Linux 6.7-rc7
[linux-modified.git] / arch / arm64 / kvm / hyp / nvhe / mm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_hyp.h>
9 #include <asm/kvm_mmu.h>
10 #include <asm/kvm_pgtable.h>
11 #include <asm/kvm_pkvm.h>
12 #include <asm/spectre.h>
13
14 #include <nvhe/early_alloc.h>
15 #include <nvhe/gfp.h>
16 #include <nvhe/memory.h>
17 #include <nvhe/mem_protect.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/spinlock.h>
20
21 struct kvm_pgtable pkvm_pgtable;
22 hyp_spinlock_t pkvm_pgd_lock;
23
24 struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
25 unsigned int hyp_memblock_nr;
26
27 static u64 __io_map_base;
28
29 struct hyp_fixmap_slot {
30         u64 addr;
31         kvm_pte_t *ptep;
32 };
33 static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
34
35 static int __pkvm_create_mappings(unsigned long start, unsigned long size,
36                                   unsigned long phys, enum kvm_pgtable_prot prot)
37 {
38         int err;
39
40         hyp_spin_lock(&pkvm_pgd_lock);
41         err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
42         hyp_spin_unlock(&pkvm_pgd_lock);
43
44         return err;
45 }
46
47 static int __pkvm_alloc_private_va_range(unsigned long start, size_t size)
48 {
49         unsigned long cur;
50
51         hyp_assert_lock_held(&pkvm_pgd_lock);
52
53         if (!start || start < __io_map_base)
54                 return -EINVAL;
55
56         /* The allocated size is always a multiple of PAGE_SIZE */
57         cur = start + PAGE_ALIGN(size);
58
59         /* Are we overflowing on the vmemmap ? */
60         if (cur > __hyp_vmemmap)
61                 return -ENOMEM;
62
63         __io_map_base = cur;
64
65         return 0;
66 }
67
68 /**
69  * pkvm_alloc_private_va_range - Allocates a private VA range.
70  * @size:       The size of the VA range to reserve.
71  * @haddr:      The hypervisor virtual start address of the allocation.
72  *
73  * The private virtual address (VA) range is allocated above __io_map_base
74  * and aligned based on the order of @size.
75  *
76  * Return: 0 on success or negative error code on failure.
77  */
78 int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
79 {
80         unsigned long addr;
81         int ret;
82
83         hyp_spin_lock(&pkvm_pgd_lock);
84         addr = __io_map_base;
85         ret = __pkvm_alloc_private_va_range(addr, size);
86         hyp_spin_unlock(&pkvm_pgd_lock);
87
88         *haddr = addr;
89
90         return ret;
91 }
92
93 int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
94                                   enum kvm_pgtable_prot prot,
95                                   unsigned long *haddr)
96 {
97         unsigned long addr;
98         int err;
99
100         size = PAGE_ALIGN(size + offset_in_page(phys));
101         err = pkvm_alloc_private_va_range(size, &addr);
102         if (err)
103                 return err;
104
105         err = __pkvm_create_mappings(addr, size, phys, prot);
106         if (err)
107                 return err;
108
109         *haddr = addr + offset_in_page(phys);
110         return err;
111 }
112
113 int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
114 {
115         unsigned long start = (unsigned long)from;
116         unsigned long end = (unsigned long)to;
117         unsigned long virt_addr;
118         phys_addr_t phys;
119
120         hyp_assert_lock_held(&pkvm_pgd_lock);
121
122         start = start & PAGE_MASK;
123         end = PAGE_ALIGN(end);
124
125         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
126                 int err;
127
128                 phys = hyp_virt_to_phys((void *)virt_addr);
129                 err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
130                                           phys, prot);
131                 if (err)
132                         return err;
133         }
134
135         return 0;
136 }
137
138 int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
139 {
140         int ret;
141
142         hyp_spin_lock(&pkvm_pgd_lock);
143         ret = pkvm_create_mappings_locked(from, to, prot);
144         hyp_spin_unlock(&pkvm_pgd_lock);
145
146         return ret;
147 }
148
149 int hyp_back_vmemmap(phys_addr_t back)
150 {
151         unsigned long i, start, size, end = 0;
152         int ret;
153
154         for (i = 0; i < hyp_memblock_nr; i++) {
155                 start = hyp_memory[i].base;
156                 start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
157                 /*
158                  * The begining of the hyp_vmemmap region for the current
159                  * memblock may already be backed by the page backing the end
160                  * the previous region, so avoid mapping it twice.
161                  */
162                 start = max(start, end);
163
164                 end = hyp_memory[i].base + hyp_memory[i].size;
165                 end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
166                 if (start >= end)
167                         continue;
168
169                 size = end - start;
170                 ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
171                 if (ret)
172                         return ret;
173
174                 memset(hyp_phys_to_virt(back), 0, size);
175                 back += size;
176         }
177
178         return 0;
179 }
180
181 static void *__hyp_bp_vect_base;
182 int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
183 {
184         void *vector;
185
186         switch (slot) {
187         case HYP_VECTOR_DIRECT: {
188                 vector = __kvm_hyp_vector;
189                 break;
190         }
191         case HYP_VECTOR_SPECTRE_DIRECT: {
192                 vector = __bp_harden_hyp_vecs;
193                 break;
194         }
195         case HYP_VECTOR_INDIRECT:
196         case HYP_VECTOR_SPECTRE_INDIRECT: {
197                 vector = (void *)__hyp_bp_vect_base;
198                 break;
199         }
200         default:
201                 return -EINVAL;
202         }
203
204         vector = __kvm_vector_slot2addr(vector, slot);
205         *this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
206
207         return 0;
208 }
209
210 int hyp_map_vectors(void)
211 {
212         phys_addr_t phys;
213         unsigned long bp_base;
214         int ret;
215
216         if (!kvm_system_needs_idmapped_vectors()) {
217                 __hyp_bp_vect_base = __bp_harden_hyp_vecs;
218                 return 0;
219         }
220
221         phys = __hyp_pa(__bp_harden_hyp_vecs);
222         ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
223                                             PAGE_HYP_EXEC, &bp_base);
224         if (ret)
225                 return ret;
226
227         __hyp_bp_vect_base = (void *)bp_base;
228
229         return 0;
230 }
231
232 void *hyp_fixmap_map(phys_addr_t phys)
233 {
234         struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots);
235         kvm_pte_t pte, *ptep = slot->ptep;
236
237         pte = *ptep;
238         pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
239         pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
240         WRITE_ONCE(*ptep, pte);
241         dsb(ishst);
242
243         return (void *)slot->addr;
244 }
245
246 static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
247 {
248         kvm_pte_t *ptep = slot->ptep;
249         u64 addr = slot->addr;
250
251         WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
252
253         /*
254          * Irritatingly, the architecture requires that we use inner-shareable
255          * broadcast TLB invalidation here in case another CPU speculates
256          * through our fixmap and decides to create an "amalagamation of the
257          * values held in the TLB" due to the apparent lack of a
258          * break-before-make sequence.
259          *
260          * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
261          */
262         dsb(ishst);
263         __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), (KVM_PGTABLE_MAX_LEVELS - 1));
264         dsb(ish);
265         isb();
266 }
267
268 void hyp_fixmap_unmap(void)
269 {
270         fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
271 }
272
273 static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
274                                    enum kvm_pgtable_walk_flags visit)
275 {
276         struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg);
277
278         if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_MAX_LEVELS - 1)
279                 return -EINVAL;
280
281         slot->addr = ctx->addr;
282         slot->ptep = ctx->ptep;
283
284         /*
285          * Clear the PTE, but keep the page-table page refcount elevated to
286          * prevent it from ever being freed. This lets us manipulate the PTEs
287          * by hand safely without ever needing to allocate memory.
288          */
289         fixmap_clear_slot(slot);
290
291         return 0;
292 }
293
294 static int create_fixmap_slot(u64 addr, u64 cpu)
295 {
296         struct kvm_pgtable_walker walker = {
297                 .cb     = __create_fixmap_slot_cb,
298                 .flags  = KVM_PGTABLE_WALK_LEAF,
299                 .arg = (void *)cpu,
300         };
301
302         return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
303 }
304
305 int hyp_create_pcpu_fixmap(void)
306 {
307         unsigned long addr, i;
308         int ret;
309
310         for (i = 0; i < hyp_nr_cpus; i++) {
311                 ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
312                 if (ret)
313                         return ret;
314
315                 ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
316                                           __hyp_pa(__hyp_bss_start), PAGE_HYP);
317                 if (ret)
318                         return ret;
319
320                 ret = create_fixmap_slot(addr, i);
321                 if (ret)
322                         return ret;
323         }
324
325         return 0;
326 }
327
328 int hyp_create_idmap(u32 hyp_va_bits)
329 {
330         unsigned long start, end;
331
332         start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
333         start = ALIGN_DOWN(start, PAGE_SIZE);
334
335         end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
336         end = ALIGN(end, PAGE_SIZE);
337
338         /*
339          * One half of the VA space is reserved to linearly map portions of
340          * memory -- see va_layout.c for more details. The other half of the VA
341          * space contains the trampoline page, and needs some care. Split that
342          * second half in two and find the quarter of VA space not conflicting
343          * with the idmap to place the IOs and the vmemmap. IOs use the lower
344          * half of the quarter and the vmemmap the upper half.
345          */
346         __io_map_base = start & BIT(hyp_va_bits - 2);
347         __io_map_base ^= BIT(hyp_va_bits - 2);
348         __hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
349
350         return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
351 }
352
353 int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr)
354 {
355         unsigned long addr, prev_base;
356         size_t size;
357         int ret;
358
359         hyp_spin_lock(&pkvm_pgd_lock);
360
361         prev_base = __io_map_base;
362         /*
363          * Efficient stack verification using the PAGE_SHIFT bit implies
364          * an alignment of our allocation on the order of the size.
365          */
366         size = PAGE_SIZE * 2;
367         addr = ALIGN(__io_map_base, size);
368
369         ret = __pkvm_alloc_private_va_range(addr, size);
370         if (!ret) {
371                 /*
372                  * Since the stack grows downwards, map the stack to the page
373                  * at the higher address and leave the lower guard page
374                  * unbacked.
375                  *
376                  * Any valid stack address now has the PAGE_SHIFT bit as 1
377                  * and addresses corresponding to the guard page have the
378                  * PAGE_SHIFT bit as 0 - this is used for overflow detection.
379                  */
380                 ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE,
381                                           PAGE_SIZE, phys, PAGE_HYP);
382                 if (ret)
383                         __io_map_base = prev_base;
384         }
385         hyp_spin_unlock(&pkvm_pgd_lock);
386
387         *haddr = addr + size;
388
389         return ret;
390 }
391
392 static void *admit_host_page(void *arg)
393 {
394         struct kvm_hyp_memcache *host_mc = arg;
395
396         if (!host_mc->nr_pages)
397                 return NULL;
398
399         /*
400          * The host still owns the pages in its memcache, so we need to go
401          * through a full host-to-hyp donation cycle to change it. Fortunately,
402          * __pkvm_host_donate_hyp() takes care of races for us, so if it
403          * succeeds we're good to go.
404          */
405         if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
406                 return NULL;
407
408         return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
409 }
410
411 /* Refill our local memcache by poping pages from the one provided by the host. */
412 int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
413                     struct kvm_hyp_memcache *host_mc)
414 {
415         struct kvm_hyp_memcache tmp = *host_mc;
416         int ret;
417
418         ret =  __topup_hyp_memcache(mc, min_pages, admit_host_page,
419                                     hyp_virt_to_phys, &tmp);
420         *host_mc = tmp;
421
422         return ret;
423 }