GNU Linux-libre 6.8.7-gnu
[releases.git] / arch / arm64 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31
32 static unsigned long __ro_after_init io_map_base;
33
34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35                                            phys_addr_t size)
36 {
37         phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39         return (boundary - 1 < end - 1) ? boundary : end;
40 }
41
42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43 {
44         phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45
46         return __stage2_range_addr_end(addr, end, size);
47 }
48
49 /*
50  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53  * long will also starve other vCPUs. We have to also make sure that the page
54  * tables are not freed while we released the lock.
55  */
56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57                               phys_addr_t end,
58                               int (*fn)(struct kvm_pgtable *, u64, u64),
59                               bool resched)
60 {
61         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62         int ret;
63         u64 next;
64
65         do {
66                 struct kvm_pgtable *pgt = mmu->pgt;
67                 if (!pgt)
68                         return -EINVAL;
69
70                 next = stage2_range_addr_end(addr, end);
71                 ret = fn(pgt, addr, next - addr);
72                 if (ret)
73                         break;
74
75                 if (resched && next != end)
76                         cond_resched_rwlock_write(&kvm->mmu_lock);
77         } while (addr = next, addr != end);
78
79         return ret;
80 }
81
82 #define stage2_apply_range_resched(mmu, addr, end, fn)                  \
83         stage2_apply_range(mmu, addr, end, fn, true)
84
85 /*
86  * Get the maximum number of page-tables pages needed to split a range
87  * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88  * mapped at level 2, or at level 1 if allowed.
89  */
90 static int kvm_mmu_split_nr_page_tables(u64 range)
91 {
92         int n = 0;
93
94         if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95                 n += DIV_ROUND_UP(range, PUD_SIZE);
96         n += DIV_ROUND_UP(range, PMD_SIZE);
97         return n;
98 }
99
100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101 {
102         struct kvm_mmu_memory_cache *cache;
103         u64 chunk_size, min;
104
105         if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
106                 return true;
107
108         chunk_size = kvm->arch.mmu.split_page_chunk_size;
109         min = kvm_mmu_split_nr_page_tables(chunk_size);
110         cache = &kvm->arch.mmu.split_page_cache;
111         return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
112 }
113
114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115                                     phys_addr_t end)
116 {
117         struct kvm_mmu_memory_cache *cache;
118         struct kvm_pgtable *pgt;
119         int ret, cache_capacity;
120         u64 next, chunk_size;
121
122         lockdep_assert_held_write(&kvm->mmu_lock);
123
124         chunk_size = kvm->arch.mmu.split_page_chunk_size;
125         cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
126
127         if (chunk_size == 0)
128                 return 0;
129
130         cache = &kvm->arch.mmu.split_page_cache;
131
132         do {
133                 if (need_split_memcache_topup_or_resched(kvm)) {
134                         write_unlock(&kvm->mmu_lock);
135                         cond_resched();
136                         /* Eager page splitting is best-effort. */
137                         ret = __kvm_mmu_topup_memory_cache(cache,
138                                                            cache_capacity,
139                                                            cache_capacity);
140                         write_lock(&kvm->mmu_lock);
141                         if (ret)
142                                 break;
143                 }
144
145                 pgt = kvm->arch.mmu.pgt;
146                 if (!pgt)
147                         return -EINVAL;
148
149                 next = __stage2_range_addr_end(addr, end, chunk_size);
150                 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151                 if (ret)
152                         break;
153         } while (addr = next, addr != end);
154
155         return ret;
156 }
157
158 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159 {
160         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161 }
162
163 /**
164  * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165  * @kvm:        pointer to kvm structure.
166  *
167  * Interface to HYP function to flush all VM TLB entries
168  */
169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
170 {
171         kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
172         return 0;
173 }
174
175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
176                                       gfn_t gfn, u64 nr_pages)
177 {
178         kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
179                                 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
180         return 0;
181 }
182
183 static bool kvm_is_device_pfn(unsigned long pfn)
184 {
185         return !pfn_is_map_memory(pfn);
186 }
187
188 static void *stage2_memcache_zalloc_page(void *arg)
189 {
190         struct kvm_mmu_memory_cache *mc = arg;
191         void *virt;
192
193         /* Allocated with __GFP_ZERO, so no need to zero */
194         virt = kvm_mmu_memory_cache_alloc(mc);
195         if (virt)
196                 kvm_account_pgtable_pages(virt, 1);
197         return virt;
198 }
199
200 static void *kvm_host_zalloc_pages_exact(size_t size)
201 {
202         return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
203 }
204
205 static void *kvm_s2_zalloc_pages_exact(size_t size)
206 {
207         void *virt = kvm_host_zalloc_pages_exact(size);
208
209         if (virt)
210                 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
211         return virt;
212 }
213
214 static void kvm_s2_free_pages_exact(void *virt, size_t size)
215 {
216         kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
217         free_pages_exact(virt, size);
218 }
219
220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
221
222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
223 {
224         struct page *page = container_of(head, struct page, rcu_head);
225         void *pgtable = page_to_virt(page);
226         s8 level = page_private(page);
227
228         kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
229 }
230
231 static void stage2_free_unlinked_table(void *addr, s8 level)
232 {
233         struct page *page = virt_to_page(addr);
234
235         set_page_private(page, (unsigned long)level);
236         call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
237 }
238
239 static void kvm_host_get_page(void *addr)
240 {
241         get_page(virt_to_page(addr));
242 }
243
244 static void kvm_host_put_page(void *addr)
245 {
246         put_page(virt_to_page(addr));
247 }
248
249 static void kvm_s2_put_page(void *addr)
250 {
251         struct page *p = virt_to_page(addr);
252         /* Dropping last refcount, the page will be freed */
253         if (page_count(p) == 1)
254                 kvm_account_pgtable_pages(addr, -1);
255         put_page(p);
256 }
257
258 static int kvm_host_page_count(void *addr)
259 {
260         return page_count(virt_to_page(addr));
261 }
262
263 static phys_addr_t kvm_host_pa(void *addr)
264 {
265         return __pa(addr);
266 }
267
268 static void *kvm_host_va(phys_addr_t phys)
269 {
270         return __va(phys);
271 }
272
273 static void clean_dcache_guest_page(void *va, size_t size)
274 {
275         __clean_dcache_guest_page(va, size);
276 }
277
278 static void invalidate_icache_guest_page(void *va, size_t size)
279 {
280         __invalidate_icache_guest_page(va, size);
281 }
282
283 /*
284  * Unmapping vs dcache management:
285  *
286  * If a guest maps certain memory pages as uncached, all writes will
287  * bypass the data cache and go directly to RAM.  However, the CPUs
288  * can still speculate reads (not writes) and fill cache lines with
289  * data.
290  *
291  * Those cache lines will be *clean* cache lines though, so a
292  * clean+invalidate operation is equivalent to an invalidate
293  * operation, because no cache lines are marked dirty.
294  *
295  * Those clean cache lines could be filled prior to an uncached write
296  * by the guest, and the cache coherent IO subsystem would therefore
297  * end up writing old data to disk.
298  *
299  * This is why right after unmapping a page/section and invalidating
300  * the corresponding TLBs, we flush to make sure the IO subsystem will
301  * never hit in the cache.
302  *
303  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
304  * we then fully enforce cacheability of RAM, no matter what the guest
305  * does.
306  */
307 /**
308  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
309  * @mmu:   The KVM stage-2 MMU pointer
310  * @start: The intermediate physical base address of the range to unmap
311  * @size:  The size of the area to unmap
312  * @may_block: Whether or not we are permitted to block
313  *
314  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
315  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
316  * destroying the VM), otherwise another faulting VCPU may come in and mess
317  * with things behind our backs.
318  */
319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
320                                  bool may_block)
321 {
322         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
323         phys_addr_t end = start + size;
324
325         lockdep_assert_held_write(&kvm->mmu_lock);
326         WARN_ON(size & ~PAGE_MASK);
327         WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
328                                    may_block));
329 }
330
331 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
332 {
333         __unmap_stage2_range(mmu, start, size, true);
334 }
335
336 static void stage2_flush_memslot(struct kvm *kvm,
337                                  struct kvm_memory_slot *memslot)
338 {
339         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
340         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
341
342         stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
343 }
344
345 /**
346  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
347  * @kvm: The struct kvm pointer
348  *
349  * Go through the stage 2 page tables and invalidate any cache lines
350  * backing memory already mapped to the VM.
351  */
352 static void stage2_flush_vm(struct kvm *kvm)
353 {
354         struct kvm_memslots *slots;
355         struct kvm_memory_slot *memslot;
356         int idx, bkt;
357
358         idx = srcu_read_lock(&kvm->srcu);
359         write_lock(&kvm->mmu_lock);
360
361         slots = kvm_memslots(kvm);
362         kvm_for_each_memslot(memslot, bkt, slots)
363                 stage2_flush_memslot(kvm, memslot);
364
365         write_unlock(&kvm->mmu_lock);
366         srcu_read_unlock(&kvm->srcu, idx);
367 }
368
369 /**
370  * free_hyp_pgds - free Hyp-mode page tables
371  */
372 void __init free_hyp_pgds(void)
373 {
374         mutex_lock(&kvm_hyp_pgd_mutex);
375         if (hyp_pgtable) {
376                 kvm_pgtable_hyp_destroy(hyp_pgtable);
377                 kfree(hyp_pgtable);
378                 hyp_pgtable = NULL;
379         }
380         mutex_unlock(&kvm_hyp_pgd_mutex);
381 }
382
383 static bool kvm_host_owns_hyp_mappings(void)
384 {
385         if (is_kernel_in_hyp_mode())
386                 return false;
387
388         if (static_branch_likely(&kvm_protected_mode_initialized))
389                 return false;
390
391         /*
392          * This can happen at boot time when __create_hyp_mappings() is called
393          * after the hyp protection has been enabled, but the static key has
394          * not been flipped yet.
395          */
396         if (!hyp_pgtable && is_protected_kvm_enabled())
397                 return false;
398
399         WARN_ON(!hyp_pgtable);
400
401         return true;
402 }
403
404 int __create_hyp_mappings(unsigned long start, unsigned long size,
405                           unsigned long phys, enum kvm_pgtable_prot prot)
406 {
407         int err;
408
409         if (WARN_ON(!kvm_host_owns_hyp_mappings()))
410                 return -EINVAL;
411
412         mutex_lock(&kvm_hyp_pgd_mutex);
413         err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
414         mutex_unlock(&kvm_hyp_pgd_mutex);
415
416         return err;
417 }
418
419 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
420 {
421         if (!is_vmalloc_addr(kaddr)) {
422                 BUG_ON(!virt_addr_valid(kaddr));
423                 return __pa(kaddr);
424         } else {
425                 return page_to_phys(vmalloc_to_page(kaddr)) +
426                        offset_in_page(kaddr);
427         }
428 }
429
430 struct hyp_shared_pfn {
431         u64 pfn;
432         int count;
433         struct rb_node node;
434 };
435
436 static DEFINE_MUTEX(hyp_shared_pfns_lock);
437 static struct rb_root hyp_shared_pfns = RB_ROOT;
438
439 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
440                                               struct rb_node **parent)
441 {
442         struct hyp_shared_pfn *this;
443
444         *node = &hyp_shared_pfns.rb_node;
445         *parent = NULL;
446         while (**node) {
447                 this = container_of(**node, struct hyp_shared_pfn, node);
448                 *parent = **node;
449                 if (this->pfn < pfn)
450                         *node = &((**node)->rb_left);
451                 else if (this->pfn > pfn)
452                         *node = &((**node)->rb_right);
453                 else
454                         return this;
455         }
456
457         return NULL;
458 }
459
460 static int share_pfn_hyp(u64 pfn)
461 {
462         struct rb_node **node, *parent;
463         struct hyp_shared_pfn *this;
464         int ret = 0;
465
466         mutex_lock(&hyp_shared_pfns_lock);
467         this = find_shared_pfn(pfn, &node, &parent);
468         if (this) {
469                 this->count++;
470                 goto unlock;
471         }
472
473         this = kzalloc(sizeof(*this), GFP_KERNEL);
474         if (!this) {
475                 ret = -ENOMEM;
476                 goto unlock;
477         }
478
479         this->pfn = pfn;
480         this->count = 1;
481         rb_link_node(&this->node, parent, node);
482         rb_insert_color(&this->node, &hyp_shared_pfns);
483         ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
484 unlock:
485         mutex_unlock(&hyp_shared_pfns_lock);
486
487         return ret;
488 }
489
490 static int unshare_pfn_hyp(u64 pfn)
491 {
492         struct rb_node **node, *parent;
493         struct hyp_shared_pfn *this;
494         int ret = 0;
495
496         mutex_lock(&hyp_shared_pfns_lock);
497         this = find_shared_pfn(pfn, &node, &parent);
498         if (WARN_ON(!this)) {
499                 ret = -ENOENT;
500                 goto unlock;
501         }
502
503         this->count--;
504         if (this->count)
505                 goto unlock;
506
507         rb_erase(&this->node, &hyp_shared_pfns);
508         kfree(this);
509         ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
510 unlock:
511         mutex_unlock(&hyp_shared_pfns_lock);
512
513         return ret;
514 }
515
516 int kvm_share_hyp(void *from, void *to)
517 {
518         phys_addr_t start, end, cur;
519         u64 pfn;
520         int ret;
521
522         if (is_kernel_in_hyp_mode())
523                 return 0;
524
525         /*
526          * The share hcall maps things in the 'fixed-offset' region of the hyp
527          * VA space, so we can only share physically contiguous data-structures
528          * for now.
529          */
530         if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
531                 return -EINVAL;
532
533         if (kvm_host_owns_hyp_mappings())
534                 return create_hyp_mappings(from, to, PAGE_HYP);
535
536         start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
537         end = PAGE_ALIGN(__pa(to));
538         for (cur = start; cur < end; cur += PAGE_SIZE) {
539                 pfn = __phys_to_pfn(cur);
540                 ret = share_pfn_hyp(pfn);
541                 if (ret)
542                         return ret;
543         }
544
545         return 0;
546 }
547
548 void kvm_unshare_hyp(void *from, void *to)
549 {
550         phys_addr_t start, end, cur;
551         u64 pfn;
552
553         if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
554                 return;
555
556         start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
557         end = PAGE_ALIGN(__pa(to));
558         for (cur = start; cur < end; cur += PAGE_SIZE) {
559                 pfn = __phys_to_pfn(cur);
560                 WARN_ON(unshare_pfn_hyp(pfn));
561         }
562 }
563
564 /**
565  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
566  * @from:       The virtual kernel start address of the range
567  * @to:         The virtual kernel end address of the range (exclusive)
568  * @prot:       The protection to be applied to this range
569  *
570  * The same virtual address as the kernel virtual address is also used
571  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
572  * physical pages.
573  */
574 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
575 {
576         phys_addr_t phys_addr;
577         unsigned long virt_addr;
578         unsigned long start = kern_hyp_va((unsigned long)from);
579         unsigned long end = kern_hyp_va((unsigned long)to);
580
581         if (is_kernel_in_hyp_mode())
582                 return 0;
583
584         if (!kvm_host_owns_hyp_mappings())
585                 return -EPERM;
586
587         start = start & PAGE_MASK;
588         end = PAGE_ALIGN(end);
589
590         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
591                 int err;
592
593                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
594                 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
595                                             prot);
596                 if (err)
597                         return err;
598         }
599
600         return 0;
601 }
602
603 static int __hyp_alloc_private_va_range(unsigned long base)
604 {
605         lockdep_assert_held(&kvm_hyp_pgd_mutex);
606
607         if (!PAGE_ALIGNED(base))
608                 return -EINVAL;
609
610         /*
611          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
612          * allocating the new area, as it would indicate we've
613          * overflowed the idmap/IO address range.
614          */
615         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
616                 return -ENOMEM;
617
618         io_map_base = base;
619
620         return 0;
621 }
622
623 /**
624  * hyp_alloc_private_va_range - Allocates a private VA range.
625  * @size:       The size of the VA range to reserve.
626  * @haddr:      The hypervisor virtual start address of the allocation.
627  *
628  * The private virtual address (VA) range is allocated below io_map_base
629  * and aligned based on the order of @size.
630  *
631  * Return: 0 on success or negative error code on failure.
632  */
633 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
634 {
635         unsigned long base;
636         int ret = 0;
637
638         mutex_lock(&kvm_hyp_pgd_mutex);
639
640         /*
641          * This assumes that we have enough space below the idmap
642          * page to allocate our VAs. If not, the check in
643          * __hyp_alloc_private_va_range() will kick. A potential
644          * alternative would be to detect that overflow and switch
645          * to an allocation above the idmap.
646          *
647          * The allocated size is always a multiple of PAGE_SIZE.
648          */
649         size = PAGE_ALIGN(size);
650         base = io_map_base - size;
651         ret = __hyp_alloc_private_va_range(base);
652
653         mutex_unlock(&kvm_hyp_pgd_mutex);
654
655         if (!ret)
656                 *haddr = base;
657
658         return ret;
659 }
660
661 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
662                                         unsigned long *haddr,
663                                         enum kvm_pgtable_prot prot)
664 {
665         unsigned long addr;
666         int ret = 0;
667
668         if (!kvm_host_owns_hyp_mappings()) {
669                 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
670                                          phys_addr, size, prot);
671                 if (IS_ERR_VALUE(addr))
672                         return addr;
673                 *haddr = addr;
674
675                 return 0;
676         }
677
678         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
679         ret = hyp_alloc_private_va_range(size, &addr);
680         if (ret)
681                 return ret;
682
683         ret = __create_hyp_mappings(addr, size, phys_addr, prot);
684         if (ret)
685                 return ret;
686
687         *haddr = addr + offset_in_page(phys_addr);
688         return ret;
689 }
690
691 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
692 {
693         unsigned long base;
694         size_t size;
695         int ret;
696
697         mutex_lock(&kvm_hyp_pgd_mutex);
698         /*
699          * Efficient stack verification using the PAGE_SHIFT bit implies
700          * an alignment of our allocation on the order of the size.
701          */
702         size = PAGE_SIZE * 2;
703         base = ALIGN_DOWN(io_map_base - size, size);
704
705         ret = __hyp_alloc_private_va_range(base);
706
707         mutex_unlock(&kvm_hyp_pgd_mutex);
708
709         if (ret) {
710                 kvm_err("Cannot allocate hyp stack guard page\n");
711                 return ret;
712         }
713
714         /*
715          * Since the stack grows downwards, map the stack to the page
716          * at the higher address and leave the lower guard page
717          * unbacked.
718          *
719          * Any valid stack address now has the PAGE_SHIFT bit as 1
720          * and addresses corresponding to the guard page have the
721          * PAGE_SHIFT bit as 0 - this is used for overflow detection.
722          */
723         ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
724                                     PAGE_HYP);
725         if (ret)
726                 kvm_err("Cannot map hyp stack\n");
727
728         *haddr = base + size;
729
730         return ret;
731 }
732
733 /**
734  * create_hyp_io_mappings - Map IO into both kernel and HYP
735  * @phys_addr:  The physical start address which gets mapped
736  * @size:       Size of the region being mapped
737  * @kaddr:      Kernel VA for this mapping
738  * @haddr:      HYP VA for this mapping
739  */
740 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
741                            void __iomem **kaddr,
742                            void __iomem **haddr)
743 {
744         unsigned long addr;
745         int ret;
746
747         if (is_protected_kvm_enabled())
748                 return -EPERM;
749
750         *kaddr = ioremap(phys_addr, size);
751         if (!*kaddr)
752                 return -ENOMEM;
753
754         if (is_kernel_in_hyp_mode()) {
755                 *haddr = *kaddr;
756                 return 0;
757         }
758
759         ret = __create_hyp_private_mapping(phys_addr, size,
760                                            &addr, PAGE_HYP_DEVICE);
761         if (ret) {
762                 iounmap(*kaddr);
763                 *kaddr = NULL;
764                 *haddr = NULL;
765                 return ret;
766         }
767
768         *haddr = (void __iomem *)addr;
769         return 0;
770 }
771
772 /**
773  * create_hyp_exec_mappings - Map an executable range into HYP
774  * @phys_addr:  The physical start address which gets mapped
775  * @size:       Size of the region being mapped
776  * @haddr:      HYP VA for this mapping
777  */
778 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
779                              void **haddr)
780 {
781         unsigned long addr;
782         int ret;
783
784         BUG_ON(is_kernel_in_hyp_mode());
785
786         ret = __create_hyp_private_mapping(phys_addr, size,
787                                            &addr, PAGE_HYP_EXEC);
788         if (ret) {
789                 *haddr = NULL;
790                 return ret;
791         }
792
793         *haddr = (void *)addr;
794         return 0;
795 }
796
797 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
798         /* We shouldn't need any other callback to walk the PT */
799         .phys_to_virt           = kvm_host_va,
800 };
801
802 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
803 {
804         struct kvm_pgtable pgt = {
805                 .pgd            = (kvm_pteref_t)kvm->mm->pgd,
806                 .ia_bits        = vabits_actual,
807                 .start_level    = (KVM_PGTABLE_LAST_LEVEL -
808                                    CONFIG_PGTABLE_LEVELS + 1),
809                 .mm_ops         = &kvm_user_mm_ops,
810         };
811         unsigned long flags;
812         kvm_pte_t pte = 0;      /* Keep GCC quiet... */
813         s8 level = S8_MAX;
814         int ret;
815
816         /*
817          * Disable IRQs so that we hazard against a concurrent
818          * teardown of the userspace page tables (which relies on
819          * IPI-ing threads).
820          */
821         local_irq_save(flags);
822         ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
823         local_irq_restore(flags);
824
825         if (ret)
826                 return ret;
827
828         /*
829          * Not seeing an error, but not updating level? Something went
830          * deeply wrong...
831          */
832         if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
833                 return -EFAULT;
834         if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
835                 return -EFAULT;
836
837         /* Oops, the userspace PTs are gone... Replay the fault */
838         if (!kvm_pte_valid(pte))
839                 return -EAGAIN;
840
841         return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
842 }
843
844 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
845         .zalloc_page            = stage2_memcache_zalloc_page,
846         .zalloc_pages_exact     = kvm_s2_zalloc_pages_exact,
847         .free_pages_exact       = kvm_s2_free_pages_exact,
848         .free_unlinked_table    = stage2_free_unlinked_table,
849         .get_page               = kvm_host_get_page,
850         .put_page               = kvm_s2_put_page,
851         .page_count             = kvm_host_page_count,
852         .phys_to_virt           = kvm_host_va,
853         .virt_to_phys           = kvm_host_pa,
854         .dcache_clean_inval_poc = clean_dcache_guest_page,
855         .icache_inval_pou       = invalidate_icache_guest_page,
856 };
857
858 /**
859  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
860  * @kvm:        The pointer to the KVM structure
861  * @mmu:        The pointer to the s2 MMU structure
862  * @type:       The machine type of the virtual machine
863  *
864  * Allocates only the stage-2 HW PGD level table(s).
865  * Note we don't need locking here as this is only called when the VM is
866  * created, which can only be done once.
867  */
868 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
869 {
870         u32 kvm_ipa_limit = get_kvm_ipa_limit();
871         int cpu, err;
872         struct kvm_pgtable *pgt;
873         u64 mmfr0, mmfr1;
874         u32 phys_shift;
875
876         if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
877                 return -EINVAL;
878
879         phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
880         if (is_protected_kvm_enabled()) {
881                 phys_shift = kvm_ipa_limit;
882         } else if (phys_shift) {
883                 if (phys_shift > kvm_ipa_limit ||
884                     phys_shift < ARM64_MIN_PARANGE_BITS)
885                         return -EINVAL;
886         } else {
887                 phys_shift = KVM_PHYS_SHIFT;
888                 if (phys_shift > kvm_ipa_limit) {
889                         pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
890                                      current->comm);
891                         return -EINVAL;
892                 }
893         }
894
895         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
896         mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
897         mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
898
899         if (mmu->pgt != NULL) {
900                 kvm_err("kvm_arch already initialized?\n");
901                 return -EINVAL;
902         }
903
904         pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
905         if (!pgt)
906                 return -ENOMEM;
907
908         mmu->arch = &kvm->arch;
909         err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
910         if (err)
911                 goto out_free_pgtable;
912
913         mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
914         if (!mmu->last_vcpu_ran) {
915                 err = -ENOMEM;
916                 goto out_destroy_pgtable;
917         }
918
919         for_each_possible_cpu(cpu)
920                 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
921
922          /* The eager page splitting is disabled by default */
923         mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
924         mmu->split_page_cache.gfp_zero = __GFP_ZERO;
925
926         mmu->pgt = pgt;
927         mmu->pgd_phys = __pa(pgt->pgd);
928         return 0;
929
930 out_destroy_pgtable:
931         kvm_pgtable_stage2_destroy(pgt);
932 out_free_pgtable:
933         kfree(pgt);
934         return err;
935 }
936
937 void kvm_uninit_stage2_mmu(struct kvm *kvm)
938 {
939         kvm_free_stage2_pgd(&kvm->arch.mmu);
940         kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
941 }
942
943 static void stage2_unmap_memslot(struct kvm *kvm,
944                                  struct kvm_memory_slot *memslot)
945 {
946         hva_t hva = memslot->userspace_addr;
947         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
948         phys_addr_t size = PAGE_SIZE * memslot->npages;
949         hva_t reg_end = hva + size;
950
951         /*
952          * A memory region could potentially cover multiple VMAs, and any holes
953          * between them, so iterate over all of them to find out if we should
954          * unmap any of them.
955          *
956          *     +--------------------------------------------+
957          * +---------------+----------------+   +----------------+
958          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
959          * +---------------+----------------+   +----------------+
960          *     |               memory region                |
961          *     +--------------------------------------------+
962          */
963         do {
964                 struct vm_area_struct *vma;
965                 hva_t vm_start, vm_end;
966
967                 vma = find_vma_intersection(current->mm, hva, reg_end);
968                 if (!vma)
969                         break;
970
971                 /*
972                  * Take the intersection of this VMA with the memory region
973                  */
974                 vm_start = max(hva, vma->vm_start);
975                 vm_end = min(reg_end, vma->vm_end);
976
977                 if (!(vma->vm_flags & VM_PFNMAP)) {
978                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
979                         unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
980                 }
981                 hva = vm_end;
982         } while (hva < reg_end);
983 }
984
985 /**
986  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
987  * @kvm: The struct kvm pointer
988  *
989  * Go through the memregions and unmap any regular RAM
990  * backing memory already mapped to the VM.
991  */
992 void stage2_unmap_vm(struct kvm *kvm)
993 {
994         struct kvm_memslots *slots;
995         struct kvm_memory_slot *memslot;
996         int idx, bkt;
997
998         idx = srcu_read_lock(&kvm->srcu);
999         mmap_read_lock(current->mm);
1000         write_lock(&kvm->mmu_lock);
1001
1002         slots = kvm_memslots(kvm);
1003         kvm_for_each_memslot(memslot, bkt, slots)
1004                 stage2_unmap_memslot(kvm, memslot);
1005
1006         write_unlock(&kvm->mmu_lock);
1007         mmap_read_unlock(current->mm);
1008         srcu_read_unlock(&kvm->srcu, idx);
1009 }
1010
1011 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1012 {
1013         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1014         struct kvm_pgtable *pgt = NULL;
1015
1016         write_lock(&kvm->mmu_lock);
1017         pgt = mmu->pgt;
1018         if (pgt) {
1019                 mmu->pgd_phys = 0;
1020                 mmu->pgt = NULL;
1021                 free_percpu(mmu->last_vcpu_ran);
1022         }
1023         write_unlock(&kvm->mmu_lock);
1024
1025         if (pgt) {
1026                 kvm_pgtable_stage2_destroy(pgt);
1027                 kfree(pgt);
1028         }
1029 }
1030
1031 static void hyp_mc_free_fn(void *addr, void *unused)
1032 {
1033         free_page((unsigned long)addr);
1034 }
1035
1036 static void *hyp_mc_alloc_fn(void *unused)
1037 {
1038         return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1039 }
1040
1041 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1042 {
1043         if (is_protected_kvm_enabled())
1044                 __free_hyp_memcache(mc, hyp_mc_free_fn,
1045                                     kvm_host_va, NULL);
1046 }
1047
1048 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1049 {
1050         if (!is_protected_kvm_enabled())
1051                 return 0;
1052
1053         return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1054                                     kvm_host_pa, NULL);
1055 }
1056
1057 /**
1058  * kvm_phys_addr_ioremap - map a device range to guest IPA
1059  *
1060  * @kvm:        The KVM pointer
1061  * @guest_ipa:  The IPA at which to insert the mapping
1062  * @pa:         The physical address of the device
1063  * @size:       The size of the mapping
1064  * @writable:   Whether or not to create a writable mapping
1065  */
1066 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1067                           phys_addr_t pa, unsigned long size, bool writable)
1068 {
1069         phys_addr_t addr;
1070         int ret = 0;
1071         struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1072         struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1073         struct kvm_pgtable *pgt = mmu->pgt;
1074         enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1075                                      KVM_PGTABLE_PROT_R |
1076                                      (writable ? KVM_PGTABLE_PROT_W : 0);
1077
1078         if (is_protected_kvm_enabled())
1079                 return -EPERM;
1080
1081         size += offset_in_page(guest_ipa);
1082         guest_ipa &= PAGE_MASK;
1083
1084         for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1085                 ret = kvm_mmu_topup_memory_cache(&cache,
1086                                                  kvm_mmu_cache_min_pages(mmu));
1087                 if (ret)
1088                         break;
1089
1090                 write_lock(&kvm->mmu_lock);
1091                 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1092                                              &cache, 0);
1093                 write_unlock(&kvm->mmu_lock);
1094                 if (ret)
1095                         break;
1096
1097                 pa += PAGE_SIZE;
1098         }
1099
1100         kvm_mmu_free_memory_cache(&cache);
1101         return ret;
1102 }
1103
1104 /**
1105  * stage2_wp_range() - write protect stage2 memory region range
1106  * @mmu:        The KVM stage-2 MMU pointer
1107  * @addr:       Start address of range
1108  * @end:        End address of range
1109  */
1110 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1111 {
1112         stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1113 }
1114
1115 /**
1116  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1117  * @kvm:        The KVM pointer
1118  * @slot:       The memory slot to write protect
1119  *
1120  * Called to start logging dirty pages after memory region
1121  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1122  * all present PUD, PMD and PTEs are write protected in the memory region.
1123  * Afterwards read of dirty page log can be called.
1124  *
1125  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1126  * serializing operations for VM memory regions.
1127  */
1128 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1129 {
1130         struct kvm_memslots *slots = kvm_memslots(kvm);
1131         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1132         phys_addr_t start, end;
1133
1134         if (WARN_ON_ONCE(!memslot))
1135                 return;
1136
1137         start = memslot->base_gfn << PAGE_SHIFT;
1138         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1139
1140         write_lock(&kvm->mmu_lock);
1141         stage2_wp_range(&kvm->arch.mmu, start, end);
1142         write_unlock(&kvm->mmu_lock);
1143         kvm_flush_remote_tlbs_memslot(kvm, memslot);
1144 }
1145
1146 /**
1147  * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1148  *                                 pages for memory slot
1149  * @kvm:        The KVM pointer
1150  * @slot:       The memory slot to split
1151  *
1152  * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1153  * serializing operations for VM memory regions.
1154  */
1155 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1156 {
1157         struct kvm_memslots *slots;
1158         struct kvm_memory_slot *memslot;
1159         phys_addr_t start, end;
1160
1161         lockdep_assert_held(&kvm->slots_lock);
1162
1163         slots = kvm_memslots(kvm);
1164         memslot = id_to_memslot(slots, slot);
1165
1166         start = memslot->base_gfn << PAGE_SHIFT;
1167         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1168
1169         write_lock(&kvm->mmu_lock);
1170         kvm_mmu_split_huge_pages(kvm, start, end);
1171         write_unlock(&kvm->mmu_lock);
1172 }
1173
1174 /*
1175  * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1176  * @kvm:        The KVM pointer
1177  * @slot:       The memory slot associated with mask
1178  * @gfn_offset: The gfn offset in memory slot
1179  * @mask:       The mask of pages at offset 'gfn_offset' in this memory
1180  *              slot to enable dirty logging on
1181  *
1182  * Writes protect selected pages to enable dirty logging, and then
1183  * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1184  */
1185 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1186                 struct kvm_memory_slot *slot,
1187                 gfn_t gfn_offset, unsigned long mask)
1188 {
1189         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1190         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1191         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1192
1193         lockdep_assert_held_write(&kvm->mmu_lock);
1194
1195         stage2_wp_range(&kvm->arch.mmu, start, end);
1196
1197         /*
1198          * Eager-splitting is done when manual-protect is set.  We
1199          * also check for initially-all-set because we can avoid
1200          * eager-splitting if initially-all-set is false.
1201          * Initially-all-set equal false implies that huge-pages were
1202          * already split when enabling dirty logging: no need to do it
1203          * again.
1204          */
1205         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1206                 kvm_mmu_split_huge_pages(kvm, start, end);
1207 }
1208
1209 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1210 {
1211         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1212 }
1213
1214 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1215                                                unsigned long hva,
1216                                                unsigned long map_size)
1217 {
1218         gpa_t gpa_start;
1219         hva_t uaddr_start, uaddr_end;
1220         size_t size;
1221
1222         /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1223         if (map_size == PAGE_SIZE)
1224                 return true;
1225
1226         size = memslot->npages * PAGE_SIZE;
1227
1228         gpa_start = memslot->base_gfn << PAGE_SHIFT;
1229
1230         uaddr_start = memslot->userspace_addr;
1231         uaddr_end = uaddr_start + size;
1232
1233         /*
1234          * Pages belonging to memslots that don't have the same alignment
1235          * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1236          * PMD/PUD entries, because we'll end up mapping the wrong pages.
1237          *
1238          * Consider a layout like the following:
1239          *
1240          *    memslot->userspace_addr:
1241          *    +-----+--------------------+--------------------+---+
1242          *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1243          *    +-----+--------------------+--------------------+---+
1244          *
1245          *    memslot->base_gfn << PAGE_SHIFT:
1246          *      +---+--------------------+--------------------+-----+
1247          *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1248          *      +---+--------------------+--------------------+-----+
1249          *
1250          * If we create those stage-2 blocks, we'll end up with this incorrect
1251          * mapping:
1252          *   d -> f
1253          *   e -> g
1254          *   f -> h
1255          */
1256         if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1257                 return false;
1258
1259         /*
1260          * Next, let's make sure we're not trying to map anything not covered
1261          * by the memslot. This means we have to prohibit block size mappings
1262          * for the beginning and end of a non-block aligned and non-block sized
1263          * memory slot (illustrated by the head and tail parts of the
1264          * userspace view above containing pages 'abcde' and 'xyz',
1265          * respectively).
1266          *
1267          * Note that it doesn't matter if we do the check using the
1268          * userspace_addr or the base_gfn, as both are equally aligned (per
1269          * the check above) and equally sized.
1270          */
1271         return (hva & ~(map_size - 1)) >= uaddr_start &&
1272                (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1273 }
1274
1275 /*
1276  * Check if the given hva is backed by a transparent huge page (THP) and
1277  * whether it can be mapped using block mapping in stage2. If so, adjust
1278  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1279  * supported. This will need to be updated to support other THP sizes.
1280  *
1281  * Returns the size of the mapping.
1282  */
1283 static long
1284 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1285                             unsigned long hva, kvm_pfn_t *pfnp,
1286                             phys_addr_t *ipap)
1287 {
1288         kvm_pfn_t pfn = *pfnp;
1289
1290         /*
1291          * Make sure the adjustment is done only for THP pages. Also make
1292          * sure that the HVA and IPA are sufficiently aligned and that the
1293          * block map is contained within the memslot.
1294          */
1295         if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1296                 int sz = get_user_mapping_size(kvm, hva);
1297
1298                 if (sz < 0)
1299                         return sz;
1300
1301                 if (sz < PMD_SIZE)
1302                         return PAGE_SIZE;
1303
1304                 *ipap &= PMD_MASK;
1305                 pfn &= ~(PTRS_PER_PMD - 1);
1306                 *pfnp = pfn;
1307
1308                 return PMD_SIZE;
1309         }
1310
1311         /* Use page mapping if we cannot use block mapping. */
1312         return PAGE_SIZE;
1313 }
1314
1315 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1316 {
1317         unsigned long pa;
1318
1319         if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1320                 return huge_page_shift(hstate_vma(vma));
1321
1322         if (!(vma->vm_flags & VM_PFNMAP))
1323                 return PAGE_SHIFT;
1324
1325         VM_BUG_ON(is_vm_hugetlb_page(vma));
1326
1327         pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1328
1329 #ifndef __PAGETABLE_PMD_FOLDED
1330         if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1331             ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1332             ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1333                 return PUD_SHIFT;
1334 #endif
1335
1336         if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1337             ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1338             ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1339                 return PMD_SHIFT;
1340
1341         return PAGE_SHIFT;
1342 }
1343
1344 /*
1345  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1346  * able to see the page's tags and therefore they must be initialised first. If
1347  * PG_mte_tagged is set, tags have already been initialised.
1348  *
1349  * The race in the test/set of the PG_mte_tagged flag is handled by:
1350  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1351  *   racing to santise the same page
1352  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1353  *   an mprotect() to add VM_MTE
1354  */
1355 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1356                               unsigned long size)
1357 {
1358         unsigned long i, nr_pages = size >> PAGE_SHIFT;
1359         struct page *page = pfn_to_page(pfn);
1360
1361         if (!kvm_has_mte(kvm))
1362                 return;
1363
1364         for (i = 0; i < nr_pages; i++, page++) {
1365                 if (try_page_mte_tagging(page)) {
1366                         mte_clear_page_tags(page_address(page));
1367                         set_page_mte_tagged(page);
1368                 }
1369         }
1370 }
1371
1372 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1373 {
1374         return vma->vm_flags & VM_MTE_ALLOWED;
1375 }
1376
1377 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1378                           struct kvm_memory_slot *memslot, unsigned long hva,
1379                           bool fault_is_perm)
1380 {
1381         int ret = 0;
1382         bool write_fault, writable, force_pte = false;
1383         bool exec_fault, mte_allowed;
1384         bool device = false;
1385         unsigned long mmu_seq;
1386         struct kvm *kvm = vcpu->kvm;
1387         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1388         struct vm_area_struct *vma;
1389         short vma_shift;
1390         gfn_t gfn;
1391         kvm_pfn_t pfn;
1392         bool logging_active = memslot_is_logging(memslot);
1393         long vma_pagesize, fault_granule;
1394         enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1395         struct kvm_pgtable *pgt;
1396
1397         if (fault_is_perm)
1398                 fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1399         write_fault = kvm_is_write_fault(vcpu);
1400         exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1401         VM_BUG_ON(write_fault && exec_fault);
1402
1403         if (fault_is_perm && !write_fault && !exec_fault) {
1404                 kvm_err("Unexpected L2 read permission error\n");
1405                 return -EFAULT;
1406         }
1407
1408         /*
1409          * Permission faults just need to update the existing leaf entry,
1410          * and so normally don't require allocations from the memcache. The
1411          * only exception to this is when dirty logging is enabled at runtime
1412          * and a write fault needs to collapse a block entry into a table.
1413          */
1414         if (!fault_is_perm || (logging_active && write_fault)) {
1415                 ret = kvm_mmu_topup_memory_cache(memcache,
1416                                                  kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu));
1417                 if (ret)
1418                         return ret;
1419         }
1420
1421         /*
1422          * Let's check if we will get back a huge page backed by hugetlbfs, or
1423          * get block mapping for device MMIO region.
1424          */
1425         mmap_read_lock(current->mm);
1426         vma = vma_lookup(current->mm, hva);
1427         if (unlikely(!vma)) {
1428                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1429                 mmap_read_unlock(current->mm);
1430                 return -EFAULT;
1431         }
1432
1433         /*
1434          * logging_active is guaranteed to never be true for VM_PFNMAP
1435          * memslots.
1436          */
1437         if (logging_active) {
1438                 force_pte = true;
1439                 vma_shift = PAGE_SHIFT;
1440         } else {
1441                 vma_shift = get_vma_page_shift(vma, hva);
1442         }
1443
1444         switch (vma_shift) {
1445 #ifndef __PAGETABLE_PMD_FOLDED
1446         case PUD_SHIFT:
1447                 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1448                         break;
1449                 fallthrough;
1450 #endif
1451         case CONT_PMD_SHIFT:
1452                 vma_shift = PMD_SHIFT;
1453                 fallthrough;
1454         case PMD_SHIFT:
1455                 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1456                         break;
1457                 fallthrough;
1458         case CONT_PTE_SHIFT:
1459                 vma_shift = PAGE_SHIFT;
1460                 force_pte = true;
1461                 fallthrough;
1462         case PAGE_SHIFT:
1463                 break;
1464         default:
1465                 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1466         }
1467
1468         vma_pagesize = 1UL << vma_shift;
1469         if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1470                 fault_ipa &= ~(vma_pagesize - 1);
1471
1472         gfn = fault_ipa >> PAGE_SHIFT;
1473         mte_allowed = kvm_vma_mte_allowed(vma);
1474
1475         /* Don't use the VMA after the unlock -- it may have vanished */
1476         vma = NULL;
1477
1478         /*
1479          * Read mmu_invalidate_seq so that KVM can detect if the results of
1480          * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1481          * acquiring kvm->mmu_lock.
1482          *
1483          * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1484          * with the smp_wmb() in kvm_mmu_invalidate_end().
1485          */
1486         mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1487         mmap_read_unlock(current->mm);
1488
1489         pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1490                                    write_fault, &writable, NULL);
1491         if (pfn == KVM_PFN_ERR_HWPOISON) {
1492                 kvm_send_hwpoison_signal(hva, vma_shift);
1493                 return 0;
1494         }
1495         if (is_error_noslot_pfn(pfn))
1496                 return -EFAULT;
1497
1498         if (kvm_is_device_pfn(pfn)) {
1499                 /*
1500                  * If the page was identified as device early by looking at
1501                  * the VMA flags, vma_pagesize is already representing the
1502                  * largest quantity we can map.  If instead it was mapped
1503                  * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1504                  * and must not be upgraded.
1505                  *
1506                  * In both cases, we don't let transparent_hugepage_adjust()
1507                  * change things at the last minute.
1508                  */
1509                 device = true;
1510         } else if (logging_active && !write_fault) {
1511                 /*
1512                  * Only actually map the page as writable if this was a write
1513                  * fault.
1514                  */
1515                 writable = false;
1516         }
1517
1518         if (exec_fault && device)
1519                 return -ENOEXEC;
1520
1521         read_lock(&kvm->mmu_lock);
1522         pgt = vcpu->arch.hw_mmu->pgt;
1523         if (mmu_invalidate_retry(kvm, mmu_seq))
1524                 goto out_unlock;
1525
1526         /*
1527          * If we are not forced to use page mapping, check if we are
1528          * backed by a THP and thus use block mapping if possible.
1529          */
1530         if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1531                 if (fault_is_perm && fault_granule > PAGE_SIZE)
1532                         vma_pagesize = fault_granule;
1533                 else
1534                         vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1535                                                                    hva, &pfn,
1536                                                                    &fault_ipa);
1537
1538                 if (vma_pagesize < 0) {
1539                         ret = vma_pagesize;
1540                         goto out_unlock;
1541                 }
1542         }
1543
1544         if (!fault_is_perm && !device && kvm_has_mte(kvm)) {
1545                 /* Check the VMM hasn't introduced a new disallowed VMA */
1546                 if (mte_allowed) {
1547                         sanitise_mte_tags(kvm, pfn, vma_pagesize);
1548                 } else {
1549                         ret = -EFAULT;
1550                         goto out_unlock;
1551                 }
1552         }
1553
1554         if (writable)
1555                 prot |= KVM_PGTABLE_PROT_W;
1556
1557         if (exec_fault)
1558                 prot |= KVM_PGTABLE_PROT_X;
1559
1560         if (device)
1561                 prot |= KVM_PGTABLE_PROT_DEVICE;
1562         else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC))
1563                 prot |= KVM_PGTABLE_PROT_X;
1564
1565         /*
1566          * Under the premise of getting a FSC_PERM fault, we just need to relax
1567          * permissions only if vma_pagesize equals fault_granule. Otherwise,
1568          * kvm_pgtable_stage2_map() should be called to change block size.
1569          */
1570         if (fault_is_perm && vma_pagesize == fault_granule)
1571                 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1572         else
1573                 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1574                                              __pfn_to_phys(pfn), prot,
1575                                              memcache,
1576                                              KVM_PGTABLE_WALK_HANDLE_FAULT |
1577                                              KVM_PGTABLE_WALK_SHARED);
1578
1579         /* Mark the page dirty only if the fault is handled successfully */
1580         if (writable && !ret) {
1581                 kvm_set_pfn_dirty(pfn);
1582                 mark_page_dirty_in_slot(kvm, memslot, gfn);
1583         }
1584
1585 out_unlock:
1586         read_unlock(&kvm->mmu_lock);
1587         kvm_release_pfn_clean(pfn);
1588         return ret != -EAGAIN ? ret : 0;
1589 }
1590
1591 /* Resolve the access fault by making the page young again. */
1592 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1593 {
1594         kvm_pte_t pte;
1595         struct kvm_s2_mmu *mmu;
1596
1597         trace_kvm_access_fault(fault_ipa);
1598
1599         read_lock(&vcpu->kvm->mmu_lock);
1600         mmu = vcpu->arch.hw_mmu;
1601         pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1602         read_unlock(&vcpu->kvm->mmu_lock);
1603
1604         if (kvm_pte_valid(pte))
1605                 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1606 }
1607
1608 /**
1609  * kvm_handle_guest_abort - handles all 2nd stage aborts
1610  * @vcpu:       the VCPU pointer
1611  *
1612  * Any abort that gets to the host is almost guaranteed to be caused by a
1613  * missing second stage translation table entry, which can mean that either the
1614  * guest simply needs more memory and we must allocate an appropriate page or it
1615  * can mean that the guest tried to access I/O memory, which is emulated by user
1616  * space. The distinction is based on the IPA causing the fault and whether this
1617  * memory region has been registered as standard RAM by user space.
1618  */
1619 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1620 {
1621         unsigned long esr;
1622         phys_addr_t fault_ipa;
1623         struct kvm_memory_slot *memslot;
1624         unsigned long hva;
1625         bool is_iabt, write_fault, writable;
1626         gfn_t gfn;
1627         int ret, idx;
1628
1629         esr = kvm_vcpu_get_esr(vcpu);
1630
1631         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1632         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1633
1634         if (esr_fsc_is_translation_fault(esr)) {
1635                 /* Beyond sanitised PARange (which is the IPA limit) */
1636                 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1637                         kvm_inject_size_fault(vcpu);
1638                         return 1;
1639                 }
1640
1641                 /* Falls between the IPA range and the PARange? */
1642                 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1643                         fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1644
1645                         if (is_iabt)
1646                                 kvm_inject_pabt(vcpu, fault_ipa);
1647                         else
1648                                 kvm_inject_dabt(vcpu, fault_ipa);
1649                         return 1;
1650                 }
1651         }
1652
1653         /* Synchronous External Abort? */
1654         if (kvm_vcpu_abt_issea(vcpu)) {
1655                 /*
1656                  * For RAS the host kernel may handle this abort.
1657                  * There is no need to pass the error into the guest.
1658                  */
1659                 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1660                         kvm_inject_vabt(vcpu);
1661
1662                 return 1;
1663         }
1664
1665         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1666                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1667
1668         /* Check the stage-2 fault is trans. fault or write fault */
1669         if (!esr_fsc_is_translation_fault(esr) &&
1670             !esr_fsc_is_permission_fault(esr) &&
1671             !esr_fsc_is_access_flag_fault(esr)) {
1672                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1673                         kvm_vcpu_trap_get_class(vcpu),
1674                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1675                         (unsigned long)kvm_vcpu_get_esr(vcpu));
1676                 return -EFAULT;
1677         }
1678
1679         idx = srcu_read_lock(&vcpu->kvm->srcu);
1680
1681         gfn = fault_ipa >> PAGE_SHIFT;
1682         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1683         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1684         write_fault = kvm_is_write_fault(vcpu);
1685         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1686                 /*
1687                  * The guest has put either its instructions or its page-tables
1688                  * somewhere it shouldn't have. Userspace won't be able to do
1689                  * anything about this (there's no syndrome for a start), so
1690                  * re-inject the abort back into the guest.
1691                  */
1692                 if (is_iabt) {
1693                         ret = -ENOEXEC;
1694                         goto out;
1695                 }
1696
1697                 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1698                         kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1699                         ret = 1;
1700                         goto out_unlock;
1701                 }
1702
1703                 /*
1704                  * Check for a cache maintenance operation. Since we
1705                  * ended-up here, we know it is outside of any memory
1706                  * slot. But we can't find out if that is for a device,
1707                  * or if the guest is just being stupid. The only thing
1708                  * we know for sure is that this range cannot be cached.
1709                  *
1710                  * So let's assume that the guest is just being
1711                  * cautious, and skip the instruction.
1712                  */
1713                 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1714                         kvm_incr_pc(vcpu);
1715                         ret = 1;
1716                         goto out_unlock;
1717                 }
1718
1719                 /*
1720                  * The IPA is reported as [MAX:12], so we need to
1721                  * complement it with the bottom 12 bits from the
1722                  * faulting VA. This is always 12 bits, irrespective
1723                  * of the page size.
1724                  */
1725                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1726                 ret = io_mem_abort(vcpu, fault_ipa);
1727                 goto out_unlock;
1728         }
1729
1730         /* Userspace should not be able to register out-of-bounds IPAs */
1731         VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
1732
1733         if (esr_fsc_is_access_flag_fault(esr)) {
1734                 handle_access_fault(vcpu, fault_ipa);
1735                 ret = 1;
1736                 goto out_unlock;
1737         }
1738
1739         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva,
1740                              esr_fsc_is_permission_fault(esr));
1741         if (ret == 0)
1742                 ret = 1;
1743 out:
1744         if (ret == -ENOEXEC) {
1745                 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1746                 ret = 1;
1747         }
1748 out_unlock:
1749         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1750         return ret;
1751 }
1752
1753 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1754 {
1755         if (!kvm->arch.mmu.pgt)
1756                 return false;
1757
1758         __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1759                              (range->end - range->start) << PAGE_SHIFT,
1760                              range->may_block);
1761
1762         return false;
1763 }
1764
1765 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1766 {
1767         kvm_pfn_t pfn = pte_pfn(range->arg.pte);
1768
1769         if (!kvm->arch.mmu.pgt)
1770                 return false;
1771
1772         WARN_ON(range->end - range->start != 1);
1773
1774         /*
1775          * If the page isn't tagged, defer to user_mem_abort() for sanitising
1776          * the MTE tags. The S2 pte should have been unmapped by
1777          * mmu_notifier_invalidate_range_end().
1778          */
1779         if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1780                 return false;
1781
1782         /*
1783          * We've moved a page around, probably through CoW, so let's treat
1784          * it just like a translation fault and the map handler will clean
1785          * the cache to the PoC.
1786          *
1787          * The MMU notifiers will have unmapped a huge PMD before calling
1788          * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1789          * therefore we never need to clear out a huge PMD through this
1790          * calling path and a memcache is not required.
1791          */
1792         kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1793                                PAGE_SIZE, __pfn_to_phys(pfn),
1794                                KVM_PGTABLE_PROT_R, NULL, 0);
1795
1796         return false;
1797 }
1798
1799 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1800 {
1801         u64 size = (range->end - range->start) << PAGE_SHIFT;
1802
1803         if (!kvm->arch.mmu.pgt)
1804                 return false;
1805
1806         return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1807                                                    range->start << PAGE_SHIFT,
1808                                                    size, true);
1809 }
1810
1811 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1812 {
1813         u64 size = (range->end - range->start) << PAGE_SHIFT;
1814
1815         if (!kvm->arch.mmu.pgt)
1816                 return false;
1817
1818         return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1819                                                    range->start << PAGE_SHIFT,
1820                                                    size, false);
1821 }
1822
1823 phys_addr_t kvm_mmu_get_httbr(void)
1824 {
1825         return __pa(hyp_pgtable->pgd);
1826 }
1827
1828 phys_addr_t kvm_get_idmap_vector(void)
1829 {
1830         return hyp_idmap_vector;
1831 }
1832
1833 static int kvm_map_idmap_text(void)
1834 {
1835         unsigned long size = hyp_idmap_end - hyp_idmap_start;
1836         int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1837                                         PAGE_HYP_EXEC);
1838         if (err)
1839                 kvm_err("Failed to idmap %lx-%lx\n",
1840                         hyp_idmap_start, hyp_idmap_end);
1841
1842         return err;
1843 }
1844
1845 static void *kvm_hyp_zalloc_page(void *arg)
1846 {
1847         return (void *)get_zeroed_page(GFP_KERNEL);
1848 }
1849
1850 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1851         .zalloc_page            = kvm_hyp_zalloc_page,
1852         .get_page               = kvm_host_get_page,
1853         .put_page               = kvm_host_put_page,
1854         .phys_to_virt           = kvm_host_va,
1855         .virt_to_phys           = kvm_host_pa,
1856 };
1857
1858 int __init kvm_mmu_init(u32 *hyp_va_bits)
1859 {
1860         int err;
1861         u32 idmap_bits;
1862         u32 kernel_bits;
1863
1864         hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1865         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1866         hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1867         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1868         hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1869
1870         /*
1871          * We rely on the linker script to ensure at build time that the HYP
1872          * init code does not cross a page boundary.
1873          */
1874         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1875
1876         /*
1877          * The ID map may be configured to use an extended virtual address
1878          * range. This is only the case if system RAM is out of range for the
1879          * currently configured page size and VA_BITS_MIN, in which case we will
1880          * also need the extended virtual range for the HYP ID map, or we won't
1881          * be able to enable the EL2 MMU.
1882          *
1883          * However, in some cases the ID map may be configured for fewer than
1884          * the number of VA bits used by the regular kernel stage 1. This
1885          * happens when VA_BITS=52 and the kernel image is placed in PA space
1886          * below 48 bits.
1887          *
1888          * At EL2, there is only one TTBR register, and we can't switch between
1889          * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1890          * line: we need to use the extended range with *both* our translation
1891          * tables.
1892          *
1893          * So use the maximum of the idmap VA bits and the regular kernel stage
1894          * 1 VA bits to assure that the hypervisor can both ID map its code page
1895          * and map any kernel memory.
1896          */
1897         idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1898         kernel_bits = vabits_actual;
1899         *hyp_va_bits = max(idmap_bits, kernel_bits);
1900
1901         kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1902         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1903         kvm_debug("HYP VA range: %lx:%lx\n",
1904                   kern_hyp_va(PAGE_OFFSET),
1905                   kern_hyp_va((unsigned long)high_memory - 1));
1906
1907         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1908             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1909             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1910                 /*
1911                  * The idmap page is intersecting with the VA space,
1912                  * it is not safe to continue further.
1913                  */
1914                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1915                 err = -EINVAL;
1916                 goto out;
1917         }
1918
1919         hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1920         if (!hyp_pgtable) {
1921                 kvm_err("Hyp mode page-table not allocated\n");
1922                 err = -ENOMEM;
1923                 goto out;
1924         }
1925
1926         err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1927         if (err)
1928                 goto out_free_pgtable;
1929
1930         err = kvm_map_idmap_text();
1931         if (err)
1932                 goto out_destroy_pgtable;
1933
1934         io_map_base = hyp_idmap_start;
1935         return 0;
1936
1937 out_destroy_pgtable:
1938         kvm_pgtable_hyp_destroy(hyp_pgtable);
1939 out_free_pgtable:
1940         kfree(hyp_pgtable);
1941         hyp_pgtable = NULL;
1942 out:
1943         return err;
1944 }
1945
1946 void kvm_arch_commit_memory_region(struct kvm *kvm,
1947                                    struct kvm_memory_slot *old,
1948                                    const struct kvm_memory_slot *new,
1949                                    enum kvm_mr_change change)
1950 {
1951         bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
1952
1953         /*
1954          * At this point memslot has been committed and there is an
1955          * allocated dirty_bitmap[], dirty pages will be tracked while the
1956          * memory slot is write protected.
1957          */
1958         if (log_dirty_pages) {
1959
1960                 if (change == KVM_MR_DELETE)
1961                         return;
1962
1963                 /*
1964                  * Huge and normal pages are write-protected and split
1965                  * on either of these two cases:
1966                  *
1967                  * 1. with initial-all-set: gradually with CLEAR ioctls,
1968                  */
1969                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1970                         return;
1971                 /*
1972                  * or
1973                  * 2. without initial-all-set: all in one shot when
1974                  *    enabling dirty logging.
1975                  */
1976                 kvm_mmu_wp_memory_region(kvm, new->id);
1977                 kvm_mmu_split_memory_region(kvm, new->id);
1978         } else {
1979                 /*
1980                  * Free any leftovers from the eager page splitting cache. Do
1981                  * this when deleting, moving, disabling dirty logging, or
1982                  * creating the memslot (a nop). Doing it for deletes makes
1983                  * sure we don't leak memory, and there's no need to keep the
1984                  * cache around for any of the other cases.
1985                  */
1986                 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
1987         }
1988 }
1989
1990 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1991                                    const struct kvm_memory_slot *old,
1992                                    struct kvm_memory_slot *new,
1993                                    enum kvm_mr_change change)
1994 {
1995         hva_t hva, reg_end;
1996         int ret = 0;
1997
1998         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1999                         change != KVM_MR_FLAGS_ONLY)
2000                 return 0;
2001
2002         /*
2003          * Prevent userspace from creating a memory region outside of the IPA
2004          * space addressable by the KVM guest IPA space.
2005          */
2006         if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2007                 return -EFAULT;
2008
2009         hva = new->userspace_addr;
2010         reg_end = hva + (new->npages << PAGE_SHIFT);
2011
2012         mmap_read_lock(current->mm);
2013         /*
2014          * A memory region could potentially cover multiple VMAs, and any holes
2015          * between them, so iterate over all of them.
2016          *
2017          *     +--------------------------------------------+
2018          * +---------------+----------------+   +----------------+
2019          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2020          * +---------------+----------------+   +----------------+
2021          *     |               memory region                |
2022          *     +--------------------------------------------+
2023          */
2024         do {
2025                 struct vm_area_struct *vma;
2026
2027                 vma = find_vma_intersection(current->mm, hva, reg_end);
2028                 if (!vma)
2029                         break;
2030
2031                 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2032                         ret = -EINVAL;
2033                         break;
2034                 }
2035
2036                 if (vma->vm_flags & VM_PFNMAP) {
2037                         /* IO region dirty page logging not allowed */
2038                         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2039                                 ret = -EINVAL;
2040                                 break;
2041                         }
2042                 }
2043                 hva = min(reg_end, vma->vm_end);
2044         } while (hva < reg_end);
2045
2046         mmap_read_unlock(current->mm);
2047         return ret;
2048 }
2049
2050 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2051 {
2052 }
2053
2054 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2055 {
2056 }
2057
2058 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2059 {
2060         kvm_uninit_stage2_mmu(kvm);
2061 }
2062
2063 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2064                                    struct kvm_memory_slot *slot)
2065 {
2066         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2067         phys_addr_t size = slot->npages << PAGE_SHIFT;
2068
2069         write_lock(&kvm->mmu_lock);
2070         unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2071         write_unlock(&kvm->mmu_lock);
2072 }
2073
2074 /*
2075  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2076  *
2077  * Main problems:
2078  * - S/W ops are local to a CPU (not broadcast)
2079  * - We have line migration behind our back (speculation)
2080  * - System caches don't support S/W at all (damn!)
2081  *
2082  * In the face of the above, the best we can do is to try and convert
2083  * S/W ops to VA ops. Because the guest is not allowed to infer the
2084  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2085  * which is a rather good thing for us.
2086  *
2087  * Also, it is only used when turning caches on/off ("The expected
2088  * usage of the cache maintenance instructions that operate by set/way
2089  * is associated with the cache maintenance instructions associated
2090  * with the powerdown and powerup of caches, if this is required by
2091  * the implementation.").
2092  *
2093  * We use the following policy:
2094  *
2095  * - If we trap a S/W operation, we enable VM trapping to detect
2096  *   caches being turned on/off, and do a full clean.
2097  *
2098  * - We flush the caches on both caches being turned on and off.
2099  *
2100  * - Once the caches are enabled, we stop trapping VM ops.
2101  */
2102 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2103 {
2104         unsigned long hcr = *vcpu_hcr(vcpu);
2105
2106         /*
2107          * If this is the first time we do a S/W operation
2108          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2109          * VM trapping.
2110          *
2111          * Otherwise, rely on the VM trapping to wait for the MMU +
2112          * Caches to be turned off. At that point, we'll be able to
2113          * clean the caches again.
2114          */
2115         if (!(hcr & HCR_TVM)) {
2116                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2117                                         vcpu_has_cache_enabled(vcpu));
2118                 stage2_flush_vm(vcpu->kvm);
2119                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2120         }
2121 }
2122
2123 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2124 {
2125         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2126
2127         /*
2128          * If switching the MMU+caches on, need to invalidate the caches.
2129          * If switching it off, need to clean the caches.
2130          * Clean + invalidate does the trick always.
2131          */
2132         if (now_enabled != was_enabled)
2133                 stage2_flush_vm(vcpu->kvm);
2134
2135         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2136         if (now_enabled)
2137                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2138
2139         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2140 }