GNU Linux-libre 4.19.207-gnu1
[releases.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/cpufeature.h>
26 #include <asm/extable.h>
27 #include <asm/kprobes.h>
28 #include <asm/kvm_asm.h>
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_host.h>
31 #include <asm/kvm_hyp.h>
32 #include <asm/kvm_mmu.h>
33 #include <asm/fpsimd.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/processor.h>
36 #include <asm/thread_info.h>
37
38 extern struct exception_table_entry __start___kvm_ex_table;
39 extern struct exception_table_entry __stop___kvm_ex_table;
40
41 /* Check whether the FP regs were dirtied while in the host-side run loop: */
42 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
43 {
44         /*
45          * When the system doesn't support FP/SIMD, we cannot rely on
46          * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
47          * abort on the very first access to FP and thus we should never
48          * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
49          * trap the accesses.
50          */
51         if (!system_supports_fpsimd() ||
52             vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
53                 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
54                                       KVM_ARM64_FP_HOST);
55
56         return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
57 }
58
59 /* Save the 32-bit only FPSIMD system register state */
60 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
61 {
62         if (!vcpu_el1_is_32bit(vcpu))
63                 return;
64
65         vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
66 }
67
68 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
69 {
70         /*
71          * We are about to set CPTR_EL2.TFP to trap all floating point
72          * register accesses to EL2, however, the ARM ARM clearly states that
73          * traps are only taken to EL2 if the operation would not otherwise
74          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
75          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
76          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
77          * it will cause an exception.
78          */
79         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
80                 write_sysreg(1 << 30, fpexc32_el2);
81                 isb();
82         }
83 }
84
85 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
86 {
87         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
88         write_sysreg(1 << 15, hstr_el2);
89
90         /*
91          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
92          * PMSELR_EL0 to make sure it never contains the cycle
93          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
94          * EL1 instead of being trapped to EL2.
95          */
96         write_sysreg(0, pmselr_el0);
97         write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
98         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
99 }
100
101 static void __hyp_text __deactivate_traps_common(void)
102 {
103         write_sysreg(0, hstr_el2);
104         write_sysreg(0, pmuserenr_el0);
105 }
106
107 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
108 {
109         u64 val;
110
111         val = read_sysreg(cpacr_el1);
112         val |= CPACR_EL1_TTA;
113         val &= ~CPACR_EL1_ZEN;
114         if (!update_fp_enabled(vcpu)) {
115                 val &= ~CPACR_EL1_FPEN;
116                 __activate_traps_fpsimd32(vcpu);
117         }
118
119         write_sysreg(val, cpacr_el1);
120
121         write_sysreg(kvm_get_hyp_vector(), vbar_el1);
122 }
123 NOKPROBE_SYMBOL(activate_traps_vhe);
124
125 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
126 {
127         u64 val;
128
129         __activate_traps_common(vcpu);
130
131         val = CPTR_EL2_DEFAULT;
132         val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
133         if (!update_fp_enabled(vcpu)) {
134                 val |= CPTR_EL2_TFP;
135                 __activate_traps_fpsimd32(vcpu);
136         }
137
138         write_sysreg(val, cptr_el2);
139 }
140
141 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
142 {
143         u64 hcr = vcpu->arch.hcr_el2;
144
145         write_sysreg(hcr, hcr_el2);
146
147         if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
148                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
149
150         if (has_vhe())
151                 activate_traps_vhe(vcpu);
152         else
153                 __activate_traps_nvhe(vcpu);
154 }
155
156 static void deactivate_traps_vhe(void)
157 {
158         extern char vectors[];  /* kernel exception vectors */
159         write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
160         write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
161         write_sysreg(vectors, vbar_el1);
162 }
163 NOKPROBE_SYMBOL(deactivate_traps_vhe);
164
165 static void __hyp_text __deactivate_traps_nvhe(void)
166 {
167         u64 mdcr_el2 = read_sysreg(mdcr_el2);
168
169         __deactivate_traps_common();
170
171         mdcr_el2 &= MDCR_EL2_HPMN_MASK;
172         mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
173
174         write_sysreg(mdcr_el2, mdcr_el2);
175         write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
176         write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
177 }
178
179 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
180 {
181         /*
182          * If we pended a virtual abort, preserve it until it gets
183          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
184          * the crucial bit is "On taking a vSError interrupt,
185          * HCR_EL2.VSE is cleared to 0."
186          */
187         if (vcpu->arch.hcr_el2 & HCR_VSE)
188                 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
189
190         if (has_vhe())
191                 deactivate_traps_vhe();
192         else
193                 __deactivate_traps_nvhe();
194 }
195
196 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
197 {
198         __activate_traps_common(vcpu);
199 }
200
201 void deactivate_traps_vhe_put(void)
202 {
203         u64 mdcr_el2 = read_sysreg(mdcr_el2);
204
205         mdcr_el2 &= MDCR_EL2_HPMN_MASK |
206                     MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
207                     MDCR_EL2_TPMS;
208
209         write_sysreg(mdcr_el2, mdcr_el2);
210
211         __deactivate_traps_common();
212 }
213
214 static void __hyp_text __activate_vm(struct kvm *kvm)
215 {
216         write_sysreg(kvm->arch.vttbr, vttbr_el2);
217 }
218
219 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
220 {
221         write_sysreg(0, vttbr_el2);
222 }
223
224 /* Save VGICv3 state on non-VHE systems */
225 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
226 {
227         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
228                 __vgic_v3_save_state(vcpu);
229                 __vgic_v3_deactivate_traps(vcpu);
230         }
231 }
232
233 /* Restore VGICv3 state on non_VEH systems */
234 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
235 {
236         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
237                 __vgic_v3_activate_traps(vcpu);
238                 __vgic_v3_restore_state(vcpu);
239         }
240 }
241
242 static bool __hyp_text __true_value(void)
243 {
244         return true;
245 }
246
247 static bool __hyp_text __false_value(void)
248 {
249         return false;
250 }
251
252 static hyp_alternate_select(__check_arm_834220,
253                             __false_value, __true_value,
254                             ARM64_WORKAROUND_834220);
255
256 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
257 {
258         u64 par, tmp;
259
260         /*
261          * Resolve the IPA the hard way using the guest VA.
262          *
263          * Stage-1 translation already validated the memory access
264          * rights. As such, we can use the EL1 translation regime, and
265          * don't have to distinguish between EL0 and EL1 access.
266          *
267          * We do need to save/restore PAR_EL1 though, as we haven't
268          * saved the guest context yet, and we may return early...
269          */
270         par = read_sysreg(par_el1);
271         if (!__kvm_at("s1e1r", far))
272                 tmp = read_sysreg(par_el1);
273         else
274                 tmp = 1; /* back to the guest */
275         write_sysreg(par, par_el1);
276
277         if (unlikely(tmp & 1))
278                 return false; /* Translation failed, back to guest */
279
280         /* Convert PAR to HPFAR format */
281         *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
282         return true;
283 }
284
285 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
286 {
287         u8 ec;
288         u64 esr;
289         u64 hpfar, far;
290
291         esr = vcpu->arch.fault.esr_el2;
292         ec = ESR_ELx_EC(esr);
293
294         if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
295                 return true;
296
297         far = read_sysreg_el2(far);
298
299         /*
300          * The HPFAR can be invalid if the stage 2 fault did not
301          * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
302          * bit is clear) and one of the two following cases are true:
303          *   1. The fault was due to a permission fault
304          *   2. The processor carries errata 834220
305          *
306          * Therefore, for all non S1PTW faults where we either have a
307          * permission fault or the errata workaround is enabled, we
308          * resolve the IPA using the AT instruction.
309          */
310         if (!(esr & ESR_ELx_S1PTW) &&
311             (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
312                 if (!__translate_far_to_hpfar(far, &hpfar))
313                         return false;
314         } else {
315                 hpfar = read_sysreg(hpfar_el2);
316         }
317
318         vcpu->arch.fault.far_el2 = far;
319         vcpu->arch.fault.hpfar_el2 = hpfar;
320         return true;
321 }
322
323 /* Skip an instruction which has been emulated. Returns true if
324  * execution can continue or false if we need to exit hyp mode because
325  * single-step was in effect.
326  */
327 static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
328 {
329         *vcpu_pc(vcpu) = read_sysreg_el2(elr);
330
331         if (vcpu_mode_is_32bit(vcpu)) {
332                 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
333                 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
334                 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
335         } else {
336                 *vcpu_pc(vcpu) += 4;
337         }
338
339         write_sysreg_el2(*vcpu_pc(vcpu), elr);
340
341         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
342                 vcpu->arch.fault.esr_el2 =
343                         (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
344                 return false;
345         } else {
346                 return true;
347         }
348 }
349
350 static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
351 {
352         struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
353
354         if (has_vhe())
355                 write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
356                              cpacr_el1);
357         else
358                 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
359                              cptr_el2);
360
361         isb();
362
363         if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
364                 /*
365                  * In the SVE case, VHE is assumed: it is enforced by
366                  * Kconfig and kvm_arch_init().
367                  */
368                 if (system_supports_sve() &&
369                     (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
370                         struct thread_struct *thread = container_of(
371                                 host_fpsimd,
372                                 struct thread_struct, uw.fpsimd_state);
373
374                         sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
375                 } else {
376                         __fpsimd_save_state(host_fpsimd);
377                 }
378
379                 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
380         }
381
382         __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
383
384         /* Skip restoring fpexc32 for AArch64 guests */
385         if (!(read_sysreg(hcr_el2) & HCR_RW))
386                 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
387                              fpexc32_el2);
388
389         vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
390
391         return true;
392 }
393
394 /*
395  * Return true when we were able to fixup the guest exit and should return to
396  * the guest, false when we should restore the host state and return to the
397  * main run loop.
398  */
399 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
400 {
401         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
402                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
403
404         /*
405          * We're using the raw exception code in order to only process
406          * the trap if no SError is pending. We will come back to the
407          * same PC once the SError has been injected, and replay the
408          * trapping instruction.
409          */
410         if (*exit_code != ARM_EXCEPTION_TRAP)
411                 goto exit;
412
413         /*
414          * We trap the first access to the FP/SIMD to save the host context
415          * and restore the guest context lazily.
416          * If FP/SIMD is not implemented, handle the trap and inject an
417          * undefined instruction exception to the guest.
418          */
419         if (system_supports_fpsimd() &&
420             kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
421                 return __hyp_switch_fpsimd(vcpu);
422
423         if (!__populate_fault_info(vcpu))
424                 return true;
425
426         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
427                 bool valid;
428
429                 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
430                         kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
431                         kvm_vcpu_dabt_isvalid(vcpu) &&
432                         !kvm_vcpu_dabt_isextabt(vcpu) &&
433                         !kvm_vcpu_abt_iss1tw(vcpu);
434
435                 if (valid) {
436                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
437
438                         if (ret ==  1 && __skip_instr(vcpu))
439                                 return true;
440
441                         if (ret == -1) {
442                                 /* Promote an illegal access to an
443                                  * SError. If we would be returning
444                                  * due to single-step clear the SS
445                                  * bit so handle_exit knows what to
446                                  * do after dealing with the error.
447                                  */
448                                 if (!__skip_instr(vcpu))
449                                         *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
450                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
451                         }
452
453                         goto exit;
454                 }
455         }
456
457         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
458             (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
459              kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
460                 int ret = __vgic_v3_perform_cpuif_access(vcpu);
461
462                 if (ret == 1 && __skip_instr(vcpu))
463                         return true;
464         }
465
466 exit:
467         /* Return to the host kernel and handle the exit */
468         return false;
469 }
470
471 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
472 {
473         if (!cpus_have_const_cap(ARM64_SSBD))
474                 return false;
475
476         return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
477 }
478
479 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
480 {
481 #ifdef CONFIG_ARM64_SSBD
482         /*
483          * The host runs with the workaround always present. If the
484          * guest wants it disabled, so be it...
485          */
486         if (__needs_ssbd_off(vcpu) &&
487             __hyp_this_cpu_read(arm64_ssbd_callback_required))
488                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
489 #endif
490 }
491
492 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
493 {
494 #ifdef CONFIG_ARM64_SSBD
495         /*
496          * If the guest has disabled the workaround, bring it back on.
497          */
498         if (__needs_ssbd_off(vcpu) &&
499             __hyp_this_cpu_read(arm64_ssbd_callback_required))
500                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
501 #endif
502 }
503
504 /* Switch to the guest for VHE systems running in EL2 */
505 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
506 {
507         struct kvm_cpu_context *host_ctxt;
508         struct kvm_cpu_context *guest_ctxt;
509         u64 exit_code;
510
511         host_ctxt = vcpu->arch.host_cpu_context;
512         host_ctxt->__hyp_running_vcpu = vcpu;
513         guest_ctxt = &vcpu->arch.ctxt;
514
515         sysreg_save_host_state_vhe(host_ctxt);
516
517         __activate_traps(vcpu);
518         __activate_vm(vcpu->kvm);
519
520         sysreg_restore_guest_state_vhe(guest_ctxt);
521         __debug_switch_to_guest(vcpu);
522
523         __set_guest_arch_workaround_state(vcpu);
524
525         do {
526                 /* Jump in the fire! */
527                 exit_code = __guest_enter(vcpu, host_ctxt);
528
529                 /* And we're baaack! */
530         } while (fixup_guest_exit(vcpu, &exit_code));
531
532         __set_host_arch_workaround_state(vcpu);
533
534         sysreg_save_guest_state_vhe(guest_ctxt);
535
536         __deactivate_traps(vcpu);
537
538         sysreg_restore_host_state_vhe(host_ctxt);
539
540         if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
541                 __fpsimd_save_fpexc32(vcpu);
542
543         __debug_switch_to_host(vcpu);
544
545         return exit_code;
546 }
547 NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
548
549 /* Switch to the guest for legacy non-VHE systems */
550 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
551 {
552         struct kvm_cpu_context *host_ctxt;
553         struct kvm_cpu_context *guest_ctxt;
554         u64 exit_code;
555
556         vcpu = kern_hyp_va(vcpu);
557
558         host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
559         host_ctxt->__hyp_running_vcpu = vcpu;
560         guest_ctxt = &vcpu->arch.ctxt;
561
562         __sysreg_save_state_nvhe(host_ctxt);
563         __debug_save_host_buffers_nvhe(vcpu);
564
565         __activate_traps(vcpu);
566         __activate_vm(kern_hyp_va(vcpu->kvm));
567
568         __hyp_vgic_restore_state(vcpu);
569         __timer_enable_traps(vcpu);
570
571         /*
572          * We must restore the 32-bit state before the sysregs, thanks
573          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
574          */
575         __sysreg32_restore_state(vcpu);
576         __sysreg_restore_state_nvhe(guest_ctxt);
577         __debug_switch_to_guest(vcpu);
578
579         __set_guest_arch_workaround_state(vcpu);
580
581         do {
582                 /* Jump in the fire! */
583                 exit_code = __guest_enter(vcpu, host_ctxt);
584
585                 /* And we're baaack! */
586         } while (fixup_guest_exit(vcpu, &exit_code));
587
588         __set_host_arch_workaround_state(vcpu);
589
590         __sysreg_save_state_nvhe(guest_ctxt);
591         __sysreg32_save_state(vcpu);
592         __timer_disable_traps(vcpu);
593         __hyp_vgic_save_state(vcpu);
594
595         __deactivate_traps(vcpu);
596         __deactivate_vm(vcpu);
597
598         __sysreg_restore_state_nvhe(host_ctxt);
599
600         if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
601                 __fpsimd_save_fpexc32(vcpu);
602
603         __debug_switch_to_host(vcpu);
604         /*
605          * This must come after restoring the host sysregs, since a non-VHE
606          * system may enable SPE here and make use of the TTBRs.
607          */
608         __debug_restore_host_buffers_nvhe(vcpu);
609
610         return exit_code;
611 }
612
613 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
614
615 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
616                                              struct kvm_cpu_context *__host_ctxt)
617 {
618         struct kvm_vcpu *vcpu;
619         unsigned long str_va;
620
621         vcpu = __host_ctxt->__hyp_running_vcpu;
622
623         if (read_sysreg(vttbr_el2)) {
624                 __timer_disable_traps(vcpu);
625                 __deactivate_traps(vcpu);
626                 __deactivate_vm(vcpu);
627                 __sysreg_restore_state_nvhe(__host_ctxt);
628         }
629
630         /*
631          * Force the panic string to be loaded from the literal pool,
632          * making sure it is a kernel address and not a PC-relative
633          * reference.
634          */
635         asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
636
637         __hyp_do_panic(str_va,
638                        spsr,  elr,
639                        read_sysreg(esr_el2),   read_sysreg_el2(far),
640                        read_sysreg(hpfar_el2), par, vcpu);
641 }
642
643 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
644                                  struct kvm_cpu_context *host_ctxt)
645 {
646         struct kvm_vcpu *vcpu;
647         vcpu = host_ctxt->__hyp_running_vcpu;
648
649         __deactivate_traps(vcpu);
650         sysreg_restore_host_state_vhe(host_ctxt);
651
652         panic(__hyp_panic_string,
653               spsr,  elr,
654               read_sysreg_el2(esr),   read_sysreg_el2(far),
655               read_sysreg(hpfar_el2), par, vcpu);
656 }
657 NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
658
659 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
660 {
661         u64 spsr = read_sysreg_el2(spsr);
662         u64 elr = read_sysreg_el2(elr);
663         u64 par = read_sysreg(par_el1);
664
665         if (!has_vhe())
666                 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
667         else
668                 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
669
670         unreachable();
671 }
672
673 asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
674 {
675         unsigned long addr, fixup;
676         struct kvm_cpu_context *host_ctxt;
677         struct exception_table_entry *entry, *end;
678         unsigned long elr_el2 = read_sysreg(elr_el2);
679
680         entry = hyp_symbol_addr(__start___kvm_ex_table);
681         end = hyp_symbol_addr(__stop___kvm_ex_table);
682         host_ctxt = __hyp_this_cpu_ptr(kvm_host_cpu_state);
683
684         while (entry < end) {
685                 addr = (unsigned long)&entry->insn + entry->insn;
686                 fixup = (unsigned long)&entry->fixup + entry->fixup;
687
688                 if (addr != elr_el2) {
689                         entry++;
690                         continue;
691                 }
692
693                 write_sysreg(fixup, elr_el2);
694                 return;
695         }
696
697         hyp_panic(host_ctxt);
698 }