GNU Linux-libre 4.9.333-gnu1
[releases.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/uaccess.h>
29 #include <asm/vectors.h>
30 extern struct exception_table_entry __start___kvm_ex_table;
31 extern struct exception_table_entry __stop___kvm_ex_table;
32
33 static bool __hyp_text __fpsimd_enabled_nvhe(void)
34 {
35         return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
36 }
37
38 static bool __hyp_text __fpsimd_enabled_vhe(void)
39 {
40         return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
41 }
42
43 static hyp_alternate_select(__fpsimd_is_enabled,
44                             __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
45                             ARM64_HAS_VIRT_HOST_EXTN);
46
47 bool __hyp_text __fpsimd_enabled(void)
48 {
49         return __fpsimd_is_enabled()();
50 }
51
52 static void __hyp_text __activate_traps_vhe(void)
53 {
54         u64 val;
55
56         val = read_sysreg(cpacr_el1);
57         val |= CPACR_EL1_TTA;
58         val &= ~CPACR_EL1_FPEN;
59         write_sysreg(val, cpacr_el1);
60
61         write_sysreg(kvm_get_hyp_vector(), vbar_el1);
62 }
63
64 static void __hyp_text __activate_traps_nvhe(void)
65 {
66         u64 val;
67
68         val = CPTR_EL2_DEFAULT;
69         val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
70         write_sysreg(val, cptr_el2);
71 }
72
73 static hyp_alternate_select(__activate_traps_arch,
74                             __activate_traps_nvhe, __activate_traps_vhe,
75                             ARM64_HAS_VIRT_HOST_EXTN);
76
77 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
78 {
79         u64 val;
80
81         /*
82          * We are about to set CPTR_EL2.TFP to trap all floating point
83          * register accesses to EL2, however, the ARM ARM clearly states that
84          * traps are only taken to EL2 if the operation would not otherwise
85          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
86          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
87          */
88         val = vcpu->arch.hcr_el2;
89         if (!(val & HCR_RW)) {
90                 write_sysreg(1 << 30, fpexc32_el2);
91                 isb();
92         }
93         write_sysreg(val, hcr_el2);
94         /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
95         write_sysreg(1 << 15, hstr_el2);
96         /*
97          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
98          * PMSELR_EL0 to make sure it never contains the cycle
99          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
100          * EL1 instead of being trapped to EL2.
101          */
102         write_sysreg(0, pmselr_el0);
103         write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
104         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
105         __activate_traps_arch()();
106 }
107
108 static void __hyp_text __deactivate_traps_vhe(void)
109 {
110         const char *host_vectors = vectors;
111
112         write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
113         write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
114
115         if (!arm64_kernel_unmapped_at_el0())
116                 host_vectors = __this_cpu_read(this_cpu_vector);
117         write_sysreg(host_vectors, vbar_el1);
118 }
119
120 static void __hyp_text __deactivate_traps_nvhe(void)
121 {
122         write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
123         write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
124 }
125
126 static hyp_alternate_select(__deactivate_traps_arch,
127                             __deactivate_traps_nvhe, __deactivate_traps_vhe,
128                             ARM64_HAS_VIRT_HOST_EXTN);
129
130 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
131 {
132         /*
133          * If we pended a virtual abort, preserve it until it gets
134          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
135          * the crucial bit is "On taking a vSError interrupt,
136          * HCR_EL2.VSE is cleared to 0."
137          */
138         if (vcpu->arch.hcr_el2 & HCR_VSE)
139                 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
140
141         __deactivate_traps_arch()();
142         write_sysreg(0, hstr_el2);
143         write_sysreg(read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK, mdcr_el2);
144         write_sysreg(0, pmuserenr_el0);
145 }
146
147 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
148 {
149         struct kvm *kvm = kern_hyp_va(vcpu->kvm);
150         write_sysreg(kvm->arch.vttbr, vttbr_el2);
151 }
152
153 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
154 {
155         write_sysreg(0, vttbr_el2);
156 }
157
158 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
159 {
160         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
161                 __vgic_v3_save_state(vcpu);
162         else
163                 __vgic_v2_save_state(vcpu);
164
165         write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
166 }
167
168 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
169 {
170         u64 val;
171
172         val = read_sysreg(hcr_el2);
173         val |=  HCR_INT_OVERRIDE;
174         val |= vcpu->arch.irq_lines;
175         write_sysreg(val, hcr_el2);
176
177         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
178                 __vgic_v3_restore_state(vcpu);
179         else
180                 __vgic_v2_restore_state(vcpu);
181 }
182
183 static bool __hyp_text __true_value(void)
184 {
185         return true;
186 }
187
188 static bool __hyp_text __false_value(void)
189 {
190         return false;
191 }
192
193 static hyp_alternate_select(__check_arm_834220,
194                             __false_value, __true_value,
195                             ARM64_WORKAROUND_834220);
196
197 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
198 {
199         u64 par, tmp;
200
201         /*
202          * Resolve the IPA the hard way using the guest VA.
203          *
204          * Stage-1 translation already validated the memory access
205          * rights. As such, we can use the EL1 translation regime, and
206          * don't have to distinguish between EL0 and EL1 access.
207          *
208          * We do need to save/restore PAR_EL1 though, as we haven't
209          * saved the guest context yet, and we may return early...
210          */
211         par = read_sysreg(par_el1);
212         if (!__kvm_at("s1e1r", far))
213                 tmp = read_sysreg(par_el1);
214         else
215                 tmp = 1; /* back to the guest */
216         write_sysreg(par, par_el1);
217
218         if (unlikely(tmp & 1))
219                 return false; /* Translation failed, back to guest */
220
221         /* Convert PAR to HPFAR format */
222         *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
223         return true;
224 }
225
226 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
227 {
228         u64 esr = read_sysreg_el2(esr);
229         u8 ec = ESR_ELx_EC(esr);
230         u64 hpfar, far;
231
232         vcpu->arch.fault.esr_el2 = esr;
233
234         if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
235                 return true;
236
237         far = read_sysreg_el2(far);
238
239         /*
240          * The HPFAR can be invalid if the stage 2 fault did not
241          * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
242          * bit is clear) and one of the two following cases are true:
243          *   1. The fault was due to a permission fault
244          *   2. The processor carries errata 834220
245          *
246          * Therefore, for all non S1PTW faults where we either have a
247          * permission fault or the errata workaround is enabled, we
248          * resolve the IPA using the AT instruction.
249          */
250         if (!(esr & ESR_ELx_S1PTW) &&
251             (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
252                 if (!__translate_far_to_hpfar(far, &hpfar))
253                         return false;
254         } else {
255                 hpfar = read_sysreg(hpfar_el2);
256         }
257
258         vcpu->arch.fault.far_el2 = far;
259         vcpu->arch.fault.hpfar_el2 = hpfar;
260         return true;
261 }
262
263 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
264 {
265         *vcpu_pc(vcpu) = read_sysreg_el2(elr);
266
267         if (vcpu_mode_is_32bit(vcpu)) {
268                 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
269                 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
270                 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
271         } else {
272                 *vcpu_pc(vcpu) += 4;
273         }
274
275         write_sysreg_el2(*vcpu_pc(vcpu), elr);
276 }
277
278 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
279 {
280         if (!cpus_have_cap(ARM64_SSBD))
281                 return false;
282
283         return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
284 }
285
286 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
287 {
288 #ifdef CONFIG_ARM64_SSBD
289         /*
290          * The host runs with the workaround always present. If the
291          * guest wants it disabled, so be it...
292          */
293         if (__needs_ssbd_off(vcpu) &&
294             __hyp_this_cpu_read(arm64_ssbd_callback_required))
295                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
296 #endif
297 }
298
299 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
300 {
301 #ifdef CONFIG_ARM64_SSBD
302         /*
303          * If the guest has disabled the workaround, bring it back on.
304          */
305         if (__needs_ssbd_off(vcpu) &&
306             __hyp_this_cpu_read(arm64_ssbd_callback_required))
307                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
308 #endif
309 }
310
311 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
312 {
313         struct kvm_cpu_context *host_ctxt;
314         struct kvm_cpu_context *guest_ctxt;
315         bool fp_enabled;
316         u64 exit_code;
317
318         vcpu = kern_hyp_va(vcpu);
319
320         host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
321         host_ctxt->__hyp_running_vcpu = vcpu;
322         guest_ctxt = &vcpu->arch.ctxt;
323
324         __sysreg_save_host_state(host_ctxt);
325         __debug_cond_save_host_state(vcpu);
326
327         __activate_traps(vcpu);
328         __activate_vm(vcpu);
329
330         __vgic_restore_state(vcpu);
331         __timer_restore_state(vcpu);
332
333         /*
334          * We must restore the 32-bit state before the sysregs, thanks
335          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
336          */
337         __sysreg32_restore_state(vcpu);
338         __sysreg_restore_guest_state(guest_ctxt);
339         __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
340
341         __set_guest_arch_workaround_state(vcpu);
342
343         /* Jump in the fire! */
344 again:
345         exit_code = __guest_enter(vcpu, host_ctxt);
346         /* And we're baaack! */
347
348         /*
349          * We're using the raw exception code in order to only process
350          * the trap if no SError is pending. We will come back to the
351          * same PC once the SError has been injected, and replay the
352          * trapping instruction.
353          */
354         if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
355                 goto again;
356
357         if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
358             exit_code == ARM_EXCEPTION_TRAP) {
359                 bool valid;
360
361                 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
362                         kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
363                         kvm_vcpu_dabt_isvalid(vcpu) &&
364                         !kvm_vcpu_dabt_isextabt(vcpu) &&
365                         !kvm_vcpu_dabt_iss1tw(vcpu);
366
367                 if (valid) {
368                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
369
370                         if (ret == 1) {
371                                 __skip_instr(vcpu);
372                                 goto again;
373                         }
374
375                         if (ret == -1) {
376                                 /* Promote an illegal access to an SError */
377                                 __skip_instr(vcpu);
378                                 exit_code = ARM_EXCEPTION_EL1_SERROR;
379                         }
380
381                         /* 0 falls through to be handler out of EL2 */
382                 }
383         }
384
385         __set_host_arch_workaround_state(vcpu);
386
387         fp_enabled = __fpsimd_enabled();
388
389         __sysreg_save_guest_state(guest_ctxt);
390         __sysreg32_save_state(vcpu);
391         __timer_save_state(vcpu);
392         __vgic_save_state(vcpu);
393
394         __deactivate_traps(vcpu);
395         __deactivate_vm(vcpu);
396
397         __sysreg_restore_host_state(host_ctxt);
398
399         if (fp_enabled) {
400                 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
401                 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
402         }
403
404         __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
405         __debug_cond_restore_host_state(vcpu);
406
407         return exit_code;
408 }
409
410 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
411
412 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
413                                              struct kvm_vcpu *vcpu)
414 {
415         unsigned long str_va;
416
417         /*
418          * Force the panic string to be loaded from the literal pool,
419          * making sure it is a kernel address and not a PC-relative
420          * reference.
421          */
422         asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
423
424         __hyp_do_panic(str_va,
425                        spsr,  elr,
426                        read_sysreg(esr_el2),   read_sysreg_el2(far),
427                        read_sysreg(hpfar_el2), par, vcpu);
428 }
429
430 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
431                                             struct kvm_vcpu *vcpu)
432 {
433         panic(__hyp_panic_string,
434               spsr,  elr,
435               read_sysreg_el2(esr),   read_sysreg_el2(far),
436               read_sysreg(hpfar_el2), par, vcpu);
437 }
438
439 static hyp_alternate_select(__hyp_call_panic,
440                             __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
441                             ARM64_HAS_VIRT_HOST_EXTN);
442
443 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
444 {
445         struct kvm_vcpu *vcpu = NULL;
446
447         u64 spsr = read_sysreg_el2(spsr);
448         u64 elr = read_sysreg_el2(elr);
449         u64 par = read_sysreg(par_el1);
450
451         if (read_sysreg(vttbr_el2)) {
452                 vcpu = host_ctxt->__hyp_running_vcpu;
453                 __timer_save_state(vcpu);
454                 __deactivate_traps(vcpu);
455                 __deactivate_vm(vcpu);
456                 __sysreg_restore_host_state(host_ctxt);
457         }
458
459         /* Call panic for real */
460         __hyp_call_panic()(spsr, elr, par, vcpu);
461
462         unreachable();
463 }
464
465 asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
466 {
467         unsigned long addr, fixup;
468         struct kvm_cpu_context *host_ctxt;
469         struct exception_table_entry *entry, *end;
470         unsigned long elr_el2 = read_sysreg(elr_el2);
471
472         entry = hyp_symbol_addr(__start___kvm_ex_table);
473         end = hyp_symbol_addr(__stop___kvm_ex_table);
474         host_ctxt = __hyp_this_cpu_ptr(kvm_host_cpu_state);
475
476         while (entry < end) {
477                 addr = (unsigned long)&entry->insn + entry->insn;
478                 fixup = (unsigned long)&entry->fixup + entry->fixup;
479
480                 if (addr != elr_el2) {
481                         entry++;
482                         continue;
483                 }
484
485                 write_sysreg(fixup, elr_el2);
486                 return;
487         }
488
489         hyp_panic(host_ctxt);
490 }