GNU Linux-libre 4.14.265-gnu1
[releases.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/extable.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/kvm_emulate.h>
28 #include <asm/kvm_hyp.h>
29 #include <asm/fpsimd.h>
30
31 extern struct exception_table_entry __start___kvm_ex_table;
32 extern struct exception_table_entry __stop___kvm_ex_table;
33
34 static bool __hyp_text __fpsimd_enabled_nvhe(void)
35 {
36         return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
37 }
38
39 static bool __hyp_text __fpsimd_enabled_vhe(void)
40 {
41         return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
42 }
43
44 static hyp_alternate_select(__fpsimd_is_enabled,
45                             __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
46                             ARM64_HAS_VIRT_HOST_EXTN);
47
48 bool __hyp_text __fpsimd_enabled(void)
49 {
50         return __fpsimd_is_enabled()();
51 }
52
53 static void __hyp_text __activate_traps_vhe(void)
54 {
55         u64 val;
56
57         val = read_sysreg(cpacr_el1);
58         val |= CPACR_EL1_TTA;
59         val &= ~CPACR_EL1_FPEN;
60         write_sysreg(val, cpacr_el1);
61
62         write_sysreg(kvm_get_hyp_vector(), vbar_el1);
63 }
64
65 static void __hyp_text __activate_traps_nvhe(void)
66 {
67         u64 val;
68
69         val = CPTR_EL2_DEFAULT;
70         val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
71         write_sysreg(val, cptr_el2);
72 }
73
74 static hyp_alternate_select(__activate_traps_arch,
75                             __activate_traps_nvhe, __activate_traps_vhe,
76                             ARM64_HAS_VIRT_HOST_EXTN);
77
78 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
79 {
80         u64 val;
81
82         /*
83          * We are about to set CPTR_EL2.TFP to trap all floating point
84          * register accesses to EL2, however, the ARM ARM clearly states that
85          * traps are only taken to EL2 if the operation would not otherwise
86          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
87          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
88          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
89          * it will cause an exception.
90          */
91         val = vcpu->arch.hcr_el2;
92         if (!(val & HCR_RW) && system_supports_fpsimd()) {
93                 write_sysreg(1 << 30, fpexc32_el2);
94                 isb();
95         }
96         write_sysreg(val, hcr_el2);
97         /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
98         write_sysreg(1 << 15, hstr_el2);
99         /*
100          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
101          * PMSELR_EL0 to make sure it never contains the cycle
102          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
103          * EL1 instead of being trapped to EL2.
104          */
105         write_sysreg(0, pmselr_el0);
106         write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
107         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
108         __activate_traps_arch()();
109 }
110
111 static void __hyp_text __deactivate_traps_vhe(void)
112 {
113         extern char vectors[];  /* kernel exception vectors */
114         u64 mdcr_el2 = read_sysreg(mdcr_el2);
115
116         mdcr_el2 &= MDCR_EL2_HPMN_MASK |
117                     MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
118                     MDCR_EL2_TPMS;
119
120         write_sysreg(mdcr_el2, mdcr_el2);
121         write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
122         write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
123         write_sysreg(vectors, vbar_el1);
124 }
125
126 static void __hyp_text __deactivate_traps_nvhe(void)
127 {
128         u64 mdcr_el2 = read_sysreg(mdcr_el2);
129
130         mdcr_el2 &= MDCR_EL2_HPMN_MASK;
131         mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
132
133         write_sysreg(mdcr_el2, mdcr_el2);
134         write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
135         write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
136 }
137
138 static hyp_alternate_select(__deactivate_traps_arch,
139                             __deactivate_traps_nvhe, __deactivate_traps_vhe,
140                             ARM64_HAS_VIRT_HOST_EXTN);
141
142 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
143 {
144         /*
145          * If we pended a virtual abort, preserve it until it gets
146          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
147          * the crucial bit is "On taking a vSError interrupt,
148          * HCR_EL2.VSE is cleared to 0."
149          */
150         if (vcpu->arch.hcr_el2 & HCR_VSE)
151                 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
152
153         __deactivate_traps_arch()();
154         write_sysreg(0, hstr_el2);
155         write_sysreg(0, pmuserenr_el0);
156 }
157
158 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
159 {
160         struct kvm *kvm = kern_hyp_va(vcpu->kvm);
161         write_sysreg(kvm->arch.vttbr, vttbr_el2);
162 }
163
164 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
165 {
166         write_sysreg(0, vttbr_el2);
167 }
168
169 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
170 {
171         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
172                 __vgic_v3_save_state(vcpu);
173         else
174                 __vgic_v2_save_state(vcpu);
175
176         write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
177 }
178
179 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
180 {
181         u64 val;
182
183         val = read_sysreg(hcr_el2);
184         val |=  HCR_INT_OVERRIDE;
185         val |= vcpu->arch.irq_lines;
186         write_sysreg(val, hcr_el2);
187
188         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
189                 __vgic_v3_restore_state(vcpu);
190         else
191                 __vgic_v2_restore_state(vcpu);
192 }
193
194 static bool __hyp_text __true_value(void)
195 {
196         return true;
197 }
198
199 static bool __hyp_text __false_value(void)
200 {
201         return false;
202 }
203
204 static hyp_alternate_select(__check_arm_834220,
205                             __false_value, __true_value,
206                             ARM64_WORKAROUND_834220);
207
208 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
209 {
210         u64 par, tmp;
211
212         /*
213          * Resolve the IPA the hard way using the guest VA.
214          *
215          * Stage-1 translation already validated the memory access
216          * rights. As such, we can use the EL1 translation regime, and
217          * don't have to distinguish between EL0 and EL1 access.
218          *
219          * We do need to save/restore PAR_EL1 though, as we haven't
220          * saved the guest context yet, and we may return early...
221          */
222         par = read_sysreg(par_el1);
223         if (!__kvm_at("s1e1r", far))
224                 tmp = read_sysreg(par_el1);
225         else
226                 tmp = 1; /* back to the guest */
227         write_sysreg(par, par_el1);
228
229         if (unlikely(tmp & 1))
230                 return false; /* Translation failed, back to guest */
231
232         /* Convert PAR to HPFAR format */
233         *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
234         return true;
235 }
236
237 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
238 {
239         u64 esr = read_sysreg_el2(esr);
240         u8 ec = ESR_ELx_EC(esr);
241         u64 hpfar, far;
242
243         vcpu->arch.fault.esr_el2 = esr;
244
245         if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
246                 return true;
247
248         far = read_sysreg_el2(far);
249
250         /*
251          * The HPFAR can be invalid if the stage 2 fault did not
252          * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
253          * bit is clear) and one of the two following cases are true:
254          *   1. The fault was due to a permission fault
255          *   2. The processor carries errata 834220
256          *
257          * Therefore, for all non S1PTW faults where we either have a
258          * permission fault or the errata workaround is enabled, we
259          * resolve the IPA using the AT instruction.
260          */
261         if (!(esr & ESR_ELx_S1PTW) &&
262             (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
263                 if (!__translate_far_to_hpfar(far, &hpfar))
264                         return false;
265         } else {
266                 hpfar = read_sysreg(hpfar_el2);
267         }
268
269         vcpu->arch.fault.far_el2 = far;
270         vcpu->arch.fault.hpfar_el2 = hpfar;
271         return true;
272 }
273
274 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
275 {
276         *vcpu_pc(vcpu) = read_sysreg_el2(elr);
277
278         if (vcpu_mode_is_32bit(vcpu)) {
279                 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
280                 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
281                 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
282         } else {
283                 *vcpu_pc(vcpu) += 4;
284         }
285
286         write_sysreg_el2(*vcpu_pc(vcpu), elr);
287 }
288
289 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
290 {
291         if (!cpus_have_const_cap(ARM64_SSBD))
292                 return false;
293
294         return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
295 }
296
297 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
298 {
299 #ifdef CONFIG_ARM64_SSBD
300         /*
301          * The host runs with the workaround always present. If the
302          * guest wants it disabled, so be it...
303          */
304         if (__needs_ssbd_off(vcpu) &&
305             __hyp_this_cpu_read(arm64_ssbd_callback_required))
306                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
307 #endif
308 }
309
310 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
311 {
312 #ifdef CONFIG_ARM64_SSBD
313         /*
314          * If the guest has disabled the workaround, bring it back on.
315          */
316         if (__needs_ssbd_off(vcpu) &&
317             __hyp_this_cpu_read(arm64_ssbd_callback_required))
318                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
319 #endif
320 }
321
322 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
323 {
324         struct kvm_cpu_context *host_ctxt;
325         struct kvm_cpu_context *guest_ctxt;
326         bool fp_enabled;
327         u64 exit_code;
328
329         vcpu = kern_hyp_va(vcpu);
330
331         host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
332         host_ctxt->__hyp_running_vcpu = vcpu;
333         guest_ctxt = &vcpu->arch.ctxt;
334
335         __sysreg_save_host_state(host_ctxt);
336         __debug_cond_save_host_state(vcpu);
337
338         __activate_traps(vcpu);
339         __activate_vm(vcpu);
340
341         __vgic_restore_state(vcpu);
342         __timer_restore_state(vcpu);
343
344         /*
345          * We must restore the 32-bit state before the sysregs, thanks
346          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
347          */
348         __sysreg32_restore_state(vcpu);
349         __sysreg_restore_guest_state(guest_ctxt);
350         __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
351
352         __set_guest_arch_workaround_state(vcpu);
353
354         /* Jump in the fire! */
355 again:
356         exit_code = __guest_enter(vcpu, host_ctxt);
357         /* And we're baaack! */
358
359         /*
360          * We're using the raw exception code in order to only process
361          * the trap if no SError is pending. We will come back to the
362          * same PC once the SError has been injected, and replay the
363          * trapping instruction.
364          */
365         if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
366                 goto again;
367
368         if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
369             exit_code == ARM_EXCEPTION_TRAP) {
370                 bool valid;
371
372                 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
373                         kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
374                         kvm_vcpu_dabt_isvalid(vcpu) &&
375                         !kvm_vcpu_dabt_isextabt(vcpu) &&
376                         !kvm_vcpu_dabt_iss1tw(vcpu);
377
378                 if (valid) {
379                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
380
381                         if (ret == 1) {
382                                 __skip_instr(vcpu);
383                                 goto again;
384                         }
385
386                         if (ret == -1) {
387                                 /* Promote an illegal access to an SError */
388                                 __skip_instr(vcpu);
389                                 exit_code = ARM_EXCEPTION_EL1_SERROR;
390                         }
391
392                         /* 0 falls through to be handler out of EL2 */
393                 }
394         }
395
396         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
397             exit_code == ARM_EXCEPTION_TRAP &&
398             (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
399              kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
400                 int ret = __vgic_v3_perform_cpuif_access(vcpu);
401
402                 if (ret == 1) {
403                         __skip_instr(vcpu);
404                         goto again;
405                 }
406
407                 /* 0 falls through to be handled out of EL2 */
408         }
409
410         __set_host_arch_workaround_state(vcpu);
411
412         fp_enabled = __fpsimd_enabled();
413
414         __sysreg_save_guest_state(guest_ctxt);
415         __sysreg32_save_state(vcpu);
416         __timer_save_state(vcpu);
417         __vgic_save_state(vcpu);
418
419         __deactivate_traps(vcpu);
420         __deactivate_vm(vcpu);
421
422         __sysreg_restore_host_state(host_ctxt);
423
424         if (fp_enabled) {
425                 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
426                 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
427         }
428
429         __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
430         /*
431          * This must come after restoring the host sysregs, since a non-VHE
432          * system may enable SPE here and make use of the TTBRs.
433          */
434         __debug_cond_restore_host_state(vcpu);
435
436         return exit_code;
437 }
438
439 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
440
441 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
442                                              struct kvm_vcpu *vcpu)
443 {
444         unsigned long str_va;
445
446         /*
447          * Force the panic string to be loaded from the literal pool,
448          * making sure it is a kernel address and not a PC-relative
449          * reference.
450          */
451         asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
452
453         __hyp_do_panic(str_va,
454                        spsr,  elr,
455                        read_sysreg(esr_el2),   read_sysreg_el2(far),
456                        read_sysreg(hpfar_el2), par, vcpu);
457 }
458
459 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
460                                             struct kvm_vcpu *vcpu)
461 {
462         panic(__hyp_panic_string,
463               spsr,  elr,
464               read_sysreg_el2(esr),   read_sysreg_el2(far),
465               read_sysreg(hpfar_el2), par, vcpu);
466 }
467
468 static hyp_alternate_select(__hyp_call_panic,
469                             __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
470                             ARM64_HAS_VIRT_HOST_EXTN);
471
472 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
473 {
474         struct kvm_vcpu *vcpu = NULL;
475
476         u64 spsr = read_sysreg_el2(spsr);
477         u64 elr = read_sysreg_el2(elr);
478         u64 par = read_sysreg(par_el1);
479
480         if (read_sysreg(vttbr_el2)) {
481                 vcpu = host_ctxt->__hyp_running_vcpu;
482                 __timer_save_state(vcpu);
483                 __deactivate_traps(vcpu);
484                 __deactivate_vm(vcpu);
485                 __sysreg_restore_host_state(host_ctxt);
486         }
487
488         /* Call panic for real */
489         __hyp_call_panic()(spsr, elr, par, vcpu);
490
491         unreachable();
492 }
493
494 asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
495 {
496         unsigned long addr, fixup;
497         struct kvm_cpu_context *host_ctxt;
498         struct exception_table_entry *entry, *end;
499         unsigned long elr_el2 = read_sysreg(elr_el2);
500
501         entry = hyp_symbol_addr(__start___kvm_ex_table);
502         end = hyp_symbol_addr(__stop___kvm_ex_table);
503         host_ctxt = __hyp_this_cpu_ptr(kvm_host_cpu_state);
504
505         while (entry < end) {
506                 addr = (unsigned long)&entry->insn + entry->insn;
507                 fixup = (unsigned long)&entry->fixup + entry->fixup;
508
509                 if (addr != elr_el2) {
510                         entry++;
511                         continue;
512                 }
513
514                 write_sysreg(fixup, elr_el2);
515                 return;
516         }
517
518         hyp_panic(host_ctxt);
519 }