case el2: {                                                     \
83                 *xlate = fn;                                            \
84                 *el1r = el1;                                            \
85                 return true;                                            \
86         }
87
88 static bool get_el2_to_el1_mapping(unsigned int reg,
89                                    unsigned int *el1r, u64 (**xlate)(u64))
90 {
91         switch (reg) {
92                 PURE_EL2_SYSREG(  VPIDR_EL2     );
93                 PURE_EL2_SYSREG(  VMPIDR_EL2    );
94                 PURE_EL2_SYSREG(  ACTLR_EL2     );
95                 PURE_EL2_SYSREG(  HCR_EL2       );
96                 PURE_EL2_SYSREG(  MDCR_EL2      );
97                 PURE_EL2_SYSREG(  HSTR_EL2      );
98                 PURE_EL2_SYSREG(  HACR_EL2      );
99                 PURE_EL2_SYSREG(  VTTBR_EL2     );
100                 PURE_EL2_SYSREG(  VTCR_EL2      );
101                 PURE_EL2_SYSREG(  RVBAR_EL2     );
102                 PURE_EL2_SYSREG(  TPIDR_EL2     );
103                 PURE_EL2_SYSREG(  HPFAR_EL2     );
104                 PURE_EL2_SYSREG(  CNTHCTL_EL2   );
105                 MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
106                                   translate_sctlr_el2_to_sctlr_el1           );
107                 MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
108                                   translate_cptr_el2_to_cpacr_el1            );
109                 MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
110                                   translate_ttbr0_el2_to_ttbr0_el1           );
111                 MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL             );
112                 MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
113                                   translate_tcr_el2_to_tcr_el1               );
114                 MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL             );
115                 MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL             );
116                 MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL             );
117                 MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL             );
118                 MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL             );
119                 MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL             );
120                 MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL             );
121                 MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,     NULL             );
122                 MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL             );
123         default:
124                 return false;
125         }
126 }
127
128 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
129 {
130         u64 val = 0x8badf00d8badf00d;
131         u64 (*xlate)(u64) = NULL;
132         unsigned int el1r;
133
134         if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
135                 goto memory_read;
136
137         if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
138                 if (!is_hyp_ctxt(vcpu))
139                         goto memory_read;
140
141                 /*
142                  * If this register does not have an EL1 counterpart,
143                  * then read the stored EL2 version.
144                  */
145                 if (reg == el1r)
146                         goto memory_read;
147
148                 /*
149                  * If we have a non-VHE guest and that the sysreg
150                  * requires translation to be used at EL1, use the
151                  * in-memory copy instead.
152                  */
153                 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
154                         goto memory_read;
155
156                 /* Get the current version of the EL1 counterpart. */
157                 WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
158                 return val;
159         }
160
161         /* EL1 register can't be on the CPU if the guest is in vEL2. */
162         if (unlikely(is_hyp_ctxt(vcpu)))
163                 goto memory_read;
164
165         if (__vcpu_read_sys_reg_from_cpu(reg, &val))
166                 return val;
167
168 memory_read:
169         return __vcpu_sys_reg(vcpu, reg);
170 }
171
172 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
173 {
174         u64 (*xlate)(u64) = NULL;
175         unsigned int el1r;
176
177         if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
178                 goto memory_write;
179
180         if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
181                 if (!is_hyp_ctxt(vcpu))
182                         goto memory_write;
183
184                 /*
185                  * Always store a copy of the write to memory to avoid having
186                  * to reverse-translate virtual EL2 system registers for a
187                  * non-VHE guest hypervisor.
188                  */
189                 __vcpu_sys_reg(vcpu, reg) = val;
190
191                 /* No EL1 counterpart? We're done here.? */
192                 if (reg == el1r)
193                         return;
194
195                 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
196                         val = xlate(val);
197
198                 /* Redirect this to the EL1 version of the register. */
199                 WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
200                 return;
201         }
202
203         /* EL1 register can't be on the CPU if the guest is in vEL2. */
204         if (unlikely(is_hyp_ctxt(vcpu)))
205                 goto memory_write;
206
207         if (__vcpu_write_sys_reg_to_cpu(val, reg))
208                 return;
209
210 memory_write:
211          __vcpu_sys_reg(vcpu, reg) = val;
212 }
213
214 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
215 #define CSSELR_MAX 14
216
217 /*
218  * Returns the minimum line size for the selected cache, expressed as
219  * Log2(bytes).
220  */
221 static u8 get_min_cache_line_size(bool icache)
222 {
223         u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
224         u8 field;
225
226         if (icache)
227                 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
228         else
229                 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
230
231         /*
232          * Cache line size is represented as Log2(words) in CTR_EL0.
233          * Log2(bytes) can be derived with the following:
234          *
235          * Log2(words) + 2 = Log2(bytes / 4) + 2
236          *                 = Log2(bytes) - 2 + 2
237          *                 = Log2(bytes)
238          */
239         return field + 2;
240 }
241
242 /* Which cache CCSIDR represents depends on CSSELR value. */
243 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
244 {
245         u8 line_size;
246
247         if (vcpu->arch.ccsidr)
248                 return vcpu->arch.ccsidr[csselr];
249
250         line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
251
252         /*
253          * Fabricate a CCSIDR value as the overriding value does not exist.
254          * The real CCSIDR value will not be used as it can vary by the
255          * physical CPU which the vcpu currently resides in.
256          *
257          * The line size is determined with get_min_cache_line_size(), which
258          * should be valid for all CPUs even if they have different cache
259          * configuration.
260          *
261          * The associativity bits are cleared, meaning the geometry of all data
262          * and unified caches (which are guaranteed to be PIPT and thus
263          * non-aliasing) are 1 set and 1 way.
264          * Guests should not be doing cache operations by set/way at all, and
265          * for this reason, we trap them and attempt to infer the intent, so
266          * that we can flush the entire guest's address space at the appropriate
267          * time. The exposed geometry minimizes the number of the traps.
268          * [If guests should attempt to infer aliasing properties from the
269          * geometry (which is not permitted by the architecture), they would
270          * only do so for virtually indexed caches.]
271          *
272          * We don't check if the cache level exists as it is allowed to return
273          * an UNKNOWN value if not.
274          */
275         return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
276 }
277
278 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
279 {
280         u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
281         u32 *ccsidr = vcpu->arch.ccsidr;
282         u32 i;
283
284         if ((val & CCSIDR_EL1_RES0) ||
285             line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
286                 return -EINVAL;
287
288         if (!ccsidr) {
289                 if (val == get_ccsidr(vcpu, csselr))
290                         return 0;
291
292                 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
293                 if (!ccsidr)
294                         return -ENOMEM;
295
296                 for (i = 0; i < CSSELR_MAX; i++)
297                         ccsidr[i] = get_ccsidr(vcpu, i);
298
299                 vcpu->arch.ccsidr = ccsidr;
300         }
301
302         ccsidr[csselr] = val;
303
304         return 0;
305 }
306
307 static bool access_rw(struct kvm_vcpu *vcpu,
308                       struct sys_reg_params *p,
309                       const struct sys_reg_desc *r)
310 {
311         if (p->is_write)
312                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
313         else
314                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
315
316         return true;
317 }
318
319 /*
320  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
321  */
322 static bool access_dcsw(struct kvm_vcpu *vcpu,
323                         struct sys_reg_params *p,
324                         const struct sys_reg_desc *r)
325 {
326         if (!p->is_write)
327                 return read_from_write_only(vcpu, p, r);
328
329         /*
330          * Only track S/W ops if we don't have FWB. It still indicates
331          * that the guest is a bit broken (S/W operations should only
332          * be done by firmware, knowing that there is only a single
333          * CPU left in the system, and certainly not from non-secure
334          * software).
335          */
336         if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
337                 kvm_set_way_flush(vcpu);
338
339         return true;
340 }
341
342 static bool access_dcgsw(struct kvm_vcpu *vcpu,
343                          struct sys_reg_params *p,
344                          const struct sys_reg_desc *r)
345 {
346         if (!kvm_has_mte(vcpu->kvm)) {
347                 kvm_inject_undefined(vcpu);
348                 return false;
349         }
350
351         /* Treat MTE S/W ops as we treat the classic ones: with contempt */
352         return access_dcsw(vcpu, p, r);
353 }
354
355 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
356 {
357         switch (r->aarch32_map) {
358         case AA32_LO:
359                 *mask = GENMASK_ULL(31, 0);
360                 *shift = 0;
361                 break;
362         case AA32_HI:
363                 *mask = GENMASK_ULL(63, 32);
364                 *shift = 32;
365                 break;
366         default:
367                 *mask = GENMASK_ULL(63, 0);
368                 *shift = 0;
369                 break;
370         }
371 }
372
373 /*
374  * Generic accessor for VM registers. Only called as long as HCR_TVM
375  * is set. If the guest enables the MMU, we stop trapping the VM
376  * sys_regs and leave it in complete control of the caches.
377  */
378 static bool access_vm_reg(struct kvm_vcpu *vcpu,
379                           struct sys_reg_params *p,
380                           const struct sys_reg_desc *r)
381 {
382         bool was_enabled = vcpu_has_cache_enabled(vcpu);
383         u64 val, mask, shift;
384
385         BUG_ON(!p->is_write);
386
387         get_access_mask(r, &mask, &shift);
388
389         if (~mask) {
390                 val = vcpu_read_sys_reg(vcpu, r->reg);
391                 val &= ~mask;
392         } else {
393                 val = 0;
394         }
395
396         val |= (p->regval & (mask >> shift)) << shift;
397         vcpu_write_sys_reg(vcpu, val, r->reg);
398
399         kvm_toggle_cache(vcpu, was_enabled);
400         return true;
401 }
402
403 static bool access_actlr(struct kvm_vcpu *vcpu,
404                          struct sys_reg_params *p,
405                          const struct sys_reg_desc *r)
406 {
407         u64 mask, shift;
408
409         if (p->is_write)
410                 return ignore_write(vcpu, p);
411
412         get_access_mask(r, &mask, &shift);
413         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
414
415         return true;
416 }
417
418 /*
419  * Trap handler for the GICv3 SGI generation system register.
420  * Forward the request to the VGIC emulation.
421  * The cp15_64 code makes sure this automatically works
422  * for both AArch64 and AArch32 accesses.
423  */
424 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
425                            struct sys_reg_params *p,
426                            const struct sys_reg_desc *r)
427 {
428         bool g1;
429
430         if (!p->is_write)
431                 return read_from_write_only(vcpu, p, r);
432
433         /*
434          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
435          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
436          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
437          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
438          * group.
439          */
440         if (p->Op0 == 0) {              /* AArch32 */
441                 switch (p->Op1) {
442                 default:                /* Keep GCC quiet */
443                 case 0:                 /* ICC_SGI1R */
444                         g1 = true;
445                         break;
446                 case 1:                 /* ICC_ASGI1R */
447                 case 2:                 /* ICC_SGI0R */
448                         g1 = false;
449                         break;
450                 }
451         } else {                        /* AArch64 */
452                 switch (p->Op2) {
453                 default:                /* Keep GCC quiet */
454                 case 5:                 /* ICC_SGI1R_EL1 */
455                         g1 = true;
456                         break;
457                 case 6:                 /* ICC_ASGI1R_EL1 */
458                 case 7:                 /* ICC_SGI0R_EL1 */
459                         g1 = false;
460                         break;
461                 }
462         }
463
464         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
465
466         return true;
467 }
468
469 static bool access_gic_sre(struct kvm_vcpu *vcpu,
470                            struct sys_reg_params *p,
471                            const struct sys_reg_desc *r)
472 {
473         if (p->is_write)
474                 return ignore_write(vcpu, p);
475
476         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
477         return true;
478 }
479
480 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
481                         struct sys_reg_params *p,
482                         const struct sys_reg_desc *r)
483 {
484         if (p->is_write)
485                 return ignore_write(vcpu, p);
486         else
487                 return read_zero(vcpu, p);
488 }
489
490 static bool trap_undef(struct kvm_vcpu *vcpu,
491                        struct sys_reg_params *p,
492                        const struct sys_reg_desc *r)
493 {
494         kvm_inject_undefined(vcpu);
495         return false;
496 }
497
498 /*
499  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
500  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
501  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
502  * treat it separately.
503  */
504 static bool trap_loregion(struct kvm_vcpu *vcpu,
505                           struct sys_reg_params *p,
506                           const struct sys_reg_desc *r)
507 {
508         u64 val = IDREG(vcpu->kvm, SYS_ID_AA64MMFR1_EL1);
509         u32 sr = reg_to_encoding(r);
510
511         if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
512                 kvm_inject_undefined(vcpu);
513                 return false;
514         }
515
516         if (p->is_write && sr == SYS_LORID_EL1)
517                 return write_to_read_only(vcpu, p, r);
518
519         return trap_raz_wi(vcpu, p, r);
520 }
521
522 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
523                            struct sys_reg_params *p,
524                            const struct sys_reg_desc *r)
525 {
526         u64 oslsr;
527
528         if (!p->is_write)
529                 return read_from_write_only(vcpu, p, r);
530
531         /* Forward the OSLK bit to OSLSR */
532         oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
533         if (p->regval & OSLAR_EL1_OSLK)
534                 oslsr |= OSLSR_EL1_OSLK;
535
536         __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
537         return true;
538 }
539
540 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
541                            struct sys_reg_params *p,
542                            const struct sys_reg_desc *r)
543 {
544         if (p->is_write)
545                 return write_to_read_only(vcpu, p, r);
546
547         p->regval = __vcpu_sys_reg(vcpu, r->reg);
548         return true;
549 }
550
551 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552                          u64 val)
553 {
554         /*
555          * The only modifiable bit is the OSLK bit. Refuse the write if
556          * userspace attempts to change any other bit in the register.
557          */
558         if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
559                 return -EINVAL;
560
561         __vcpu_sys_reg(vcpu, rd->reg) = val;
562         return 0;
563 }
564
565 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
566                                    struct sys_reg_params *p,
567                                    const struct sys_reg_desc *r)
568 {
569         if (p->is_write) {
570                 return ignore_write(vcpu, p);
571         } else {
572                 p->regval = read_sysreg(dbgauthstatus_el1);
573                 return true;
574         }
575 }
576
577 /*
578  * We want to avoid world-switching all the DBG registers all the
579  * time:
580  *
581  * - If we've touched any debug register, it is likely that we're
582  *   going to touch more of them. It then makes sense to disable the
583  *   traps and start doing the save/restore dance
584  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
585  *   then mandatory to save/restore the registers, as the guest
586  *   depends on them.
587  *
588  * For this, we use a DIRTY bit, indicating the guest has modified the
589  * debug registers, used as follow:
590  *
591  * On guest entry:
592  * - If the dirty bit is set (because we're coming back from trapping),
593  *   disable the traps, save host registers, restore guest registers.
594  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
595  *   set the dirty bit, disable the traps, save host registers,
596  *   restore guest registers.
597  * - Otherwise, enable the traps
598  *
599  * On guest exit:
600  * - If the dirty bit is set, save guest registers, restore host
601  *   registers and clear the dirty bit. This ensure that the host can
602  *   now use the debug registers.
603  */
604 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
605                             struct sys_reg_params *p,
606                             const struct sys_reg_desc *r)
607 {
608         access_rw(vcpu, p, r);
609         if (p->is_write)
610                 vcpu_set_flag(vcpu, DEBUG_DIRTY);
611
612         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
613
614         return true;
615 }
616
617 /*
618  * reg_to_dbg/dbg_to_reg
619  *
620  * A 32 bit write to a debug register leave top bits alone
621  * A 32 bit read from a debug register only returns the bottom bits
622  *
623  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
624  * switches between host and guest values in future.
625  */
626 static void reg_to_dbg(struct kvm_vcpu *vcpu,
627                        struct sys_reg_params *p,
628                        const struct sys_reg_desc *rd,
629                        u64 *dbg_reg)
630 {
631         u64 mask, shift, val;
632
633         get_access_mask(rd, &mask, &shift);
634
635         val = *dbg_reg;
636         val &= ~mask;
637         val |= (p->regval & (mask >> shift)) << shift;
638         *dbg_reg = val;
639
640         vcpu_set_flag(vcpu, DEBUG_DIRTY);
641 }
642
643 static void dbg_to_reg(struct kvm_vcpu *vcpu,
644                        struct sys_reg_params *p,
645                        const struct sys_reg_desc *rd,
646                        u64 *dbg_reg)
647 {
648         u64 mask, shift;
649
650         get_access_mask(rd, &mask, &shift);
651         p->regval = (*dbg_reg & mask) >> shift;
652 }
653
654 static bool trap_bvr(struct kvm_vcpu *vcpu,
655                      struct sys_reg_params *p,
656                      const struct sys_reg_desc *rd)
657 {
658         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
659
660         if (p->is_write)
661                 reg_to_dbg(vcpu, p, rd, dbg_reg);
662         else
663                 dbg_to_reg(vcpu, p, rd, dbg_reg);
664
665         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
666
667         return true;
668 }
669
670 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
671                    u64 val)
672 {
673         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
674         return 0;
675 }
676
677 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
678                    u64 *val)
679 {
680         *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
681         return 0;
682 }
683
684 static u64 reset_bvr(struct kvm_vcpu *vcpu,
685                       const struct sys_reg_desc *rd)
686 {
687         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
688         return rd->val;
689 }
690
691 static bool trap_bcr(struct kvm_vcpu *vcpu,
692                      struct sys_reg_params *p,
693                      const struct sys_reg_desc *rd)
694 {
695         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
696
697         if (p->is_write)
698                 reg_to_dbg(vcpu, p, rd, dbg_reg);
699         else
700                 dbg_to_reg(vcpu, p, rd, dbg_reg);
701
702         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
703
704         return true;
705 }
706
707 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
708                    u64 val)
709 {
710         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
711         return 0;
712 }
713
714 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715                    u64 *val)
716 {
717         *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
718         return 0;
719 }
720
721 static u64 reset_bcr(struct kvm_vcpu *vcpu,
722                       const struct sys_reg_desc *rd)
723 {
724         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
725         return rd->val;
726 }
727
728 static bool trap_wvr(struct kvm_vcpu *vcpu,
729                      struct sys_reg_params *p,
730                      const struct sys_reg_desc *rd)
731 {
732         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
733
734         if (p->is_write)
735                 reg_to_dbg(vcpu, p, rd, dbg_reg);
736         else
737                 dbg_to_reg(vcpu, p, rd, dbg_reg);
738
739         trace_trap_reg(__func__, rd->CRm, p->is_write,
740                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
741
742         return true;
743 }
744
745 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
746                    u64 val)
747 {
748         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
749         return 0;
750 }
751
752 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
753                    u64 *val)
754 {
755         *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
756         return 0;
757 }
758
759 static u64 reset_wvr(struct kvm_vcpu *vcpu,
760                       const struct sys_reg_desc *rd)
761 {
762         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
763         return rd->val;
764 }
765
766 static bool trap_wcr(struct kvm_vcpu *vcpu,
767                      struct sys_reg_params *p,
768                      const struct sys_reg_desc *rd)
769 {
770         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
771
772         if (p->is_write)
773                 reg_to_dbg(vcpu, p, rd, dbg_reg);
774         else
775                 dbg_to_reg(vcpu, p, rd, dbg_reg);
776
777         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
778
779         return true;
780 }
781
782 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
783                    u64 val)
784 {
785         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
786         return 0;
787 }
788
789 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
790                    u64 *val)
791 {
792         *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
793         return 0;
794 }
795
796 static u64 reset_wcr(struct kvm_vcpu *vcpu,
797                       const struct sys_reg_desc *rd)
798 {
799         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
800         return rd->val;
801 }
802
803 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
804 {
805         u64 amair = read_sysreg(amair_el1);
806         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
807         return amair;
808 }
809
810 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
811 {
812         u64 actlr = read_sysreg(actlr_el1);
813         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
814         return actlr;
815 }
816
817 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
818 {
819         u64 mpidr;
820
821         /*
822          * Map the vcpu_id into the first three affinity level fields of
823          * the MPIDR. We limit the number of VCPUs in level 0 due to a
824          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
825          * of the GICv3 to be able to address each CPU directly when
826          * sending IPIs.
827          */
828         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
829         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
830         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
831         mpidr |= (1ULL << 31);
832         vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
833
834         return mpidr;
835 }
836
837 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
838                                    const struct sys_reg_desc *r)
839 {
840         if (kvm_vcpu_has_pmu(vcpu))
841                 return 0;
842
843         return REG_HIDDEN;
844 }
845
846 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
847 {
848         u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
849         u8 n = vcpu->kvm->arch.pmcr_n;
850
851         if (n)
852                 mask |= GENMASK(n - 1, 0);
853
854         reset_unknown(vcpu, r);
855         __vcpu_sys_reg(vcpu, r->reg) &= mask;
856
857         return __vcpu_sys_reg(vcpu, r->reg);
858 }
859
860 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
861 {
862         reset_unknown(vcpu, r);
863         __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
864
865         return __vcpu_sys_reg(vcpu, r->reg);
866 }
867
868 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
869 {
870         /* This thing will UNDEF, who cares about the reset value? */
871         if (!kvm_vcpu_has_pmu(vcpu))
872                 return 0;
873
874         reset_unknown(vcpu, r);
875         __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
876
877         return __vcpu_sys_reg(vcpu, r->reg);
878 }
879
880 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
881 {
882         reset_unknown(vcpu, r);
883         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
884
885         return __vcpu_sys_reg(vcpu, r->reg);
886 }
887
888 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
889 {
890         u64 pmcr = 0;
891
892         if (!kvm_supports_32bit_el0())
893                 pmcr |= ARMV8_PMU_PMCR_LC;
894
895         /*
896          * The value of PMCR.N field is included when the
897          * vCPU register is read via kvm_vcpu_read_pmcr().
898          */
899         __vcpu_sys_reg(vcpu, r->reg) = pmcr;
900
901         return __vcpu_sys_reg(vcpu, r->reg);
902 }
903
904 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
905 {
906         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
907         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
908
909         if (!enabled)
910                 kvm_inject_undefined(vcpu);
911
912         return !enabled;
913 }
914
915 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
916 {
917         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
918 }
919
920 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
921 {
922         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
923 }
924
925 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
926 {
927         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
928 }
929
930 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
931 {
932         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
933 }
934
935 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
936                         const struct sys_reg_desc *r)
937 {
938         u64 val;
939
940         if (pmu_access_el0_disabled(vcpu))
941                 return false;
942
943         if (p->is_write) {
944                 /*
945                  * Only update writeable bits of PMCR (continuing into
946                  * kvm_pmu_handle_pmcr() as well)
947                  */
948                 val = kvm_vcpu_read_pmcr(vcpu);
949                 val &= ~ARMV8_PMU_PMCR_MASK;
950                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
951                 if (!kvm_supports_32bit_el0())
952                         val |= ARMV8_PMU_PMCR_LC;
953                 kvm_pmu_handle_pmcr(vcpu, val);
954         } else {
955                 /* PMCR.P & PMCR.C are RAZ */
956                 val = kvm_vcpu_read_pmcr(vcpu)
957                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
958                 p->regval = val;
959         }
960
961         return true;
962 }
963
964 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
965                           const struct sys_reg_desc *r)
966 {
967         if (pmu_access_event_counter_el0_disabled(vcpu))
968                 return false;
969
970         if (p->is_write)
971                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
972         else
973                 /* return PMSELR.SEL field */
974                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
975                             & ARMV8_PMU_COUNTER_MASK;
976
977         return true;
978 }
979
980 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
981                           const struct sys_reg_desc *r)
982 {
983         u64 pmceid, mask, shift;
984
985         BUG_ON(p->is_write);
986
987         if (pmu_access_el0_disabled(vcpu))
988                 return false;
989
990         get_access_mask(r, &mask, &shift);
991
992         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
993         pmceid &= mask;
994         pmceid >>= shift;
995
996         p->regval = pmceid;
997
998         return true;
999 }
1000
1001 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1002 {
1003         u64 pmcr, val;
1004
1005         pmcr = kvm_vcpu_read_pmcr(vcpu);
1006         val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1007         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1008                 kvm_inject_undefined(vcpu);
1009                 return false;
1010         }
1011
1012         return true;
1013 }
1014
1015 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1016                           u64 *val)
1017 {
1018         u64 idx;
1019
1020         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1021                 /* PMCCNTR_EL0 */
1022                 idx = ARMV8_PMU_CYCLE_IDX;
1023         else
1024                 /* PMEVCNTRn_EL0 */
1025                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1026
1027         *val = kvm_pmu_get_counter_value(vcpu, idx);
1028         return 0;
1029 }
1030
1031 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1032                               struct sys_reg_params *p,
1033                               const struct sys_reg_desc *r)
1034 {
1035         u64 idx = ~0UL;
1036
1037         if (r->CRn == 9 && r->CRm == 13) {
1038                 if (r->Op2 == 2) {
1039                         /* PMXEVCNTR_EL0 */
1040                         if (pmu_access_event_counter_el0_disabled(vcpu))
1041                                 return false;
1042
1043                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1044                               & ARMV8_PMU_COUNTER_MASK;
1045                 } else if (r->Op2 == 0) {
1046                         /* PMCCNTR_EL0 */
1047                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
1048                                 return false;
1049
1050                         idx = ARMV8_PMU_CYCLE_IDX;
1051                 }
1052         } else if (r->CRn == 0 && r->CRm == 9) {
1053                 /* PMCCNTR */
1054                 if (pmu_access_event_counter_el0_disabled(vcpu))
1055                         return false;
1056
1057                 idx = ARMV8_PMU_CYCLE_IDX;
1058         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1059                 /* PMEVCNTRn_EL0 */
1060                 if (pmu_access_event_counter_el0_disabled(vcpu))
1061                         return false;
1062
1063                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1064         }
1065
1066         /* Catch any decoding mistake */
1067         WARN_ON(idx == ~0UL);
1068
1069         if (!pmu_counter_idx_valid(vcpu, idx))
1070                 return false;
1071
1072         if (p->is_write) {
1073                 if (pmu_access_el0_disabled(vcpu))
1074                         return false;
1075
1076                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1077         } else {
1078                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1079         }
1080
1081         return true;
1082 }
1083
1084 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085                                const struct sys_reg_desc *r)
1086 {
1087         u64 idx, reg;
1088
1089         if (pmu_access_el0_disabled(vcpu))
1090                 return false;
1091
1092         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1093                 /* PMXEVTYPER_EL0 */
1094                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1095                 reg = PMEVTYPER0_EL0 + idx;
1096         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1097                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1098                 if (idx == ARMV8_PMU_CYCLE_IDX)
1099                         reg = PMCCFILTR_EL0;
1100                 else
1101                         /* PMEVTYPERn_EL0 */
1102                         reg = PMEVTYPER0_EL0 + idx;
1103         } else {
1104                 BUG();
1105         }
1106
1107         if (!pmu_counter_idx_valid(vcpu, idx))
1108                 return false;
1109
1110         if (p->is_write) {
1111                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1112                 kvm_vcpu_pmu_restore_guest(vcpu);
1113         } else {
1114                 p->regval = __vcpu_sys_reg(vcpu, reg);
1115         }
1116
1117         return true;
1118 }
1119
1120 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1121 {
1122         bool set;
1123
1124         val &= kvm_pmu_valid_counter_mask(vcpu);
1125
1126         switch (r->reg) {
1127         case PMOVSSET_EL0:
1128                 /* CRm[1] being set indicates a SET register, and CLR otherwise */
1129                 set = r->CRm & 2;
1130                 break;
1131         default:
1132                 /* Op2[0] being set indicates a SET register, and CLR otherwise */
1133                 set = r->Op2 & 1;
1134                 break;
1135         }
1136
1137         if (set)
1138                 __vcpu_sys_reg(vcpu, r->reg) |= val;
1139         else
1140                 __vcpu_sys_reg(vcpu, r->reg) &= ~val;
1141
1142         return 0;
1143 }
1144
1145 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1146 {
1147         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1148
1149         *val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1150         return 0;
1151 }
1152
1153 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1154                            const struct sys_reg_desc *r)
1155 {
1156         u64 val, mask;
1157
1158         if (pmu_access_el0_disabled(vcpu))
1159                 return false;
1160
1161         mask = kvm_pmu_valid_counter_mask(vcpu);
1162         if (p->is_write) {
1163                 val = p->regval & mask;
1164                 if (r->Op2 & 0x1) {
1165                         /* accessing PMCNTENSET_EL0 */
1166                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1167                         kvm_pmu_enable_counter_mask(vcpu, val);
1168                         kvm_vcpu_pmu_restore_guest(vcpu);
1169                 } else {
1170                         /* accessing PMCNTENCLR_EL0 */
1171                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1172                         kvm_pmu_disable_counter_mask(vcpu, val);
1173                 }
1174         } else {
1175                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1176         }
1177
1178         return true;
1179 }
1180
1181 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182                            const struct sys_reg_desc *r)
1183 {
1184         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1185
1186         if (check_pmu_access_disabled(vcpu, 0))
1187                 return false;
1188
1189         if (p->is_write) {
1190                 u64 val = p->regval & mask;
1191
1192                 if (r->Op2 & 0x1)
1193                         /* accessing PMINTENSET_EL1 */
1194                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1195                 else
1196                         /* accessing PMINTENCLR_EL1 */
1197                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1198         } else {
1199                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1200         }
1201
1202         return true;
1203 }
1204
1205 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1206                          const struct sys_reg_desc *r)
1207 {
1208         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1209
1210         if (pmu_access_el0_disabled(vcpu))
1211                 return false;
1212
1213         if (p->is_write) {
1214                 if (r->CRm & 0x2)
1215                         /* accessing PMOVSSET_EL0 */
1216                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1217                 else
1218                         /* accessing PMOVSCLR_EL0 */
1219                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1220         } else {
1221                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1222         }
1223
1224         return true;
1225 }
1226
1227 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1228                            const struct sys_reg_desc *r)
1229 {
1230         u64 mask;
1231
1232         if (!p->is_write)
1233                 return read_from_write_only(vcpu, p, r);
1234
1235         if (pmu_write_swinc_el0_disabled(vcpu))
1236                 return false;
1237
1238         mask = kvm_pmu_valid_counter_mask(vcpu);
1239         kvm_pmu_software_increment(vcpu, p->regval & mask);
1240         return true;
1241 }
1242
1243 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244                              const struct sys_reg_desc *r)
1245 {
1246         if (p->is_write) {
1247                 if (!vcpu_mode_priv(vcpu)) {
1248                         kvm_inject_undefined(vcpu);
1249                         return false;
1250                 }
1251
1252                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1253                                p->regval & ARMV8_PMU_USERENR_MASK;
1254         } else {
1255                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1256                             & ARMV8_PMU_USERENR_MASK;
1257         }
1258
1259         return true;
1260 }
1261
1262 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1263                     u64 *val)
1264 {
1265         *val = kvm_vcpu_read_pmcr(vcpu);
1266         return 0;
1267 }
1268
1269 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1270                     u64 val)
1271 {
1272         u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1273         struct kvm *kvm = vcpu->kvm;
1274
1275         mutex_lock(&kvm->arch.config_lock);
1276
1277         /*
1278          * The vCPU can't have more counters than the PMU hardware
1279          * implements. Ignore this error to maintain compatibility
1280          * with the existing KVM behavior.
1281          */
1282         if (!kvm_vm_has_ran_once(kvm) &&
1283             new_n <= kvm_arm_pmu_get_max_counters(kvm))
1284                 kvm->arch.pmcr_n = new_n;
1285
1286         mutex_unlock(&kvm->arch.config_lock);
1287
1288         /*
1289          * Ignore writes to RES0 bits, read only bits that are cleared on
1290          * vCPU reset, and writable bits that KVM doesn't support yet.
1291          * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1292          * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1293          * But, we leave the bit as it is here, as the vCPU's PMUver might
1294          * be changed later (NOTE: the bit will be cleared on first vCPU run
1295          * if necessary).
1296          */
1297         val &= ARMV8_PMU_PMCR_MASK;
1298
1299         /* The LC bit is RES1 when AArch32 is not supported */
1300         if (!kvm_supports_32bit_el0())
1301                 val |= ARMV8_PMU_PMCR_LC;
1302
1303         __vcpu_sys_reg(vcpu, r->reg) = val;
1304         return 0;
1305 }
1306
1307 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1308 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1309         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1310           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1311         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1312           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1313         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1314           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1315         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1316           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1317
1318 #define PMU_SYS_REG(name)                                               \
1319         SYS_DESC(SYS_##name), .reset = reset_pmu_reg,                   \
1320         .visibility = pmu_visibility
1321
1322 /* Macro to expand the PMEVCNTRn_EL0 register */
1323 #define PMU_PMEVCNTR_EL0(n)                                             \
1324         { PMU_SYS_REG(PMEVCNTRn_EL0(n)),                                \
1325           .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,          \
1326           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1327
1328 /* Macro to expand the PMEVTYPERn_EL0 register */
1329 #define PMU_PMEVTYPER_EL0(n)                                            \
1330         { PMU_SYS_REG(PMEVTYPERn_EL0(n)),                               \
1331           .reset = reset_pmevtyper,                                     \
1332           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1333
1334 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1335                          const struct sys_reg_desc *r)
1336 {
1337         kvm_inject_undefined(vcpu);
1338
1339         return false;
1340 }
1341
1342 /* Macro to expand the AMU counter and type registers*/
1343 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1344 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1345 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1346 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1347
1348 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1349                         const struct sys_reg_desc *rd)
1350 {
1351         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1352 }
1353
1354 /*
1355  * If we land here on a PtrAuth access, that is because we didn't
1356  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1357  * way this happens is when the guest does not have PtrAuth support
1358  * enabled.
1359  */
1360 #define __PTRAUTH_KEY(k)                                                \
1361         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1362         .visibility = ptrauth_visibility}
1363
1364 #define PTRAUTH_KEY(k)                                                  \
1365         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1366         __PTRAUTH_KEY(k ## KEYHI_EL1)
1367
1368 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1369                               struct sys_reg_params *p,
1370                               const struct sys_reg_desc *r)
1371 {
1372         enum kvm_arch_timers tmr;
1373         enum kvm_arch_timer_regs treg;
1374         u64 reg = reg_to_encoding(r);
1375
1376         switch (reg) {
1377         case SYS_CNTP_TVAL_EL0:
1378         case SYS_AARCH32_CNTP_TVAL:
1379                 tmr = TIMER_PTIMER;
1380                 treg = TIMER_REG_TVAL;
1381                 break;
1382         case SYS_CNTP_CTL_EL0:
1383         case SYS_AARCH32_CNTP_CTL:
1384                 tmr = TIMER_PTIMER;
1385                 treg = TIMER_REG_CTL;
1386                 break;
1387         case SYS_CNTP_CVAL_EL0:
1388         case SYS_AARCH32_CNTP_CVAL:
1389                 tmr = TIMER_PTIMER;
1390                 treg = TIMER_REG_CVAL;
1391                 break;
1392         case SYS_CNTPCT_EL0:
1393         case SYS_CNTPCTSS_EL0:
1394         case SYS_AARCH32_CNTPCT:
1395                 tmr = TIMER_PTIMER;
1396                 treg = TIMER_REG_CNT;
1397                 break;
1398         default:
1399                 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1400                 kvm_inject_undefined(vcpu);
1401                 return false;
1402         }
1403
1404         if (p->is_write)
1405                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1406         else
1407                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1408
1409         return true;
1410 }
1411
1412 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1413                                     s64 new, s64 cur)
1414 {
1415         struct arm64_ftr_bits kvm_ftr = *ftrp;
1416
1417         /* Some features have different safe value type in KVM than host features */
1418         switch (id) {
1419         case SYS_ID_AA64DFR0_EL1:
1420                 switch (kvm_ftr.shift) {
1421                 case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1422                         kvm_ftr.type = FTR_LOWER_SAFE;
1423                         break;
1424                 case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1425                         kvm_ftr.type = FTR_LOWER_SAFE;
1426                         break;
1427                 }
1428                 break;
1429         case SYS_ID_DFR0_EL1:
1430                 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1431                         kvm_ftr.type = FTR_LOWER_SAFE;
1432                 break;
1433         }
1434
1435         return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1436 }
1437
1438 /*
1439  * arm64_check_features() - Check if a feature register value constitutes
1440  * a subset of features indicated by the idreg's KVM sanitised limit.
1441  *
1442  * This function will check if each feature field of @val is the "safe" value
1443  * against idreg's KVM sanitised limit return from reset() callback.
1444  * If a field value in @val is the same as the one in limit, it is always
1445  * considered the safe value regardless For register fields that are not in
1446  * writable, only the value in limit is considered the safe value.
1447  *
1448  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1449  */
1450 static int arm64_check_features(struct kvm_vcpu *vcpu,
1451                                 const struct sys_reg_desc *rd,
1452                                 u64 val)
1453 {
1454         const struct arm64_ftr_reg *ftr_reg;
1455         const struct arm64_ftr_bits *ftrp = NULL;
1456         u32 id = reg_to_encoding(rd);
1457         u64 writable_mask = rd->val;
1458         u64 limit = rd->reset(vcpu, rd);
1459         u64 mask = 0;
1460
1461         /*
1462          * Hidden and unallocated ID registers may not have a corresponding
1463          * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1464          * only safe value is 0.
1465          */
1466         if (sysreg_visible_as_raz(vcpu, rd))
1467                 return val ? -E2BIG : 0;
1468
1469         ftr_reg = get_arm64_ftr_reg(id);
1470         if (!ftr_reg)
1471                 return -EINVAL;
1472
1473         ftrp = ftr_reg->ftr_bits;
1474
1475         for (; ftrp && ftrp->width; ftrp++) {
1476                 s64 f_val, f_lim, safe_val;
1477                 u64 ftr_mask;
1478
1479                 ftr_mask = arm64_ftr_mask(ftrp);
1480                 if ((ftr_mask & writable_mask) != ftr_mask)
1481                         continue;
1482
1483                 f_val = arm64_ftr_value(ftrp, val);
1484                 f_lim = arm64_ftr_value(ftrp, limit);
1485                 mask |= ftr_mask;
1486
1487                 if (f_val == f_lim)
1488                         safe_val = f_val;
1489                 else
1490                         safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1491
1492                 if (safe_val != f_val)
1493                         return -E2BIG;
1494         }
1495
1496         /* For fields that are not writable, values in limit are the safe values. */
1497         if ((val & ~mask) != (limit & ~mask))
1498                 return -E2BIG;
1499
1500         return 0;
1501 }
1502
1503 static u8 pmuver_to_perfmon(u8 pmuver)
1504 {
1505         switch (pmuver) {
1506         case ID_AA64DFR0_EL1_PMUVer_IMP:
1507                 return ID_DFR0_EL1_PerfMon_PMUv3;
1508         case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1509                 return ID_DFR0_EL1_PerfMon_IMPDEF;
1510         default:
1511                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1512                 return pmuver;
1513         }
1514 }
1515
1516 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1517 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1518                                        const struct sys_reg_desc *r)
1519 {
1520         u32 id = reg_to_encoding(r);
1521         u64 val;
1522
1523         if (sysreg_visible_as_raz(vcpu, r))
1524                 return 0;
1525
1526         val = read_sanitised_ftr_reg(id);
1527
1528         switch (id) {
1529         case SYS_ID_AA64PFR1_EL1:
1530                 if (!kvm_has_mte(vcpu->kvm))
1531                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1532
1533                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1534                 break;
1535         case SYS_ID_AA64ISAR1_EL1:
1536                 if (!vcpu_has_ptrauth(vcpu))
1537                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1538                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1539                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1540                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1541                 break;
1542         case SYS_ID_AA64ISAR2_EL1:
1543                 if (!vcpu_has_ptrauth(vcpu))
1544                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1545                                  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1546                 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1547                         val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1548                 break;
1549         case SYS_ID_AA64MMFR2_EL1:
1550                 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1551                 break;
1552         case SYS_ID_MMFR4_EL1:
1553                 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1554                 break;
1555         }
1556
1557         return val;
1558 }
1559
1560 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1561                                      const struct sys_reg_desc *r)
1562 {
1563         return __kvm_read_sanitised_id_reg(vcpu, r);
1564 }
1565
1566 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1567 {
1568         return IDREG(vcpu->kvm, reg_to_encoding(r));
1569 }
1570
1571 /*
1572  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1573  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1574  */
1575 static inline bool is_id_reg(u32 id)
1576 {
1577         return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1578                 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1579                 sys_reg_CRm(id) < 8);
1580 }
1581
1582 static inline bool is_aa32_id_reg(u32 id)
1583 {
1584         return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1585                 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1586                 sys_reg_CRm(id) <= 3);
1587 }
1588
1589 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1590                                   const struct sys_reg_desc *r)
1591 {
1592         u32 id = reg_to_encoding(r);
1593
1594         switch (id) {
1595         case SYS_ID_AA64ZFR0_EL1:
1596                 if (!vcpu_has_sve(vcpu))
1597                         return REG_RAZ;
1598                 break;
1599         }
1600
1601         return 0;
1602 }
1603
1604 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1605                                        const struct sys_reg_desc *r)
1606 {
1607         /*
1608          * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1609          * EL. Promote to RAZ/WI in order to guarantee consistency between
1610          * systems.
1611          */
1612         if (!kvm_supports_32bit_el0())
1613                 return REG_RAZ | REG_USER_WI;
1614
1615         return id_visibility(vcpu, r);
1616 }
1617
1618 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1619                                    const struct sys_reg_desc *r)
1620 {
1621         return REG_RAZ;
1622 }
1623
1624 /* cpufeature ID register access trap handlers */
1625
1626 static bool access_id_reg(struct kvm_vcpu *vcpu,
1627                           struct sys_reg_params *p,
1628                           const struct sys_reg_desc *r)
1629 {
1630         if (p->is_write)
1631                 return write_to_read_only(vcpu, p, r);
1632
1633         p->regval = read_id_reg(vcpu, r);
1634
1635         return true;
1636 }
1637
1638 /* Visibility overrides for SVE-specific control registers */
1639 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1640                                    const struct sys_reg_desc *rd)
1641 {
1642         if (vcpu_has_sve(vcpu))
1643                 return 0;
1644
1645         return REG_HIDDEN;
1646 }
1647
1648 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1649                                           const struct sys_reg_desc *rd)
1650 {
1651         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1652
1653         if (!vcpu_has_sve(vcpu))
1654                 val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1655
1656         /*
1657          * The default is to expose CSV2 == 1 if the HW isn't affected.
1658          * Although this is a per-CPU feature, we make it global because
1659          * asymmetric systems are just a nuisance.
1660          *
1661          * Userspace can override this as long as it doesn't promise
1662          * the impossible.
1663          */
1664         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1665                 val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1666                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1667         }
1668         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1669                 val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1670                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1671         }
1672
1673         if (kvm_vgic_global_state.type == VGIC_V3) {
1674                 val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1675                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1676         }
1677
1678         val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1679
1680         return val;
1681 }
1682
1683 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)                        \
1684 ({                                                                             \
1685         u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);                    \
1686         (val) &= ~reg##_##field##_MASK;                                        \
1687         (val) |= FIELD_PREP(reg##_##field##_MASK,                              \
1688                         min(__f_val, (u64)reg##_##field##_##limit));           \
1689         (val);                                                                 \
1690 })
1691
1692 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1693                                           const struct sys_reg_desc *rd)
1694 {
1695         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1696
1697         val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1698
1699         /*
1700          * Only initialize the PMU version if the vCPU was configured with one.
1701          */
1702         val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1703         if (kvm_vcpu_has_pmu(vcpu))
1704                 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1705                                       kvm_arm_pmu_get_pmuver_limit());
1706
1707         /* Hide SPE from guests */
1708         val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1709
1710         return val;
1711 }
1712
1713 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1714                                const struct sys_reg_desc *rd,
1715                                u64 val)
1716 {
1717         u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1718         u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1719
1720         /*
1721          * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1722          * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1723          * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1724          * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1725          * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1726          *
1727          * At minimum, we're on the hook to allow values that were given to
1728          * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1729          * with a more sensible NI. The value of an ID register changing under
1730          * the nose of the guest is unfortunate, but is certainly no more
1731          * surprising than an ill-guided PMU driver poking at impdef system
1732          * registers that end in an UNDEF...
1733          */
1734         if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1735                 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1736
1737         /*
1738          * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1739          * nonzero minimum safe value.
1740          */
1741         if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1742                 return -EINVAL;
1743
1744         return set_id_reg(vcpu, rd, val);
1745 }
1746
1747 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1748                                       const struct sys_reg_desc *rd)
1749 {
1750         u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1751         u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1752
1753         val &= ~ID_DFR0_EL1_PerfMon_MASK;
1754         if (kvm_vcpu_has_pmu(vcpu))
1755                 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1756
1757         val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1758
1759         return val;
1760 }
1761
1762 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1763                            const struct sys_reg_desc *rd,
1764                            u64 val)
1765 {
1766         u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1767         u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1768
1769         if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1770                 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1771                 perfmon = 0;
1772         }
1773
1774         /*
1775          * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1776          * it doesn't promise more than what the HW gives us on the
1777          * AArch64 side (as everything is emulated with that), and
1778          * that this is a PMUv3.
1779          */
1780         if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1781                 return -EINVAL;
1782
1783         if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1784                 return -EINVAL;
1785
1786         return set_id_reg(vcpu, rd, val);
1787 }
1788
1789 /*
1790  * cpufeature ID register user accessors
1791  *
1792  * For now, these registers are immutable for userspace, so no values
1793  * are stored, and for set_id_reg() we don't allow the effective value
1794  * to be changed.
1795  */
1796 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1797                       u64 *val)
1798 {
1799         /*
1800          * Avoid locking if the VM has already started, as the ID registers are
1801          * guaranteed to be invariant at that point.
1802          */
1803         if (kvm_vm_has_ran_once(vcpu->kvm)) {
1804                 *val = read_id_reg(vcpu, rd);
1805                 return 0;
1806         }
1807
1808         mutex_lock(&vcpu->kvm->arch.config_lock);
1809         *val = read_id_reg(vcpu, rd);
1810         mutex_unlock(&vcpu->kvm->arch.config_lock);
1811
1812         return 0;
1813 }
1814
1815 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1816                       u64 val)
1817 {
1818         u32 id = reg_to_encoding(rd);
1819         int ret;
1820
1821         mutex_lock(&vcpu->kvm->arch.config_lock);
1822
1823         /*
1824          * Once the VM has started the ID registers are immutable. Reject any
1825          * write that does not match the final register value.
1826          */
1827         if (kvm_vm_has_ran_once(vcpu->kvm)) {
1828                 if (val != read_id_reg(vcpu, rd))
1829                         ret = -EBUSY;
1830                 else
1831                         ret = 0;
1832
1833                 mutex_unlock(&vcpu->kvm->arch.config_lock);
1834                 return ret;
1835         }
1836
1837         ret = arm64_check_features(vcpu, rd, val);
1838         if (!ret)
1839                 IDREG(vcpu->kvm, id) = val;
1840
1841         mutex_unlock(&vcpu->kvm->arch.config_lock);
1842
1843         /*
1844          * arm64_check_features() returns -E2BIG to indicate the register's
1845          * feature set is a superset of the maximally-allowed register value.
1846          * While it would be nice to precisely describe this to userspace, the
1847          * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1848          * writes return -EINVAL.
1849          */
1850         if (ret == -E2BIG)
1851                 ret = -EINVAL;
1852         return ret;
1853 }
1854
1855 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1856                        u64 *val)
1857 {
1858         *val = 0;
1859         return 0;
1860 }
1861
1862 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1863                       u64 val)
1864 {
1865         return 0;
1866 }
1867
1868 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1869                        const struct sys_reg_desc *r)
1870 {
1871         if (p->is_write)
1872                 return write_to_read_only(vcpu, p, r);
1873
1874         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1875         return true;
1876 }
1877
1878 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1879                          const struct sys_reg_desc *r)
1880 {
1881         if (p->is_write)
1882                 return write_to_read_only(vcpu, p, r);
1883
1884         p->regval = __vcpu_sys_reg(vcpu, r->reg);
1885         return true;
1886 }
1887
1888 /*
1889  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1890  * by the physical CPU which the vcpu currently resides in.
1891  */
1892 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1893 {
1894         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1895         u64 clidr;
1896         u8 loc;
1897
1898         if ((ctr_el0 & CTR_EL0_IDC)) {
1899                 /*
1900                  * Data cache clean to the PoU is not required so LoUU and LoUIS
1901                  * will not be set and a unified cache, which will be marked as
1902                  * LoC, will be added.
1903                  *
1904                  * If not DIC, let the unified cache L2 so that an instruction
1905                  * cache can be added as L1 later.
1906                  */
1907                 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1908                 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1909         } else {
1910                 /*
1911                  * Data cache clean to the PoU is required so let L1 have a data
1912                  * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1913                  * it can be marked as LoC too.
1914                  */
1915                 loc = 1;
1916                 clidr = 1 << CLIDR_LOUU_SHIFT;
1917                 clidr |= 1 << CLIDR_LOUIS_SHIFT;
1918                 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1919         }
1920
1921         /*
1922          * Instruction cache invalidation to the PoU is required so let L1 have
1923          * an instruction cache. If L1 already has a data cache, it will be
1924          * CACHE_TYPE_SEPARATE.
1925          */
1926         if (!(ctr_el0 & CTR_EL0_DIC))
1927                 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1928
1929         clidr |= loc << CLIDR_LOC_SHIFT;
1930
1931         /*
1932          * Add tag cache unified to data cache. Allocation tags and data are
1933          * unified in a cache line so that it looks valid even if there is only
1934          * one cache line.
1935          */
1936         if (kvm_has_mte(vcpu->kvm))
1937                 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1938
1939         __vcpu_sys_reg(vcpu, r->reg) = clidr;
1940
1941         return __vcpu_sys_reg(vcpu, r->reg);
1942 }
1943
1944 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1945                       u64 val)
1946 {
1947         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1948         u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1949
1950         if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1951                 return -EINVAL;
1952
1953         __vcpu_sys_reg(vcpu, rd->reg) = val;
1954
1955         return 0;
1956 }
1957
1958 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1959                           const struct sys_reg_desc *r)
1960 {
1961         int reg = r->reg;
1962
1963         if (p->is_write)
1964                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1965         else
1966                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1967         return true;
1968 }
1969
1970 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1971                           const struct sys_reg_desc *r)
1972 {
1973         u32 csselr;
1974
1975         if (p->is_write)
1976                 return write_to_read_only(vcpu, p, r);
1977
1978         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1979         csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1980         if (csselr < CSSELR_MAX)
1981                 p->regval = get_ccsidr(vcpu, csselr);
1982
1983         return true;
1984 }
1985
1986 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1987                                    const struct sys_reg_desc *rd)
1988 {
1989         if (kvm_has_mte(vcpu->kvm))
1990                 return 0;
1991
1992         return REG_HIDDEN;
1993 }
1994
1995 #define MTE_REG(name) {                         \
1996         SYS_DESC(SYS_##name),                   \
1997         .access = undef_access,                 \
1998         .reset = reset_unknown,                 \
1999         .reg = name,                            \
2000         .visibility = mte_visibility,           \
2001 }
2002
2003 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2004                                    const struct sys_reg_desc *rd)
2005 {
2006         if (vcpu_has_nv(vcpu))
2007                 return 0;
2008
2009         return REG_HIDDEN;
2010 }
2011
2012 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2013                           struct sys_reg_params *p,
2014                           const struct sys_reg_desc *r)
2015 {
2016         /*
2017          * We really shouldn't be here, and this is likely the result
2018          * of a misconfigured trap, as this register should target the
2019          * VNCR page, and nothing else.
2020          */
2021         return bad_trap(vcpu, p, r,
2022                         "trap of VNCR-backed register");
2023 }
2024
2025 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2026                            struct sys_reg_params *p,
2027                            const struct sys_reg_desc *r)
2028 {
2029         /*
2030          * We really shouldn't be here, and this is likely the result
2031          * of a misconfigured trap, as this register should target the
2032          * corresponding EL1, and nothing else.
2033          */
2034         return bad_trap(vcpu, p, r,
2035                         "trap of EL2 register redirected to EL1");
2036 }
2037
2038 #define EL2_REG(name, acc, rst, v) {            \
2039         SYS_DESC(SYS_##name),                   \
2040         .access = acc,                          \
2041         .reset = rst,                           \
2042         .reg = name,                            \
2043         .visibility = el2_visibility,           \
2044         .val = v,                               \
2045 }
2046
2047 #define EL2_REG_VNCR(name, rst, v)      EL2_REG(name, bad_vncr_trap, rst, v)
2048 #define EL2_REG_REDIR(name, rst, v)     EL2_REG(name, bad_redir_trap, rst, v)
2049
2050 /*
2051  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2052  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2053  * handling traps. Given that, they are always hidden from userspace.
2054  */
2055 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2056                                            const struct sys_reg_desc *rd)
2057 {
2058         return REG_HIDDEN_USER;
2059 }
2060
2061 #define EL12_REG(name, acc, rst, v) {           \
2062         SYS_DESC(SYS_##name##_EL12),            \
2063         .access = acc,                          \
2064         .reset = rst,                           \
2065         .reg = name##_EL1,                      \
2066         .val = v,                               \
2067         .visibility = hidden_user_visibility,   \
2068 }
2069
2070 /*
2071  * Since reset() callback and field val are not used for idregs, they will be
2072  * used for specific purposes for idregs.
2073  * The reset() would return KVM sanitised register value. The value would be the
2074  * same as the host kernel sanitised value if there is no KVM sanitisation.
2075  * The val would be used as a mask indicating writable fields for the idreg.
2076  * Only bits with 1 are writable from userspace. This mask might not be
2077  * necessary in the future whenever all ID registers are enabled as writable
2078  * from userspace.
2079  */
2080
2081 #define ID_DESC(name)                           \
2082         SYS_DESC(SYS_##name),                   \
2083         .access = access_id_reg,                \
2084         .get_user = get_id_reg                  \
2085
2086 /* sys_reg_desc initialiser for known cpufeature ID registers */
2087 #define ID_SANITISED(name) {                    \
2088         ID_DESC(name),                          \
2089         .set_user = set_id_reg,                 \
2090         .visibility = id_visibility,            \
2091         .reset = kvm_read_sanitised_id_reg,     \
2092         .val = 0,                               \
2093 }
2094
2095 /* sys_reg_desc initialiser for known cpufeature ID registers */
2096 #define AA32_ID_SANITISED(name) {               \
2097         ID_DESC(name),                          \
2098         .set_user = set_id_reg,                 \
2099         .visibility = aa32_id_visibility,       \
2100         .reset = kvm_read_sanitised_id_reg,     \
2101         .val = 0,                               \
2102 }
2103
2104 /* sys_reg_desc initialiser for writable ID registers */
2105 #define ID_WRITABLE(name, mask) {               \
2106         ID_DESC(name),                          \
2107         .set_user = set_id_reg,                 \
2108         .visibility = id_visibility,            \
2109         .reset = kvm_read_sanitised_id_reg,     \
2110         .val = mask,                            \
2111 }
2112
2113 /*
2114  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2115  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2116  * (1 <= crm < 8, 0 <= Op2 < 8).
2117  */
2118 #define ID_UNALLOCATED(crm, op2) {                      \
2119         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
2120         .access = access_id_reg,                        \
2121         .get_user = get_id_reg,                         \
2122         .set_user = set_id_reg,                         \
2123         .visibility = raz_visibility,                   \
2124         .reset = kvm_read_sanitised_id_reg,             \
2125         .val = 0,                                       \
2126 }
2127
2128 /*
2129  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2130  * For now, these are exposed just like unallocated ID regs: they appear
2131  * RAZ for the guest.
2132  */
2133 #define ID_HIDDEN(name) {                       \
2134         ID_DESC(name),                          \
2135         .set_user = set_id_reg,                 \
2136         .visibility = raz_visibility,           \
2137         .reset = kvm_read_sanitised_id_reg,     \
2138         .val = 0,                               \
2139 }
2140
2141 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2142                           struct sys_reg_params *p,
2143                           const struct sys_reg_desc *r)
2144 {
2145         if (p->is_write)
2146                 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2147         else
2148                 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2149
2150         return true;
2151 }
2152
2153 static bool access_elr(struct kvm_vcpu *vcpu,
2154                        struct sys_reg_params *p,
2155                        const struct sys_reg_desc *r)
2156 {
2157         if (p->is_write)
2158                 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2159         else
2160                 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2161
2162         return true;
2163 }
2164
2165 static bool access_spsr(struct kvm_vcpu *vcpu,
2166                         struct sys_reg_params *p,
2167                         const struct sys_reg_desc *r)
2168 {
2169         if (p->is_write)
2170                 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2171         else
2172                 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2173
2174         return true;
2175 }
2176
2177 /*
2178  * Architected system registers.
2179  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2180  *
2181  * Debug handling: We do trap most, if not all debug related system
2182  * registers. The implementation is good enough to ensure that a guest
2183  * can use these with minimal performance degradation. The drawback is
2184  * that we don't implement any of the external debug architecture.
2185  * This should be revisited if we ever encounter a more demanding
2186  * guest...
2187  */
2188 static const struct sys_reg_desc sys_reg_descs[] = {
2189         { SYS_DESC(SYS_DC_ISW), access_dcsw },
2190         { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2191         { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2192         { SYS_DESC(SYS_DC_CSW), access_dcsw },
2193         { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2194         { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2195         { SYS_DESC(SYS_DC_CISW), access_dcsw },
2196         { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2197         { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2198
2199         DBG_BCR_BVR_WCR_WVR_EL1(0),
2200         DBG_BCR_BVR_WCR_WVR_EL1(1),
2201         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2202         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2203         DBG_BCR_BVR_WCR_WVR_EL1(2),
2204         DBG_BCR_BVR_WCR_WVR_EL1(3),
2205         DBG_BCR_BVR_WCR_WVR_EL1(4),
2206         DBG_BCR_BVR_WCR_WVR_EL1(5),
2207         DBG_BCR_BVR_WCR_WVR_EL1(6),
2208         DBG_BCR_BVR_WCR_WVR_EL1(7),
2209         DBG_BCR_BVR_WCR_WVR_EL1(8),
2210         DBG_BCR_BVR_WCR_WVR_EL1(9),
2211         DBG_BCR_BVR_WCR_WVR_EL1(10),
2212         DBG_BCR_BVR_WCR_WVR_EL1(11),
2213         DBG_BCR_BVR_WCR_WVR_EL1(12),
2214         DBG_BCR_BVR_WCR_WVR_EL1(13),
2215         DBG_BCR_BVR_WCR_WVR_EL1(14),
2216         DBG_BCR_BVR_WCR_WVR_EL1(15),
2217
2218         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2219         { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2220         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2221                 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2222         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2223         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2224         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2225         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2226         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2227
2228         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2229         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2230         // DBGDTR[TR]X_EL0 share the same encoding
2231         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2232
2233         { SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2234
2235         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2236
2237         /*
2238          * ID regs: all ID_SANITISED() entries here must have corresponding
2239          * entries in arm64_ftr_regs[].
2240          */
2241
2242         /* AArch64 mappings of the AArch32 ID registers */
2243         /* CRm=1 */
2244         AA32_ID_SANITISED(ID_PFR0_EL1),
2245         AA32_ID_SANITISED(ID_PFR1_EL1),
2246         { SYS_DESC(SYS_ID_DFR0_EL1),
2247           .access = access_id_reg,
2248           .get_user = get_id_reg,
2249           .set_user = set_id_dfr0_el1,
2250           .visibility = aa32_id_visibility,
2251           .reset = read_sanitised_id_dfr0_el1,
2252           .val = ID_DFR0_EL1_PerfMon_MASK |
2253                  ID_DFR0_EL1_CopDbg_MASK, },
2254         ID_HIDDEN(ID_AFR0_EL1),
2255         AA32_ID_SANITISED(ID_MMFR0_EL1),
2256         AA32_ID_SANITISED(ID_MMFR1_EL1),
2257         AA32_ID_SANITISED(ID_MMFR2_EL1),
2258         AA32_ID_SANITISED(ID_MMFR3_EL1),
2259
2260         /* CRm=2 */
2261         AA32_ID_SANITISED(ID_ISAR0_EL1),
2262         AA32_ID_SANITISED(ID_ISAR1_EL1),
2263         AA32_ID_SANITISED(ID_ISAR2_EL1),
2264         AA32_ID_SANITISED(ID_ISAR3_EL1),
2265         AA32_ID_SANITISED(ID_ISAR4_EL1),
2266         AA32_ID_SANITISED(ID_ISAR5_EL1),
2267         AA32_ID_SANITISED(ID_MMFR4_EL1),
2268         AA32_ID_SANITISED(ID_ISAR6_EL1),
2269
2270         /* CRm=3 */
2271         AA32_ID_SANITISED(MVFR0_EL1),
2272         AA32_ID_SANITISED(MVFR1_EL1),
2273         AA32_ID_SANITISED(MVFR2_EL1),
2274         ID_UNALLOCATED(3,3),
2275         AA32_ID_SANITISED(ID_PFR2_EL1),
2276         ID_HIDDEN(ID_DFR1_EL1),
2277         AA32_ID_SANITISED(ID_MMFR5_EL1),
2278         ID_UNALLOCATED(3,7),
2279
2280         /* AArch64 ID registers */
2281         /* CRm=4 */
2282         { SYS_DESC(SYS_ID_AA64PFR0_EL1),
2283           .access = access_id_reg,
2284           .get_user = get_id_reg,
2285           .set_user = set_id_reg,
2286           .reset = read_sanitised_id_aa64pfr0_el1,
2287           .val = ~(ID_AA64PFR0_EL1_AMU |
2288                    ID_AA64PFR0_EL1_MPAM |
2289                    ID_AA64PFR0_EL1_SVE |
2290                    ID_AA64PFR0_EL1_RAS |
2291                    ID_AA64PFR0_EL1_GIC |
2292                    ID_AA64PFR0_EL1_AdvSIMD |
2293                    ID_AA64PFR0_EL1_FP), },
2294         ID_SANITISED(ID_AA64PFR1_EL1),
2295         ID_UNALLOCATED(4,2),
2296         ID_UNALLOCATED(4,3),
2297         ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2298         ID_HIDDEN(ID_AA64SMFR0_EL1),
2299         ID_UNALLOCATED(4,6),
2300         ID_UNALLOCATED(4,7),
2301
2302         /* CRm=5 */
2303         { SYS_DESC(SYS_ID_AA64DFR0_EL1),
2304           .access = access_id_reg,
2305           .get_user = get_id_reg,
2306           .set_user = set_id_aa64dfr0_el1,
2307           .reset = read_sanitised_id_aa64dfr0_el1,
2308           .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2309                  ID_AA64DFR0_EL1_DebugVer_MASK, },
2310         ID_SANITISED(ID_AA64DFR1_EL1),
2311         ID_UNALLOCATED(5,2),
2312         ID_UNALLOCATED(5,3),
2313         ID_HIDDEN(ID_AA64AFR0_EL1),
2314         ID_HIDDEN(ID_AA64AFR1_EL1),
2315         ID_UNALLOCATED(5,6),
2316         ID_UNALLOCATED(5,7),
2317
2318         /* CRm=6 */
2319         ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2320         ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2321                                         ID_AA64ISAR1_EL1_GPA |
2322                                         ID_AA64ISAR1_EL1_API |
2323                                         ID_AA64ISAR1_EL1_APA)),
2324         ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2325                                         ID_AA64ISAR2_EL1_APA3 |
2326                                         ID_AA64ISAR2_EL1_GPA3)),
2327         ID_UNALLOCATED(6,3),
2328         ID_UNALLOCATED(6,4),
2329         ID_UNALLOCATED(6,5),
2330         ID_UNALLOCATED(6,6),
2331         ID_UNALLOCATED(6,7),
2332
2333         /* CRm=7 */
2334         ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2335                                         ID_AA64MMFR0_EL1_TGRAN4_2 |
2336                                         ID_AA64MMFR0_EL1_TGRAN64_2 |
2337                                         ID_AA64MMFR0_EL1_TGRAN16_2)),
2338         ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2339                                         ID_AA64MMFR1_EL1_HCX |
2340                                         ID_AA64MMFR1_EL1_XNX |
2341                                         ID_AA64MMFR1_EL1_TWED |
2342                                         ID_AA64MMFR1_EL1_XNX |
2343                                         ID_AA64MMFR1_EL1_VH |
2344                                         ID_AA64MMFR1_EL1_VMIDBits)),
2345         ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2346                                         ID_AA64MMFR2_EL1_EVT |
2347                                         ID_AA64MMFR2_EL1_FWB |
2348                                         ID_AA64MMFR2_EL1_IDS |
2349                                         ID_AA64MMFR2_EL1_NV |
2350                                         ID_AA64MMFR2_EL1_CCIDX)),
2351         ID_SANITISED(ID_AA64MMFR3_EL1),
2352         ID_UNALLOCATED(7,4),
2353         ID_UNALLOCATED(7,5),
2354         ID_UNALLOCATED(7,6),
2355         ID_UNALLOCATED(7,7),
2356
2357         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2358         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2359         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2360
2361         MTE_REG(RGSR_EL1),
2362         MTE_REG(GCR_EL1),
2363
2364         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2365         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
2366         { SYS_DESC(SYS_SMPRI_EL1), undef_access },
2367         { SYS_DESC(SYS_SMCR_EL1), undef_access },
2368         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2369         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2370         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2371         { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2372
2373         PTRAUTH_KEY(APIA),
2374         PTRAUTH_KEY(APIB),
2375         PTRAUTH_KEY(APDA),
2376         PTRAUTH_KEY(APDB),
2377         PTRAUTH_KEY(APGA),
2378
2379         { SYS_DESC(SYS_SPSR_EL1), access_spsr},
2380         { SYS_DESC(SYS_ELR_EL1), access_elr},
2381
2382         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2383         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2384         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2385
2386         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2387         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2388         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2389         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2390         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2391         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2392         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2393         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2394
2395         MTE_REG(TFSR_EL1),
2396         MTE_REG(TFSRE0_EL1),
2397
2398         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2399         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2400
2401         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
2402         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2403         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
2404         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2405         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2406         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2407         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2408         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2409         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2410         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2411         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
2412         /* PMBIDR_EL1 is not trapped */
2413
2414         { PMU_SYS_REG(PMINTENSET_EL1),
2415           .access = access_pminten, .reg = PMINTENSET_EL1,
2416           .get_user = get_pmreg, .set_user = set_pmreg },
2417         { PMU_SYS_REG(PMINTENCLR_EL1),
2418           .access = access_pminten, .reg = PMINTENSET_EL1,
2419           .get_user = get_pmreg, .set_user = set_pmreg },
2420         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2421
2422         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2423         { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2424         { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2425         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2426
2427         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2428         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2429         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
2430         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
2431         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
2432
2433         { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2434         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2435
2436         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2437         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2438         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2439         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2440         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2441         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2442         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2443         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2444         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2445         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2446         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2447         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2448
2449         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2450         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2451
2452         { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2453
2454         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2455
2456         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2457
2458         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2459         { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2460           .set_user = set_clidr },
2461         { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2462         { SYS_DESC(SYS_SMIDR_EL1), undef_access },
2463         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2464         { SYS_DESC(SYS_CTR_EL0), access_ctr },
2465         { SYS_DESC(SYS_SVCR), undef_access },
2466
2467         { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2468           .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2469         { PMU_SYS_REG(PMCNTENSET_EL0),
2470           .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2471           .get_user = get_pmreg, .set_user = set_pmreg },
2472         { PMU_SYS_REG(PMCNTENCLR_EL0),
2473           .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2474           .get_user = get_pmreg, .set_user = set_pmreg },
2475         { PMU_SYS_REG(PMOVSCLR_EL0),
2476           .access = access_pmovs, .reg = PMOVSSET_EL0,
2477           .get_user = get_pmreg, .set_user = set_pmreg },
2478         /*
2479          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2480          * previously (and pointlessly) advertised in the past...
2481          */
2482         { PMU_SYS_REG(PMSWINC_EL0),
2483           .get_user = get_raz_reg, .set_user = set_wi_reg,
2484           .access = access_pmswinc, .reset = NULL },
2485         { PMU_SYS_REG(PMSELR_EL0),
2486           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2487         { PMU_SYS_REG(PMCEID0_EL0),
2488           .access = access_pmceid, .reset = NULL },
2489         { PMU_SYS_REG(PMCEID1_EL0),
2490           .access = access_pmceid, .reset = NULL },
2491         { PMU_SYS_REG(PMCCNTR_EL0),
2492           .access = access_pmu_evcntr, .reset = reset_unknown,
2493           .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2494         { PMU_SYS_REG(PMXEVTYPER_EL0),
2495           .access = access_pmu_evtyper, .reset = NULL },
2496         { PMU_SYS_REG(PMXEVCNTR_EL0),
2497           .access = access_pmu_evcntr, .reset = NULL },
2498         /*
2499          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2500          * in 32bit mode. Here we choose to reset it as zero for consistency.
2501          */
2502         { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2503           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2504         { PMU_SYS_REG(PMOVSSET_EL0),
2505           .access = access_pmovs, .reg = PMOVSSET_EL0,
2506           .get_user = get_pmreg, .set_user = set_pmreg },
2507
2508         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2509         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2510         { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2511
2512         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2513
2514         { SYS_DESC(SYS_AMCR_EL0), undef_access },
2515         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2516         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2517         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2518         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2519         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2520         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2521         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2522         AMU_AMEVCNTR0_EL0(0),
2523         AMU_AMEVCNTR0_EL0(1),
2524         AMU_AMEVCNTR0_EL0(2),
2525         AMU_AMEVCNTR0_EL0(3),
2526         AMU_AMEVCNTR0_EL0(4),
2527         AMU_AMEVCNTR0_EL0(5),
2528         AMU_AMEVCNTR0_EL0(6),
2529         AMU_AMEVCNTR0_EL0(7),
2530         AMU_AMEVCNTR0_EL0(8),
2531         AMU_AMEVCNTR0_EL0(9),
2532         AMU_AMEVCNTR0_EL0(10),
2533         AMU_AMEVCNTR0_EL0(11),
2534         AMU_AMEVCNTR0_EL0(12),
2535         AMU_AMEVCNTR0_EL0(13),
2536         AMU_AMEVCNTR0_EL0(14),
2537         AMU_AMEVCNTR0_EL0(15),
2538         AMU_AMEVTYPER0_EL0(0),
2539         AMU_AMEVTYPER0_EL0(1),
2540         AMU_AMEVTYPER0_EL0(2),
2541         AMU_AMEVTYPER0_EL0(3),
2542         AMU_AMEVTYPER0_EL0(4),
2543         AMU_AMEVTYPER0_EL0(5),
2544         AMU_AMEVTYPER0_EL0(6),
2545         AMU_AMEVTYPER0_EL0(7),
2546         AMU_AMEVTYPER0_EL0(8),
2547         AMU_AMEVTYPER0_EL0(9),
2548         AMU_AMEVTYPER0_EL0(10),
2549         AMU_AMEVTYPER0_EL0(11),
2550         AMU_AMEVTYPER0_EL0(12),
2551         AMU_AMEVTYPER0_EL0(13),
2552         AMU_AMEVTYPER0_EL0(14),
2553         AMU_AMEVTYPER0_EL0(15),
2554         AMU_AMEVCNTR1_EL0(0),
2555         AMU_AMEVCNTR1_EL0(1),
2556         AMU_AMEVCNTR1_EL0(2),
2557         AMU_AMEVCNTR1_EL0(3),
2558         AMU_AMEVCNTR1_EL0(4),
2559         AMU_AMEVCNTR1_EL0(5),
2560         AMU_AMEVCNTR1_EL0(6),
2561         AMU_AMEVCNTR1_EL0(7),
2562         AMU_AMEVCNTR1_EL0(8),
2563         AMU_AMEVCNTR1_EL0(9),
2564         AMU_AMEVCNTR1_EL0(10),
2565         AMU_AMEVCNTR1_EL0(11),
2566         AMU_AMEVCNTR1_EL0(12),
2567         AMU_AMEVCNTR1_EL0(13),
2568         AMU_AMEVCNTR1_EL0(14),
2569         AMU_AMEVCNTR1_EL0(15),
2570         AMU_AMEVTYPER1_EL0(0),
2571         AMU_AMEVTYPER1_EL0(1),
2572         AMU_AMEVTYPER1_EL0(2),
2573         AMU_AMEVTYPER1_EL0(3),
2574         AMU_AMEVTYPER1_EL0(4),
2575         AMU_AMEVTYPER1_EL0(5),
2576         AMU_AMEVTYPER1_EL0(6),
2577         AMU_AMEVTYPER1_EL0(7),
2578         AMU_AMEVTYPER1_EL0(8),
2579         AMU_AMEVTYPER1_EL0(9),
2580         AMU_AMEVTYPER1_EL0(10),
2581         AMU_AMEVTYPER1_EL0(11),
2582         AMU_AMEVTYPER1_EL0(12),
2583         AMU_AMEVTYPER1_EL0(13),
2584         AMU_AMEVTYPER1_EL0(14),
2585         AMU_AMEVTYPER1_EL0(15),
2586
2587         { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2588         { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2589         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2590         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2591         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2592
2593         /* PMEVCNTRn_EL0 */
2594         PMU_PMEVCNTR_EL0(0),
2595         PMU_PMEVCNTR_EL0(1),
2596         PMU_PMEVCNTR_EL0(2),
2597         PMU_PMEVCNTR_EL0(3),
2598         PMU_PMEVCNTR_EL0(4),
2599         PMU_PMEVCNTR_EL0(5),
2600         PMU_PMEVCNTR_EL0(6),
2601         PMU_PMEVCNTR_EL0(7),
2602         PMU_PMEVCNTR_EL0(8),
2603         PMU_PMEVCNTR_EL0(9),
2604         PMU_PMEVCNTR_EL0(10),
2605         PMU_PMEVCNTR_EL0(11),
2606         PMU_PMEVCNTR_EL0(12),
2607         PMU_PMEVCNTR_EL0(13),
2608         PMU_PMEVCNTR_EL0(14),
2609         PMU_PMEVCNTR_EL0(15),
2610         PMU_PMEVCNTR_EL0(16),
2611         PMU_PMEVCNTR_EL0(17),
2612         PMU_PMEVCNTR_EL0(18),
2613         PMU_PMEVCNTR_EL0(19),
2614         PMU_PMEVCNTR_EL0(20),
2615         PMU_PMEVCNTR_EL0(21),
2616         PMU_PMEVCNTR_EL0(22),
2617         PMU_PMEVCNTR_EL0(23),
2618         PMU_PMEVCNTR_EL0(24),
2619         PMU_PMEVCNTR_EL0(25),
2620         PMU_PMEVCNTR_EL0(26),
2621         PMU_PMEVCNTR_EL0(27),
2622         PMU_PMEVCNTR_EL0(28),
2623         PMU_PMEVCNTR_EL0(29),
2624         PMU_PMEVCNTR_EL0(30),
2625         /* PMEVTYPERn_EL0 */
2626         PMU_PMEVTYPER_EL0(0),
2627         PMU_PMEVTYPER_EL0(1),
2628         PMU_PMEVTYPER_EL0(2),
2629         PMU_PMEVTYPER_EL0(3),
2630         PMU_PMEVTYPER_EL0(4),
2631         PMU_PMEVTYPER_EL0(5),
2632         PMU_PMEVTYPER_EL0(6),
2633         PMU_PMEVTYPER_EL0(7),
2634         PMU_PMEVTYPER_EL0(8),
2635         PMU_PMEVTYPER_EL0(9),
2636         PMU_PMEVTYPER_EL0(10),
2637         PMU_PMEVTYPER_EL0(11),
2638         PMU_PMEVTYPER_EL0(12),
2639         PMU_PMEVTYPER_EL0(13),
2640         PMU_PMEVTYPER_EL0(14),
2641         PMU_PMEVTYPER_EL0(15),
2642         PMU_PMEVTYPER_EL0(16),
2643         PMU_PMEVTYPER_EL0(17),
2644         PMU_PMEVTYPER_EL0(18),
2645         PMU_PMEVTYPER_EL0(19),
2646         PMU_PMEVTYPER_EL0(20),
2647         PMU_PMEVTYPER_EL0(21),
2648         PMU_PMEVTYPER_EL0(22),
2649         PMU_PMEVTYPER_EL0(23),
2650         PMU_PMEVTYPER_EL0(24),
2651         PMU_PMEVTYPER_EL0(25),
2652         PMU_PMEVTYPER_EL0(26),
2653         PMU_PMEVTYPER_EL0(27),
2654         PMU_PMEVTYPER_EL0(28),
2655         PMU_PMEVTYPER_EL0(29),
2656         PMU_PMEVTYPER_EL0(30),
2657         /*
2658          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2659          * in 32bit mode. Here we choose to reset it as zero for consistency.
2660          */
2661         { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2662           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2663
2664         EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2665         EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2666         EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2667         EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2668         EL2_REG_VNCR(HCR_EL2, reset_val, 0),
2669         EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2670         EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2671         EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2672         EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2673         EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2674         EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2675         EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2676
2677         EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2678
2679         EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2680         EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2681         EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2682         EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2683         EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2684
2685         { SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2686         EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2687         EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2688         EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2689         EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2690         EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2691         { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2692
2693         /* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2694         { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2695           .visibility = hidden_user_visibility },
2696         { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2697           .visibility = hidden_user_visibility },
2698         { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2699           .visibility = hidden_user_visibility },
2700         { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2701           .visibility = hidden_user_visibility },
2702
2703         { SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2704         EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2705         EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2706         EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2707         { SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2708
2709         EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2710         EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2711
2712         EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2713         EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2714
2715         EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2716         EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2717         { SYS_DESC(SYS_RMR_EL2), trap_undef },
2718
2719         EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2720         EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2721
2722         EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2723         EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2724
2725         EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2726
2727         EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2728 };
2729
2730 static const struct sys_reg_desc *first_idreg;
2731
2732 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2733                         struct sys_reg_params *p,
2734                         const struct sys_reg_desc *r)
2735 {
2736         if (p->is_write) {
2737                 return ignore_write(vcpu, p);
2738         } else {
2739                 u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2740                 u64 pfr = IDREG(vcpu->kvm, SYS_ID_AA64PFR0_EL1);
2741                 u32 el3 = !!SYS_FIELD_GET(ID_AA64PFR0_EL1, EL3, pfr);
2742
2743                 p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2744                              (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2745                              (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2746                              (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2747                              (1 << 15) | (el3 << 14) | (el3 << 12));
2748                 return true;
2749         }
2750 }
2751
2752 /*
2753  * AArch32 debug register mappings
2754  *
2755  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2756  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2757  *
2758  * None of the other registers share their location, so treat them as
2759  * if they were 64bit.
2760  */
2761 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
2762         /* DBGBVRn */                                                         \
2763         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2764         /* DBGBCRn */                                                         \
2765         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
2766         /* DBGWVRn */                                                         \
2767         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
2768         /* DBGWCRn */                                                         \
2769         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2770
2771 #define DBGBXVR(n)                                                            \
2772         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2773
2774 /*
2775  * Trapped cp14 registers. We generally ignore most of the external
2776  * debug, on the principle that they don't really make sense to a
2777  * guest. Revisit this one day, would this principle change.
2778  */
2779 static const struct sys_reg_desc cp14_regs[] = {
2780         /* DBGDIDR */
2781         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2782         /* DBGDTRRXext */
2783         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2784
2785         DBG_BCR_BVR_WCR_WVR(0),
2786         /* DBGDSCRint */
2787         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2788         DBG_BCR_BVR_WCR_WVR(1),
2789         /* DBGDCCINT */
2790         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2791         /* DBGDSCRext */
2792         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2793         DBG_BCR_BVR_WCR_WVR(2),
2794         /* DBGDTR[RT]Xint */
2795         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2796         /* DBGDTR[RT]Xext */
2797         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2798         DBG_BCR_BVR_WCR_WVR(3),
2799         DBG_BCR_BVR_WCR_WVR(4),
2800         DBG_BCR_BVR_WCR_WVR(5),
2801         /* DBGWFAR */
2802         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2803         /* DBGOSECCR */
2804         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2805         DBG_BCR_BVR_WCR_WVR(6),
2806         /* DBGVCR */
2807         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2808         DBG_BCR_BVR_WCR_WVR(7),
2809         DBG_BCR_BVR_WCR_WVR(8),
2810         DBG_BCR_BVR_WCR_WVR(9),
2811         DBG_BCR_BVR_WCR_WVR(10),
2812         DBG_BCR_BVR_WCR_WVR(11),
2813         DBG_BCR_BVR_WCR_WVR(12),
2814         DBG_BCR_BVR_WCR_WVR(13),
2815         DBG_BCR_BVR_WCR_WVR(14),
2816         DBG_BCR_BVR_WCR_WVR(15),
2817
2818         /* DBGDRAR (32bit) */
2819         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2820
2821         DBGBXVR(0),
2822         /* DBGOSLAR */
2823         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2824         DBGBXVR(1),
2825         /* DBGOSLSR */
2826         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2827         DBGBXVR(2),
2828         DBGBXVR(3),
2829         /* DBGOSDLR */
2830         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2831         DBGBXVR(4),
2832         /* DBGPRCR */
2833         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2834         DBGBXVR(5),
2835         DBGBXVR(6),
2836         DBGBXVR(7),
2837         DBGBXVR(8),
2838         DBGBXVR(9),
2839         DBGBXVR(10),
2840         DBGBXVR(11),
2841         DBGBXVR(12),
2842         DBGBXVR(13),
2843         DBGBXVR(14),
2844         DBGBXVR(15),
2845
2846         /* DBGDSAR (32bit) */
2847         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2848
2849         /* DBGDEVID2 */
2850         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2851         /* DBGDEVID1 */
2852         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2853         /* DBGDEVID */
2854         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2855         /* DBGCLAIMSET */
2856         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2857         /* DBGCLAIMCLR */
2858         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2859         /* DBGAUTHSTATUS */
2860         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2861 };
2862
2863 /* Trapped cp14 64bit registers */
2864 static const struct sys_reg_desc cp14_64_regs[] = {
2865         /* DBGDRAR (64bit) */
2866         { Op1( 0), CRm( 1), .access = trap_raz_wi },
2867
2868         /* DBGDSAR (64bit) */
2869         { Op1( 0), CRm( 2), .access = trap_raz_wi },
2870 };
2871
2872 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)                  \
2873         AA32(_map),                                                     \
2874         Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),                     \
2875         .visibility = pmu_visibility
2876
2877 /* Macro to expand the PMEVCNTRn register */
2878 #define PMU_PMEVCNTR(n)                                                 \
2879         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2880           (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2881           .access = access_pmu_evcntr }
2882
2883 /* Macro to expand the PMEVTYPERn register */
2884 #define PMU_PMEVTYPER(n)                                                \
2885         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2886           (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2887           .access = access_pmu_evtyper }
2888 /*
2889  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2890  * depending on the way they are accessed (as a 32bit or a 64bit
2891  * register).
2892  */
2893 static const struct sys_reg_desc cp15_regs[] = {
2894         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2895         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2896         /* ACTLR */
2897         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2898         /* ACTLR2 */
2899         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2900         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2901         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2902         /* TTBCR */
2903         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2904         /* TTBCR2 */
2905         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2906         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2907         /* DFSR */
2908         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2909         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2910         /* ADFSR */
2911         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2912         /* AIFSR */
2913         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2914         /* DFAR */
2915         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2916         /* IFAR */
2917         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2918
2919         /*
2920          * DC{C,I,CI}SW operations:
2921          */
2922         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2923         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2924         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2925
2926         /* PMU */
2927         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2928         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2929         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2930         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2931         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2932         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2933         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2934         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2935         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2936         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2937         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2938         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2939         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2940         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2941         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2942         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2943         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2944         /* PMMIR */
2945         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2946
2947         /* PRRR/MAIR0 */
2948         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2949         /* NMRR/MAIR1 */
2950         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2951         /* AMAIR0 */
2952         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2953         /* AMAIR1 */
2954         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2955
2956         /* ICC_SRE */
2957         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2958
2959         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2960
2961         /* Arch Tmers */
2962         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2963         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2964
2965         /* PMEVCNTRn */
2966         PMU_PMEVCNTR(0),
2967         PMU_PMEVCNTR(1),
2968         PMU_PMEVCNTR(2),
2969         PMU_PMEVCNTR(3),
2970         PMU_PMEVCNTR(4),
2971         PMU_PMEVCNTR(5),
2972         PMU_PMEVCNTR(6),
2973         PMU_PMEVCNTR(7),
2974         PMU_PMEVCNTR(8),
2975         PMU_PMEVCNTR(9),
2976         PMU_PMEVCNTR(10),
2977         PMU_PMEVCNTR(11),
2978         PMU_PMEVCNTR(12),
2979         PMU_PMEVCNTR(13),
2980         PMU_PMEVCNTR(14),
2981         PMU_PMEVCNTR(15),
2982         PMU_PMEVCNTR(16),
2983         PMU_PMEVCNTR(17),
2984         PMU_PMEVCNTR(18),
2985         PMU_PMEVCNTR(19),
2986         PMU_PMEVCNTR(20),
2987         PMU_PMEVCNTR(21),
2988         PMU_PMEVCNTR(22),
2989         PMU_PMEVCNTR(23),
2990         PMU_PMEVCNTR(24),
2991         PMU_PMEVCNTR(25),
2992         PMU_PMEVCNTR(26),
2993         PMU_PMEVCNTR(27),
2994         PMU_PMEVCNTR(28),
2995         PMU_PMEVCNTR(29),
2996         PMU_PMEVCNTR(30),
2997         /* PMEVTYPERn */
2998         PMU_PMEVTYPER(0),
2999         PMU_PMEVTYPER(1),
3000         PMU_PMEVTYPER(2),
3001         PMU_PMEVTYPER(3),
3002         PMU_PMEVTYPER(4),
3003         PMU_PMEVTYPER(5),
3004         PMU_PMEVTYPER(6),
3005         PMU_PMEVTYPER(7),
3006         PMU_PMEVTYPER(8),
3007         PMU_PMEVTYPER(9),
3008         PMU_PMEVTYPER(10),
3009         PMU_PMEVTYPER(11),
3010         PMU_PMEVTYPER(12),
3011         PMU_PMEVTYPER(13),
3012         PMU_PMEVTYPER(14),
3013         PMU_PMEVTYPER(15),
3014         PMU_PMEVTYPER(16),
3015         PMU_PMEVTYPER(17),
3016         PMU_PMEVTYPER(18),
3017         PMU_PMEVTYPER(19),
3018         PMU_PMEVTYPER(20),
3019         PMU_PMEVTYPER(21),
3020         PMU_PMEVTYPER(22),
3021         PMU_PMEVTYPER(23),
3022         PMU_PMEVTYPER(24),
3023         PMU_PMEVTYPER(25),
3024         PMU_PMEVTYPER(26),
3025         PMU_PMEVTYPER(27),
3026         PMU_PMEVTYPER(28),
3027         PMU_PMEVTYPER(29),
3028         PMU_PMEVTYPER(30),
3029         /* PMCCFILTR */
3030         { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3031
3032         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3033         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3034
3035         /* CCSIDR2 */
3036         { Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3037
3038         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3039 };
3040
3041 static const struct sys_reg_desc cp15_64_regs[] = {
3042         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3043         { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3044         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3045         { SYS_DESC(SYS_AARCH32_CNTPCT),       access_arch_timer },
3046         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3047         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3048         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3049         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3050         { SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3051 };
3052
3053 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3054                                bool is_32)
3055 {
3056         unsigned int i;
3057
3058         for (i = 0; i < n; i++) {
3059                 if (!is_32 && table[i].reg && !table[i].reset) {
3060                         kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
3061                         return false;
3062                 }
3063
3064                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3065                         kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
3066                         return false;
3067                 }
3068         }
3069
3070         return true;
3071 }
3072
3073 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3074 {
3075         kvm_inject_undefined(vcpu);
3076         return 1;
3077 }
3078
3079 static void perform_access(struct kvm_vcpu *vcpu,
3080                            struct sys_reg_params *params,
3081                            const struct sys_reg_desc *r)
3082 {
3083         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3084
3085         /* Check for regs disabled by runtime config */
3086         if (sysreg_hidden(vcpu, r)) {
3087                 kvm_inject_undefined(vcpu);
3088                 return;
3089         }
3090
3091         /*
3092          * Not having an accessor means that we have configured a trap
3093          * that we don't know how to handle. This certainly qualifies
3094          * as a gross bug that should be fixed right away.
3095          */
3096         BUG_ON(!r->access);
3097
3098         /* Skip instruction if instructed so */
3099         if (likely(r->access(vcpu, params, r)))
3100                 kvm_incr_pc(vcpu);
3101 }
3102
3103 /*
3104  * emulate_cp --  tries to match a sys_reg access in a handling table, and
3105  *                call the corresponding trap handler.
3106  *
3107  * @params: pointer to the descriptor of the access
3108  * @table: array of trap descriptors
3109  * @num: size of the trap descriptor array
3110  *
3111  * Return true if the access has been handled, false if not.
3112  */
3113 static bool emulate_cp(struct kvm_vcpu *vcpu,
3114                        struct sys_reg_params *params,
3115                        const struct sys_reg_desc *table,
3116                        size_t num)
3117 {
3118         const struct sys_reg_desc *r;
3119
3120         if (!table)
3121                 return false;   /* Not handled */
3122
3123         r = find_reg(params, table, num);
3124
3125         if (r) {
3126                 perform_access(vcpu, params, r);
3127                 return true;
3128         }
3129
3130         /* Not handled */
3131         return false;
3132 }
3133
3134 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3135                                 struct sys_reg_params *params)
3136 {
3137         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3138         int cp = -1;
3139
3140         switch (esr_ec) {
3141         case ESR_ELx_EC_CP15_32:
3142         case ESR_ELx_EC_CP15_64:
3143                 cp = 15;
3144                 break;
3145         case ESR_ELx_EC_CP14_MR:
3146         case ESR_ELx_EC_CP14_64:
3147                 cp = 14;
3148                 break;
3149         default:
3150                 WARN_ON(1);
3151         }
3152
3153         print_sys_reg_msg(params,
3154                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3155                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3156         kvm_inject_undefined(vcpu);
3157 }
3158
3159 /**
3160  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3161  * @vcpu: The VCPU pointer
3162  * @run:  The kvm_run struct
3163  */
3164 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3165                             const struct sys_reg_desc *global,
3166                             size_t nr_global)
3167 {
3168         struct sys_reg_params params;
3169         u64 esr = kvm_vcpu_get_esr(vcpu);
3170         int Rt = kvm_vcpu_sys_get_rt(vcpu);
3171         int Rt2 = (esr >> 10) & 0x1f;
3172
3173         params.CRm = (esr >> 1) & 0xf;
3174         params.is_write = ((esr & 1) == 0);
3175
3176         params.Op0 = 0;
3177         params.Op1 = (esr >> 16) & 0xf;
3178         params.Op2 = 0;
3179         params.CRn = 0;
3180
3181         /*
3182          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3183          * backends between AArch32 and AArch64, we get away with it.
3184          */
3185         if (params.is_write) {
3186                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3187                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3188         }
3189
3190         /*
3191          * If the table contains a handler, handle the
3192          * potential register operation in the case of a read and return
3193          * with success.
3194          */
3195         if (emulate_cp(vcpu, &params, global, nr_global)) {
3196                 /* Split up the value between registers for the read side */
3197                 if (!params.is_write) {
3198                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3199                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3200                 }
3201
3202                 return 1;
3203         }
3204
3205         unhandled_cp_access(vcpu, &params);
3206         return 1;
3207 }
3208
3209 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3210
3211 /*
3212  * The CP10 ID registers are architecturally mapped to AArch64 feature
3213  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3214  * from AArch32.
3215  */
3216 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3217 {
3218         u8 reg_id = (esr >> 10) & 0xf;
3219         bool valid;
3220
3221         params->is_write = ((esr & 1) == 0);
3222         params->Op0 = 3;
3223         params->Op1 = 0;
3224         params->CRn = 0;
3225         params->CRm = 3;
3226
3227         /* CP10 ID registers are read-only */
3228         valid = !params->is_write;
3229
3230         switch (reg_id) {
3231         /* MVFR0 */
3232         case 0b0111:
3233                 params->Op2 = 0;
3234                 break;
3235         /* MVFR1 */
3236         case 0b0110:
3237                 params->Op2 = 1;
3238                 break;
3239         /* MVFR2 */
3240         case 0b0101:
3241                 params->Op2 = 2;
3242                 break;
3243         default:
3244                 valid = false;
3245         }
3246
3247         if (valid)
3248                 return true;
3249
3250         kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3251                       params->is_write ? "write" : "read", reg_id);
3252         return false;
3253 }
3254
3255 /**
3256  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3257  *                        VFP Register' from AArch32.
3258  * @vcpu: The vCPU pointer
3259  *
3260  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3261  * Work out the correct AArch64 system register encoding and reroute to the
3262  * AArch64 system register emulation.
3263  */
3264 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3265 {
3266         int Rt = kvm_vcpu_sys_get_rt(vcpu);
3267         u64 esr = kvm_vcpu_get_esr(vcpu);
3268         struct sys_reg_params params;
3269
3270         /* UNDEF on any unhandled register access */
3271         if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3272                 kvm_inject_undefined(vcpu);
3273                 return 1;
3274         }
3275
3276         if (emulate_sys_reg(vcpu, &params))
3277                 vcpu_set_reg(vcpu, Rt, params.regval);
3278
3279         return 1;
3280 }
3281
3282 /**
3283  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3284  *                             CRn=0, which corresponds to the AArch32 feature
3285  *                             registers.
3286  * @vcpu: the vCPU pointer
3287  * @params: the system register access parameters.
3288  *
3289  * Our cp15 system register tables do not enumerate the AArch32 feature
3290  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3291  * register encoding can be trivially remapped into the AArch64 for the feature
3292  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3293  *
3294  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3295  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3296  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3297  * treat undefined registers in this range as RAZ.
3298  */
3299 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3300                                    struct sys_reg_params *params)
3301 {
3302         int Rt = kvm_vcpu_sys_get_rt(vcpu);
3303
3304         /* Treat impossible writes to RO registers as UNDEFINED */
3305         if (params->is_write) {
3306                 unhandled_cp_access(vcpu, params);
3307                 return 1;
3308         }
3309
3310         params->Op0 = 3;
3311
3312         /*
3313          * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3314          * Avoid conflicting with future expansion of AArch64 feature registers
3315          * and simply treat them as RAZ here.
3316          */
3317         if (params->CRm > 3)
3318                 params->regval = 0;
3319         else if (!emulate_sys_reg(vcpu, params))
3320                 return 1;
3321
3322         vcpu_set_reg(vcpu, Rt, params->regval);
3323         return 1;
3324 }
3325
3326 /**
3327  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3328  * @vcpu: The VCPU pointer
3329  * @run:  The kvm_run struct
3330  */
3331 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3332                             struct sys_reg_params *params,
3333                             const struct sys_reg_desc *global,
3334                             size_t nr_global)
3335 {
3336         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3337
3338         params->regval = vcpu_get_reg(vcpu, Rt);
3339
3340         if (emulate_cp(vcpu, params, global, nr_global)) {
3341                 if (!params->is_write)
3342                         vcpu_set_reg(vcpu, Rt, params->regval);
3343                 return 1;
3344         }
3345
3346         unhandled_cp_access(vcpu, params);
3347         return 1;
3348 }
3349
3350 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3351 {
3352         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3353 }
3354
3355 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3356 {
3357         struct sys_reg_params params;
3358
3359         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3360
3361         /*
3362          * Certain AArch32 ID registers are handled by rerouting to the AArch64
3363          * system register table. Registers in the ID range where CRm=0 are
3364          * excluded from this scheme as they do not trivially map into AArch64
3365          * system register encodings.
3366          */
3367         if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3368                 return kvm_emulate_cp15_id_reg(vcpu, &params);
3369
3370         return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3371 }
3372
3373 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3374 {
3375         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3376 }
3377
3378 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3379 {
3380         struct sys_reg_params params;
3381
3382         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3383
3384         return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3385 }
3386
3387 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3388 {
3389         // See ARM DDI 0487E.a, section D12.3.2
3390         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3391 }
3392
3393 /**
3394  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3395  * @vcpu: The VCPU pointer
3396  * @params: Decoded system register parameters
3397  *
3398  * Return: true if the system register access was successful, false otherwise.
3399  */
3400 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3401                            struct sys_reg_params *params)
3402 {
3403         const struct sys_reg_desc *r;
3404
3405         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3406
3407         if (likely(r)) {
3408                 perform_access(vcpu, params, r);
3409                 return true;
3410         }
3411
3412         if (is_imp_def_sys_reg(params)) {
3413                 kvm_inject_undefined(vcpu);
3414         } else {
3415                 print_sys_reg_msg(params,
3416                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3417                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3418                 kvm_inject_undefined(vcpu);
3419         }
3420         return false;
3421 }
3422
3423 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3424 {
3425         const struct sys_reg_desc *idreg = first_idreg;
3426         u32 id = reg_to_encoding(idreg);
3427         struct kvm *kvm = vcpu->kvm;
3428
3429         if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3430                 return;
3431
3432         lockdep_assert_held(&kvm->arch.config_lock);
3433
3434         /* Initialize all idregs */
3435         while (is_id_reg(id)) {
3436                 IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3437
3438                 idreg++;
3439                 id = reg_to_encoding(idreg);
3440         }
3441
3442         set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3443 }
3444
3445 /**
3446  * kvm_reset_sys_regs - sets system registers to reset value
3447  * @vcpu: The VCPU pointer
3448  *
3449  * This function finds the right table above and sets the registers on the
3450  * virtual CPU struct to their architecturally defined reset values.
3451  */
3452 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3453 {
3454         unsigned long i;
3455
3456         kvm_reset_id_regs(vcpu);
3457
3458         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3459                 const struct sys_reg_desc *r = &sys_reg_descs[i];
3460
3461                 if (is_id_reg(reg_to_encoding(r)))
3462                         continue;
3463
3464                 if (r->reset)
3465                         r->reset(vcpu, r);
3466         }
3467 }
3468
3469 /**
3470  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3471  * @vcpu: The VCPU pointer
3472  */
3473 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3474 {
3475         struct sys_reg_params params;
3476         unsigned long esr = kvm_vcpu_get_esr(vcpu);
3477         int Rt = kvm_vcpu_sys_get_rt(vcpu);
3478
3479         trace_kvm_handle_sys_reg(esr);
3480
3481         if (__check_nv_sr_forward(vcpu))
3482                 return 1;
3483
3484         params = esr_sys64_to_params(esr);
3485         params.regval = vcpu_get_reg(vcpu, Rt);
3486
3487         if (!emulate_sys_reg(vcpu, &params))
3488                 return 1;
3489
3490         if (!params.is_write)
3491                 vcpu_set_reg(vcpu, Rt, params.regval);
3492         return 1;
3493 }
3494
3495 /******************************************************************************
3496  * Userspace API
3497  *****************************************************************************/
3498
3499 static bool index_to_params(u64 id, struct sys_reg_params *params)
3500 {
3501         switch (id & KVM_REG_SIZE_MASK) {
3502         case KVM_REG_SIZE_U64:
3503                 /* Any unused index bits means it's not valid. */
3504                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3505                               | KVM_REG_ARM_COPROC_MASK
3506                               | KVM_REG_ARM64_SYSREG_OP0_MASK
3507                               | KVM_REG_ARM64_SYSREG_OP1_MASK
3508                               | KVM_REG_ARM64_SYSREG_CRN_MASK
3509                               | KVM_REG_ARM64_SYSREG_CRM_MASK
3510                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
3511                         return false;
3512                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3513                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3514                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3515                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3516                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3517                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3518                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3519                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3520                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3521                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3522                 return true;
3523         default:
3524                 return false;
3525         }
3526 }
3527
3528 const struct sys_reg_desc *get_reg_by_id(u64 id,
3529                                          const struct sys_reg_desc table[],
3530                                          unsigned int num)
3531 {
3532         struct sys_reg_params params;
3533
3534         if (!index_to_params(id, &params))
3535                 return NULL;
3536
3537         return find_reg(&params, table, num);
3538 }
3539
3540 /* Decode an index value, and find the sys_reg_desc entry. */
3541 static const struct sys_reg_desc *
3542 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3543                    const struct sys_reg_desc table[], unsigned int num)
3544
3545 {
3546         const struct sys_reg_desc *r;
3547
3548         /* We only do sys_reg for now. */
3549         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3550                 return NULL;
3551
3552         r = get_reg_by_id(id, table, num);
3553
3554         /* Not saved in the sys_reg array and not otherwise accessible? */
3555         if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3556                 r = NULL;
3557
3558         return r;
3559 }
3560
3561 /*
3562  * These are the invariant sys_reg registers: we let the guest see the
3563  * host versions of these, so they're part of the guest state.
3564  *
3565  * A future CPU may provide a mechanism to present different values to
3566  * the guest, or a future kvm may trap them.
3567  */
3568
3569 #define FUNCTION_INVARIANT(reg)                                         \
3570         static u64 get_##reg(struct kvm_vcpu *v,                        \
3571                               const struct sys_reg_desc *r)             \
3572         {                                                               \
3573                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
3574                 return ((struct sys_reg_desc *)r)->val;                 \
3575         }
3576
3577 FUNCTION_INVARIANT(midr_el1)
3578 FUNCTION_INVARIANT(revidr_el1)
3579 FUNCTION_INVARIANT(aidr_el1)
3580
3581 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3582 {
3583         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3584         return ((struct sys_reg_desc *)r)->val;
3585 }
3586
3587 /* ->val is filled in by kvm_sys_reg_table_init() */
3588 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3589         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3590         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3591         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3592         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3593 };
3594
3595 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3596 {
3597         const struct sys_reg_desc *r;
3598
3599         r = get_reg_by_id(id, invariant_sys_regs,
3600                           ARRAY_SIZE(invariant_sys_regs));
3601         if (!r)
3602                 return -ENOENT;
3603
3604         return put_user(r->val, uaddr);
3605 }
3606
3607 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3608 {
3609         const struct sys_reg_desc *r;
3610         u64 val;
3611
3612         r = get_reg_by_id(id, invariant_sys_regs,
3613                           ARRAY_SIZE(invariant_sys_regs));
3614         if (!r)
3615                 return -ENOENT;
3616
3617         if (get_user(val, uaddr))
3618                 return -EFAULT;
3619
3620         /* This is what we mean by invariant: you can't change it. */
3621         if (r->val != val)
3622                 return -EINVAL;
3623
3624         return 0;
3625 }
3626
3627 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3628 {
3629         u32 val;
3630         u32 __user *uval = uaddr;
3631
3632         /* Fail if we have unknown bits set. */
3633         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3634                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3635                 return -ENOENT;
3636
3637         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3638         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3639                 if (KVM_REG_SIZE(id) != 4)
3640                         return -ENOENT;
3641                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3642                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3643                 if (val >= CSSELR_MAX)
3644                         return -ENOENT;
3645
3646                 return put_user(get_ccsidr(vcpu, val), uval);
3647         default:
3648                 return -ENOENT;
3649         }
3650 }
3651
3652 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3653 {
3654         u32 val, newval;
3655         u32 __user *uval = uaddr;
3656
3657         /* Fail if we have unknown bits set. */
3658         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3659                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3660                 return -ENOENT;
3661
3662         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3663         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3664                 if (KVM_REG_SIZE(id) != 4)
3665                         return -ENOENT;
3666                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3667                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3668                 if (val >= CSSELR_MAX)
3669                         return -ENOENT;
3670
3671                 if (get_user(newval, uval))
3672                         return -EFAULT;
3673
3674                 return set_ccsidr(vcpu, val, newval);
3675         default:
3676                 return -ENOENT;
3677         }
3678 }
3679
3680 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3681                          const struct sys_reg_desc table[], unsigned int num)
3682 {
3683         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3684         const struct sys_reg_desc *r;
3685         u64 val;
3686         int ret;
3687
3688         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3689         if (!r || sysreg_hidden_user(vcpu, r))
3690                 return -ENOENT;
3691
3692         if (r->get_user) {
3693                 ret = (r->get_user)(vcpu, r, &val);
3694         } else {
3695                 val = __vcpu_sys_reg(vcpu, r->reg);
3696                 ret = 0;
3697         }
3698
3699         if (!ret)
3700                 ret = put_user(val, uaddr);
3701
3702         return ret;
3703 }
3704
3705 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3706 {
3707         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3708         int err;
3709
3710         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3711                 return demux_c15_get(vcpu, reg->id, uaddr);
3712
3713         err = get_invariant_sys_reg(reg->id, uaddr);
3714         if (err != -ENOENT)
3715                 return err;
3716
3717         return kvm_sys_reg_get_user(vcpu, reg,
3718                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3719 }
3720
3721 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3722                          const struct sys_reg_desc table[], unsigned int num)
3723 {
3724         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3725         const struct sys_reg_desc *r;
3726         u64 val;
3727         int ret;
3728
3729         if (get_user(val, uaddr))
3730                 return -EFAULT;
3731
3732         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3733         if (!r || sysreg_hidden_user(vcpu, r))
3734                 return -ENOENT;
3735
3736         if (sysreg_user_write_ignore(vcpu, r))
3737                 return 0;
3738
3739         if (r->set_user) {
3740                 ret = (r->set_user)(vcpu, r, val);
3741         } else {
3742                 __vcpu_sys_reg(vcpu, r->reg) = val;
3743                 ret = 0;
3744         }
3745
3746         return ret;
3747 }
3748
3749 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3750 {
3751         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3752         int err;
3753
3754         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3755                 return demux_c15_set(vcpu, reg->id, uaddr);
3756
3757         err = set_invariant_sys_reg(reg->id, uaddr);
3758         if (err != -ENOENT)
3759                 return err;
3760
3761         return kvm_sys_reg_set_user(vcpu, reg,
3762                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3763 }
3764
3765 static unsigned int num_demux_regs(void)
3766 {
3767         return CSSELR_MAX;
3768 }
3769
3770 static int write_demux_regids(u64 __user *uindices)
3771 {
3772         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3773         unsigned int i;
3774
3775         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3776         for (i = 0; i < CSSELR_MAX; i++) {
3777                 if (put_user(val | i, uindices))
3778                         return -EFAULT;
3779                 uindices++;
3780         }
3781         return 0;
3782 }
3783
3784 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3785 {
3786         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3787                 KVM_REG_ARM64_SYSREG |
3788                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3789                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3790                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3791                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3792                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3793 }
3794
3795 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3796 {
3797         if (!*uind)
3798                 return true;
3799
3800         if (put_user(sys_reg_to_index(reg), *uind))
3801                 return false;
3802
3803         (*uind)++;
3804         return true;
3805 }
3806
3807 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3808                             const struct sys_reg_desc *rd,
3809                             u64 __user **uind,
3810                             unsigned int *total)
3811 {
3812         /*
3813          * Ignore registers we trap but don't save,
3814          * and for which no custom user accessor is provided.
3815          */
3816         if (!(rd->reg || rd->get_user))
3817                 return 0;
3818
3819         if (sysreg_hidden_user(vcpu, rd))
3820                 return 0;
3821
3822         if (!copy_reg_to_user(rd, uind))
3823                 return -EFAULT;
3824
3825         (*total)++;
3826         return 0;
3827 }
3828
3829 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3830 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3831 {
3832         const struct sys_reg_desc *i2, *end2;
3833         unsigned int total = 0;
3834         int err;
3835
3836         i2 = sys_reg_descs;
3837         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3838
3839         while (i2 != end2) {
3840                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3841                 if (err)
3842                         return err;
3843         }
3844         return total;
3845 }
3846
3847 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3848 {
3849         return ARRAY_SIZE(invariant_sys_regs)
3850                 + num_demux_regs()
3851                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3852 }
3853
3854 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3855 {
3856         unsigned int i;
3857         int err;
3858
3859         /* Then give them all the invariant registers' indices. */
3860         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3861                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3862                         return -EFAULT;
3863                 uindices++;
3864         }
3865
3866         err = walk_sys_regs(vcpu, uindices);
3867         if (err < 0)
3868                 return err;
3869         uindices += err;
3870
3871         return write_demux_regids(uindices);
3872 }
3873
3874 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)                       \
3875         KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),            \
3876                 sys_reg_Op1(r),                                 \
3877                 sys_reg_CRn(r),                                 \
3878                 sys_reg_CRm(r),                                 \
3879                 sys_reg_Op2(r))
3880
3881 static bool is_feature_id_reg(u32 encoding)
3882 {
3883         return (sys_reg_Op0(encoding) == 3 &&
3884                 (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
3885                 sys_reg_CRn(encoding) == 0 &&
3886                 sys_reg_CRm(encoding) <= 7);
3887 }
3888
3889 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
3890 {
3891         const void *zero_page = page_to_virt(ZERO_PAGE(0));
3892         u64 __user *masks = (u64 __user *)range->addr;
3893
3894         /* Only feature id range is supported, reserved[13] must be zero. */
3895         if (range->range ||
3896             memcmp(range->reserved, zero_page, sizeof(range->reserved)))
3897                 return -EINVAL;
3898
3899         /* Wipe the whole thing first */
3900         if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
3901                 return -EFAULT;
3902
3903         for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3904                 const struct sys_reg_desc *reg = &sys_reg_descs[i];
3905                 u32 encoding = reg_to_encoding(reg);
3906                 u64 val;
3907
3908                 if (!is_feature_id_reg(encoding) || !reg->set_user)
3909                         continue;
3910
3911                 /*
3912                  * For ID registers, we return the writable mask. Other feature
3913                  * registers return a full 64bit mask. That's not necessary
3914                  * compliant with a given revision of the architecture, but the
3915                  * RES0/RES1 definitions allow us to do that.
3916                  */
3917                 if (is_id_reg(encoding)) {
3918                         if (!reg->val ||
3919                             (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
3920                                 continue;
3921                         val = reg->val;
3922                 } else {
3923                         val = ~0UL;
3924                 }
3925
3926                 if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
3927                         return -EFAULT;
3928         }
3929
3930         return 0;
3931 }
3932
3933 int __init kvm_sys_reg_table_init(void)
3934 {
3935         struct sys_reg_params params;
3936         bool valid = true;
3937         unsigned int i;
3938
3939         /* Make sure tables are unique and in order. */
3940         valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3941         valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3942         valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3943         valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3944         valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3945         valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3946
3947         if (!valid)
3948                 return -EINVAL;
3949
3950         /* We abuse the reset function to overwrite the table itself. */
3951         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3952                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3953
3954         /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3955         params = encoding_to_params(SYS_ID_PFR0_EL1);
3956         first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3957         if (!first_idreg)
3958                 return -EINVAL;
3959
3960         if (kvm_get_mode() == KVM_MODE_NV)
3961                 return populate_nv_trap_config();
3962
3963         return 0;
3964 }