GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / arm64 / kvm / hyp / switch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/arm-smccc.h>
8 #include <linux/kvm_host.h>
9 #include <linux/types.h>
10 #include <linux/jump_label.h>
11 #include <uapi/linux/psci.h>
12
13 #include <kvm/arm_psci.h>
14
15 #include <asm/arch_gicv3.h>
16 #include <asm/cpufeature.h>
17 #include <asm/extable.h>
18 #include <asm/kprobes.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_host.h>
22 #include <asm/kvm_hyp.h>
23 #include <asm/kvm_mmu.h>
24 #include <asm/fpsimd.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/processor.h>
27 #include <asm/thread_info.h>
28 #include <asm/vectors.h>
29
30 extern struct exception_table_entry __start___kvm_ex_table;
31 extern struct exception_table_entry __stop___kvm_ex_table;
32
33 /* Check whether the FP regs were dirtied while in the host-side run loop: */
34 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
35 {
36         /*
37          * When the system doesn't support FP/SIMD, we cannot rely on
38          * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
39          * abort on the very first access to FP and thus we should never
40          * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
41          * trap the accesses.
42          */
43         if (!system_supports_fpsimd() ||
44             vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
45                 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
46                                       KVM_ARM64_FP_HOST);
47
48         return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
49 }
50
51 /* Save the 32-bit only FPSIMD system register state */
52 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
53 {
54         if (!vcpu_el1_is_32bit(vcpu))
55                 return;
56
57         vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
58 }
59
60 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
61 {
62         /*
63          * We are about to set CPTR_EL2.TFP to trap all floating point
64          * register accesses to EL2, however, the ARM ARM clearly states that
65          * traps are only taken to EL2 if the operation would not otherwise
66          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
67          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
68          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
69          * it will cause an exception.
70          */
71         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
72                 write_sysreg(1 << 30, fpexc32_el2);
73                 isb();
74         }
75 }
76
77 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
78 {
79         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
80         write_sysreg(1 << 15, hstr_el2);
81
82         /*
83          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
84          * PMSELR_EL0 to make sure it never contains the cycle
85          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
86          * EL1 instead of being trapped to EL2.
87          */
88         write_sysreg(0, pmselr_el0);
89         write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
90         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
91 }
92
93 static void __hyp_text __deactivate_traps_common(void)
94 {
95         write_sysreg(0, hstr_el2);
96         write_sysreg(0, pmuserenr_el0);
97 }
98
99 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
100 {
101         u64 val;
102
103         val = read_sysreg(cpacr_el1);
104         val |= CPACR_EL1_TTA;
105         val &= ~CPACR_EL1_ZEN;
106         if (update_fp_enabled(vcpu)) {
107                 if (vcpu_has_sve(vcpu))
108                         val |= CPACR_EL1_ZEN;
109         } else {
110                 val &= ~CPACR_EL1_FPEN;
111                 __activate_traps_fpsimd32(vcpu);
112         }
113
114         write_sysreg(val, cpacr_el1);
115
116         write_sysreg(kvm_get_hyp_vector(), vbar_el1);
117 }
118 NOKPROBE_SYMBOL(activate_traps_vhe);
119
120 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
121 {
122         u64 val;
123
124         __activate_traps_common(vcpu);
125
126         val = CPTR_EL2_DEFAULT;
127         val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
128         if (!update_fp_enabled(vcpu)) {
129                 val |= CPTR_EL2_TFP;
130                 __activate_traps_fpsimd32(vcpu);
131         }
132
133         write_sysreg(val, cptr_el2);
134 }
135
136 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
137 {
138         u64 hcr = vcpu->arch.hcr_el2;
139
140         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
141                 hcr |= HCR_TVM;
142
143         write_sysreg(hcr, hcr_el2);
144
145         if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
146                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
147
148         if (has_vhe())
149                 activate_traps_vhe(vcpu);
150         else
151                 __activate_traps_nvhe(vcpu);
152 }
153
154 static void deactivate_traps_vhe(void)
155 {
156         const char *host_vectors = vectors;
157         write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
158
159         /*
160          * ARM erratum 1165522 requires the actual execution of the above
161          * before we can switch to the EL2/EL0 translation regime used by
162          * the host.
163          */
164         asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_1165522));
165
166         write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
167
168         if (!arm64_kernel_unmapped_at_el0())
169                 host_vectors = __this_cpu_read(this_cpu_vector);
170         write_sysreg(host_vectors, vbar_el1);
171 }
172 NOKPROBE_SYMBOL(deactivate_traps_vhe);
173
174 static void __hyp_text __deactivate_traps_nvhe(void)
175 {
176         u64 mdcr_el2 = read_sysreg(mdcr_el2);
177
178         __deactivate_traps_common();
179
180         mdcr_el2 &= MDCR_EL2_HPMN_MASK;
181         mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
182
183         write_sysreg(mdcr_el2, mdcr_el2);
184         write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
185         write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
186 }
187
188 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
189 {
190         /*
191          * If we pended a virtual abort, preserve it until it gets
192          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
193          * the crucial bit is "On taking a vSError interrupt,
194          * HCR_EL2.VSE is cleared to 0."
195          */
196         if (vcpu->arch.hcr_el2 & HCR_VSE) {
197                 vcpu->arch.hcr_el2 &= ~HCR_VSE;
198                 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
199         }
200
201         if (has_vhe())
202                 deactivate_traps_vhe();
203         else
204                 __deactivate_traps_nvhe();
205 }
206
207 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
208 {
209         __activate_traps_common(vcpu);
210 }
211
212 void deactivate_traps_vhe_put(void)
213 {
214         u64 mdcr_el2 = read_sysreg(mdcr_el2);
215
216         mdcr_el2 &= MDCR_EL2_HPMN_MASK |
217                     MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
218                     MDCR_EL2_TPMS;
219
220         write_sysreg(mdcr_el2, mdcr_el2);
221
222         __deactivate_traps_common();
223 }
224
225 static void __hyp_text __activate_vm(struct kvm *kvm)
226 {
227         __load_guest_stage2(kvm);
228 }
229
230 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
231 {
232         write_sysreg(0, vttbr_el2);
233 }
234
235 /* Save VGICv3 state on non-VHE systems */
236 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
237 {
238         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
239                 __vgic_v3_save_state(vcpu);
240                 __vgic_v3_deactivate_traps(vcpu);
241         }
242 }
243
244 /* Restore VGICv3 state on non_VEH systems */
245 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
246 {
247         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
248                 __vgic_v3_activate_traps(vcpu);
249                 __vgic_v3_restore_state(vcpu);
250         }
251 }
252
253 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
254 {
255         u64 par, tmp;
256
257         /*
258          * Resolve the IPA the hard way using the guest VA.
259          *
260          * Stage-1 translation already validated the memory access
261          * rights. As such, we can use the EL1 translation regime, and
262          * don't have to distinguish between EL0 and EL1 access.
263          *
264          * We do need to save/restore PAR_EL1 though, as we haven't
265          * saved the guest context yet, and we may return early...
266          */
267         par = read_sysreg(par_el1);
268         if (!__kvm_at("s1e1r", far))
269                 tmp = read_sysreg(par_el1);
270         else
271                 tmp = SYS_PAR_EL1_F; /* back to the guest */
272         write_sysreg(par, par_el1);
273
274         if (unlikely(tmp & SYS_PAR_EL1_F))
275                 return false; /* Translation failed, back to guest */
276
277         /* Convert PAR to HPFAR format */
278         *hpfar = PAR_TO_HPFAR(tmp);
279         return true;
280 }
281
282 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
283 {
284         u8 ec;
285         u64 esr;
286         u64 hpfar, far;
287
288         esr = vcpu->arch.fault.esr_el2;
289         ec = ESR_ELx_EC(esr);
290
291         if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
292                 return true;
293
294         far = read_sysreg_el2(SYS_FAR);
295
296         /*
297          * The HPFAR can be invalid if the stage 2 fault did not
298          * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
299          * bit is clear) and one of the two following cases are true:
300          *   1. The fault was due to a permission fault
301          *   2. The processor carries errata 834220
302          *
303          * Therefore, for all non S1PTW faults where we either have a
304          * permission fault or the errata workaround is enabled, we
305          * resolve the IPA using the AT instruction.
306          */
307         if (!(esr & ESR_ELx_S1PTW) &&
308             (cpus_have_const_cap(ARM64_WORKAROUND_834220) ||
309              (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
310                 if (!__translate_far_to_hpfar(far, &hpfar))
311                         return false;
312         } else {
313                 hpfar = read_sysreg(hpfar_el2);
314         }
315
316         vcpu->arch.fault.far_el2 = far;
317         vcpu->arch.fault.hpfar_el2 = hpfar;
318         return true;
319 }
320
321 /* Check for an FPSIMD/SVE trap and handle as appropriate */
322 static bool __hyp_text __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
323 {
324         bool vhe, sve_guest, sve_host;
325         u8 hsr_ec;
326
327         if (!system_supports_fpsimd())
328                 return false;
329
330         if (system_supports_sve()) {
331                 sve_guest = vcpu_has_sve(vcpu);
332                 sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
333                 vhe = true;
334         } else {
335                 sve_guest = false;
336                 sve_host = false;
337                 vhe = has_vhe();
338         }
339
340         hsr_ec = kvm_vcpu_trap_get_class(vcpu);
341         if (hsr_ec != ESR_ELx_EC_FP_ASIMD &&
342             hsr_ec != ESR_ELx_EC_SVE)
343                 return false;
344
345         /* Don't handle SVE traps for non-SVE vcpus here: */
346         if (!sve_guest)
347                 if (hsr_ec != ESR_ELx_EC_FP_ASIMD)
348                         return false;
349
350         /* Valid trap.  Switch the context: */
351
352         if (vhe) {
353                 u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
354
355                 if (sve_guest)
356                         reg |= CPACR_EL1_ZEN;
357
358                 write_sysreg(reg, cpacr_el1);
359         } else {
360                 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
361                              cptr_el2);
362         }
363
364         isb();
365
366         if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
367                 /*
368                  * In the SVE case, VHE is assumed: it is enforced by
369                  * Kconfig and kvm_arch_init().
370                  */
371                 if (sve_host) {
372                         struct thread_struct *thread = container_of(
373                                 vcpu->arch.host_fpsimd_state,
374                                 struct thread_struct, uw.fpsimd_state);
375
376                         sve_save_state(sve_pffr(thread),
377                                        &vcpu->arch.host_fpsimd_state->fpsr);
378                 } else {
379                         __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
380                 }
381
382                 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
383         }
384
385         if (sve_guest) {
386                 sve_load_state(vcpu_sve_pffr(vcpu),
387                                &vcpu->arch.ctxt.gp_regs.fp_regs.fpsr,
388                                sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
389                 write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12);
390         } else {
391                 __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
392         }
393
394         /* Skip restoring fpexc32 for AArch64 guests */
395         if (!(read_sysreg(hcr_el2) & HCR_RW))
396                 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
397                              fpexc32_el2);
398
399         vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
400
401         return true;
402 }
403
404 static bool __hyp_text handle_tx2_tvm(struct kvm_vcpu *vcpu)
405 {
406         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_hsr(vcpu));
407         int rt = kvm_vcpu_sys_get_rt(vcpu);
408         u64 val = vcpu_get_reg(vcpu, rt);
409
410         /*
411          * The normal sysreg handling code expects to see the traps,
412          * let's not do anything here.
413          */
414         if (vcpu->arch.hcr_el2 & HCR_TVM)
415                 return false;
416
417         switch (sysreg) {
418         case SYS_SCTLR_EL1:
419                 write_sysreg_el1(val, SYS_SCTLR);
420                 break;
421         case SYS_TTBR0_EL1:
422                 write_sysreg_el1(val, SYS_TTBR0);
423                 break;
424         case SYS_TTBR1_EL1:
425                 write_sysreg_el1(val, SYS_TTBR1);
426                 break;
427         case SYS_TCR_EL1:
428                 write_sysreg_el1(val, SYS_TCR);
429                 break;
430         case SYS_ESR_EL1:
431                 write_sysreg_el1(val, SYS_ESR);
432                 break;
433         case SYS_FAR_EL1:
434                 write_sysreg_el1(val, SYS_FAR);
435                 break;
436         case SYS_AFSR0_EL1:
437                 write_sysreg_el1(val, SYS_AFSR0);
438                 break;
439         case SYS_AFSR1_EL1:
440                 write_sysreg_el1(val, SYS_AFSR1);
441                 break;
442         case SYS_MAIR_EL1:
443                 write_sysreg_el1(val, SYS_MAIR);
444                 break;
445         case SYS_AMAIR_EL1:
446                 write_sysreg_el1(val, SYS_AMAIR);
447                 break;
448         case SYS_CONTEXTIDR_EL1:
449                 write_sysreg_el1(val, SYS_CONTEXTIDR);
450                 break;
451         default:
452                 return false;
453         }
454
455         __kvm_skip_instr(vcpu);
456         return true;
457 }
458
459 /*
460  * Return true when we were able to fixup the guest exit and should return to
461  * the guest, false when we should restore the host state and return to the
462  * main run loop.
463  */
464 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
465 {
466         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
467                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
468
469         /*
470          * We're using the raw exception code in order to only process
471          * the trap if no SError is pending. We will come back to the
472          * same PC once the SError has been injected, and replay the
473          * trapping instruction.
474          */
475         if (*exit_code != ARM_EXCEPTION_TRAP)
476                 goto exit;
477
478         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
479             kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
480             handle_tx2_tvm(vcpu))
481                 return true;
482
483         /*
484          * We trap the first access to the FP/SIMD to save the host context
485          * and restore the guest context lazily.
486          * If FP/SIMD is not implemented, handle the trap and inject an
487          * undefined instruction exception to the guest.
488          * Similarly for trapped SVE accesses.
489          */
490         if (__hyp_handle_fpsimd(vcpu))
491                 return true;
492
493         if (!__populate_fault_info(vcpu))
494                 return true;
495
496         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
497                 bool valid;
498
499                 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
500                         kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
501                         kvm_vcpu_dabt_isvalid(vcpu) &&
502                         !kvm_vcpu_dabt_isextabt(vcpu) &&
503                         !kvm_vcpu_abt_iss1tw(vcpu);
504
505                 if (valid) {
506                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
507
508                         if (ret == 1)
509                                 return true;
510
511                         /* Promote an illegal access to an SError.*/
512                         if (ret == -1)
513                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
514
515                         goto exit;
516                 }
517         }
518
519         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
520             (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
521              kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
522                 int ret = __vgic_v3_perform_cpuif_access(vcpu);
523
524                 if (ret == 1)
525                         return true;
526         }
527
528 exit:
529         /* Return to the host kernel and handle the exit */
530         return false;
531 }
532
533 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
534 {
535         if (!cpus_have_const_cap(ARM64_SSBD))
536                 return false;
537
538         return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
539 }
540
541 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
542 {
543 #ifdef CONFIG_ARM64_SSBD
544         /*
545          * The host runs with the workaround always present. If the
546          * guest wants it disabled, so be it...
547          */
548         if (__needs_ssbd_off(vcpu) &&
549             __hyp_this_cpu_read(arm64_ssbd_callback_required))
550                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
551 #endif
552 }
553
554 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
555 {
556 #ifdef CONFIG_ARM64_SSBD
557         /*
558          * If the guest has disabled the workaround, bring it back on.
559          */
560         if (__needs_ssbd_off(vcpu) &&
561             __hyp_this_cpu_read(arm64_ssbd_callback_required))
562                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
563 #endif
564 }
565
566 /**
567  * Disable host events, enable guest events
568  */
569 static bool __hyp_text __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt)
570 {
571         struct kvm_host_data *host;
572         struct kvm_pmu_events *pmu;
573
574         host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
575         pmu = &host->pmu_events;
576
577         if (pmu->events_host)
578                 write_sysreg(pmu->events_host, pmcntenclr_el0);
579
580         if (pmu->events_guest)
581                 write_sysreg(pmu->events_guest, pmcntenset_el0);
582
583         return (pmu->events_host || pmu->events_guest);
584 }
585
586 /**
587  * Disable guest events, enable host events
588  */
589 static void __hyp_text __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt)
590 {
591         struct kvm_host_data *host;
592         struct kvm_pmu_events *pmu;
593
594         host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
595         pmu = &host->pmu_events;
596
597         if (pmu->events_guest)
598                 write_sysreg(pmu->events_guest, pmcntenclr_el0);
599
600         if (pmu->events_host)
601                 write_sysreg(pmu->events_host, pmcntenset_el0);
602 }
603
604 /* Switch to the guest for VHE systems running in EL2 */
605 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
606 {
607         struct kvm_cpu_context *host_ctxt;
608         struct kvm_cpu_context *guest_ctxt;
609         u64 exit_code;
610
611         host_ctxt = vcpu->arch.host_cpu_context;
612         host_ctxt->__hyp_running_vcpu = vcpu;
613         guest_ctxt = &vcpu->arch.ctxt;
614
615         sysreg_save_host_state_vhe(host_ctxt);
616
617         /*
618          * ARM erratum 1165522 requires us to configure both stage 1 and
619          * stage 2 translation for the guest context before we clear
620          * HCR_EL2.TGE.
621          *
622          * We have already configured the guest's stage 1 translation in
623          * kvm_vcpu_load_sysregs above.  We must now call __activate_vm
624          * before __activate_traps, because __activate_vm configures
625          * stage 2 translation, and __activate_traps clear HCR_EL2.TGE
626          * (among other things).
627          */
628         __activate_vm(vcpu->kvm);
629         __activate_traps(vcpu);
630
631         sysreg_restore_guest_state_vhe(guest_ctxt);
632         __debug_switch_to_guest(vcpu);
633
634         __set_guest_arch_workaround_state(vcpu);
635
636         do {
637                 /* Jump in the fire! */
638                 exit_code = __guest_enter(vcpu, host_ctxt);
639
640                 /* And we're baaack! */
641         } while (fixup_guest_exit(vcpu, &exit_code));
642
643         __set_host_arch_workaround_state(vcpu);
644
645         sysreg_save_guest_state_vhe(guest_ctxt);
646
647         __deactivate_traps(vcpu);
648
649         sysreg_restore_host_state_vhe(host_ctxt);
650
651         if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
652                 __fpsimd_save_fpexc32(vcpu);
653
654         __debug_switch_to_host(vcpu);
655
656         return exit_code;
657 }
658 NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
659
660 /* Switch to the guest for legacy non-VHE systems */
661 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
662 {
663         struct kvm_cpu_context *host_ctxt;
664         struct kvm_cpu_context *guest_ctxt;
665         bool pmu_switch_needed;
666         u64 exit_code;
667
668         /*
669          * Having IRQs masked via PMR when entering the guest means the GIC
670          * will not signal the CPU of interrupts of lower priority, and the
671          * only way to get out will be via guest exceptions.
672          * Naturally, we want to avoid this.
673          */
674         if (system_uses_irq_prio_masking()) {
675                 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
676                 dsb(sy);
677         }
678
679         vcpu = kern_hyp_va(vcpu);
680
681         host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
682         host_ctxt->__hyp_running_vcpu = vcpu;
683         guest_ctxt = &vcpu->arch.ctxt;
684
685         pmu_switch_needed = __pmu_switch_to_guest(host_ctxt);
686
687         __sysreg_save_state_nvhe(host_ctxt);
688
689         /*
690          * We must flush and disable the SPE buffer for nVHE, as
691          * the translation regime(EL1&0) is going to be loaded with
692          * that of the guest. And we must do this before we change the
693          * translation regime to EL2 (via MDCR_EL2_EPB == 0) and
694          * before we load guest Stage1.
695          */
696         __debug_save_host_buffers_nvhe(vcpu);
697
698         __activate_vm(kern_hyp_va(vcpu->kvm));
699         __activate_traps(vcpu);
700
701         __hyp_vgic_restore_state(vcpu);
702         __timer_enable_traps(vcpu);
703
704         /*
705          * We must restore the 32-bit state before the sysregs, thanks
706          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
707          */
708         __sysreg32_restore_state(vcpu);
709         __sysreg_restore_state_nvhe(guest_ctxt);
710         __debug_switch_to_guest(vcpu);
711
712         __set_guest_arch_workaround_state(vcpu);
713
714         do {
715                 /* Jump in the fire! */
716                 exit_code = __guest_enter(vcpu, host_ctxt);
717
718                 /* And we're baaack! */
719         } while (fixup_guest_exit(vcpu, &exit_code));
720
721         __set_host_arch_workaround_state(vcpu);
722
723         __sysreg_save_state_nvhe(guest_ctxt);
724         __sysreg32_save_state(vcpu);
725         __timer_disable_traps(vcpu);
726         __hyp_vgic_save_state(vcpu);
727
728         __deactivate_traps(vcpu);
729         __deactivate_vm(vcpu);
730
731         __sysreg_restore_state_nvhe(host_ctxt);
732
733         if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
734                 __fpsimd_save_fpexc32(vcpu);
735
736         __debug_switch_to_host(vcpu);
737
738         /*
739          * This must come after restoring the host sysregs, since a non-VHE
740          * system may enable SPE here and make use of the TTBRs.
741          */
742         __debug_restore_host_buffers_nvhe(vcpu);
743
744         if (pmu_switch_needed)
745                 __pmu_switch_to_host(host_ctxt);
746
747         /* Returning to host will clear PSR.I, remask PMR if needed */
748         if (system_uses_irq_prio_masking())
749                 gic_write_pmr(GIC_PRIO_IRQOFF);
750
751         return exit_code;
752 }
753
754 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
755
756 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
757                                              struct kvm_cpu_context *__host_ctxt)
758 {
759         struct kvm_vcpu *vcpu;
760         unsigned long str_va;
761
762         vcpu = __host_ctxt->__hyp_running_vcpu;
763
764         if (read_sysreg(vttbr_el2)) {
765                 __timer_disable_traps(vcpu);
766                 __deactivate_traps(vcpu);
767                 __deactivate_vm(vcpu);
768                 __sysreg_restore_state_nvhe(__host_ctxt);
769         }
770
771         /*
772          * Force the panic string to be loaded from the literal pool,
773          * making sure it is a kernel address and not a PC-relative
774          * reference.
775          */
776         asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
777
778         __hyp_do_panic(str_va,
779                        spsr, elr,
780                        read_sysreg(esr_el2), read_sysreg_el2(SYS_FAR),
781                        read_sysreg(hpfar_el2), par, vcpu);
782 }
783
784 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
785                                  struct kvm_cpu_context *host_ctxt)
786 {
787         struct kvm_vcpu *vcpu;
788         vcpu = host_ctxt->__hyp_running_vcpu;
789
790         __deactivate_traps(vcpu);
791         sysreg_restore_host_state_vhe(host_ctxt);
792
793         panic(__hyp_panic_string,
794               spsr,  elr,
795               read_sysreg_el2(SYS_ESR),   read_sysreg_el2(SYS_FAR),
796               read_sysreg(hpfar_el2), par, vcpu);
797 }
798 NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
799
800 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
801 {
802         u64 spsr = read_sysreg_el2(SYS_SPSR);
803         u64 elr = read_sysreg_el2(SYS_ELR);
804         u64 par = read_sysreg(par_el1);
805
806         if (!has_vhe())
807                 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
808         else
809                 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
810
811         unreachable();
812 }
813
814 asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
815 {
816         unsigned long addr, fixup;
817         struct kvm_cpu_context *host_ctxt;
818         struct exception_table_entry *entry, *end;
819         unsigned long elr_el2 = read_sysreg(elr_el2);
820
821         entry = hyp_symbol_addr(__start___kvm_ex_table);
822         end = hyp_symbol_addr(__stop___kvm_ex_table);
823         host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
824
825         while (entry < end) {
826                 addr = (unsigned long)&entry->insn + entry->insn;
827                 fixup = (unsigned long)&entry->fixup + entry->fixup;
828
829                 if (addr != elr_el2) {
830                         entry++;
831                         continue;
832                 }
833
834                 write_sysreg(fixup, elr_el2);
835                 return;
836         }
837
838         hyp_panic(host_ctxt);
839 }