GNU Linux-libre 6.8.7-gnu
[releases.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56
57 static bool vgic_present, kvm_arm_initialised;
58
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61
62 bool is_kvm_arm_initialised(void)
63 {
64         return kvm_arm_initialised;
65 }
66
67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68 {
69         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70 }
71
72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73                             struct kvm_enable_cap *cap)
74 {
75         int r;
76         u64 new_cap;
77
78         if (cap->flags)
79                 return -EINVAL;
80
81         switch (cap->cap) {
82         case KVM_CAP_ARM_NISV_TO_USER:
83                 r = 0;
84                 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85                         &kvm->arch.flags);
86                 break;
87         case KVM_CAP_ARM_MTE:
88                 mutex_lock(&kvm->lock);
89                 if (!system_supports_mte() || kvm->created_vcpus) {
90                         r = -EINVAL;
91                 } else {
92                         r = 0;
93                         set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94                 }
95                 mutex_unlock(&kvm->lock);
96                 break;
97         case KVM_CAP_ARM_SYSTEM_SUSPEND:
98                 r = 0;
99                 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100                 break;
101         case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102                 new_cap = cap->args[0];
103
104                 mutex_lock(&kvm->slots_lock);
105                 /*
106                  * To keep things simple, allow changing the chunk
107                  * size only when no memory slots have been created.
108                  */
109                 if (!kvm_are_all_memslots_empty(kvm)) {
110                         r = -EINVAL;
111                 } else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112                         r = -EINVAL;
113                 } else {
114                         r = 0;
115                         kvm->arch.mmu.split_page_chunk_size = new_cap;
116                 }
117                 mutex_unlock(&kvm->slots_lock);
118                 break;
119         default:
120                 r = -EINVAL;
121                 break;
122         }
123
124         return r;
125 }
126
127 static int kvm_arm_default_max_vcpus(void)
128 {
129         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130 }
131
132 /**
133  * kvm_arch_init_vm - initializes a VM data structure
134  * @kvm:        pointer to the KVM struct
135  */
136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137 {
138         int ret;
139
140         mutex_init(&kvm->arch.config_lock);
141
142 #ifdef CONFIG_LOCKDEP
143         /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144         mutex_lock(&kvm->lock);
145         mutex_lock(&kvm->arch.config_lock);
146         mutex_unlock(&kvm->arch.config_lock);
147         mutex_unlock(&kvm->lock);
148 #endif
149
150         ret = kvm_share_hyp(kvm, kvm + 1);
151         if (ret)
152                 return ret;
153
154         ret = pkvm_init_host_vm(kvm);
155         if (ret)
156                 goto err_unshare_kvm;
157
158         if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159                 ret = -ENOMEM;
160                 goto err_unshare_kvm;
161         }
162         cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163
164         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165         if (ret)
166                 goto err_free_cpumask;
167
168         kvm_vgic_early_init(kvm);
169
170         kvm_timer_init_vm(kvm);
171
172         /* The maximum number of VCPUs is limited by the host's GIC model */
173         kvm->max_vcpus = kvm_arm_default_max_vcpus();
174
175         kvm_arm_init_hypercalls(kvm);
176
177         bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178
179         return 0;
180
181 err_free_cpumask:
182         free_cpumask_var(kvm->arch.supported_cpus);
183 err_unshare_kvm:
184         kvm_unshare_hyp(kvm, kvm + 1);
185         return ret;
186 }
187
188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189 {
190         return VM_FAULT_SIGBUS;
191 }
192
193
194 /**
195  * kvm_arch_destroy_vm - destroy the VM data structure
196  * @kvm:        pointer to the KVM struct
197  */
198 void kvm_arch_destroy_vm(struct kvm *kvm)
199 {
200         bitmap_free(kvm->arch.pmu_filter);
201         free_cpumask_var(kvm->arch.supported_cpus);
202
203         kvm_vgic_destroy(kvm);
204
205         if (is_protected_kvm_enabled())
206                 pkvm_destroy_hyp_vm(kvm);
207
208         kfree(kvm->arch.mpidr_data);
209         kvm_destroy_vcpus(kvm);
210
211         kvm_unshare_hyp(kvm, kvm + 1);
212
213         kvm_arm_teardown_hypercalls(kvm);
214 }
215
216 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
217 {
218         int r;
219         switch (ext) {
220         case KVM_CAP_IRQCHIP:
221                 r = vgic_present;
222                 break;
223         case KVM_CAP_IOEVENTFD:
224         case KVM_CAP_USER_MEMORY:
225         case KVM_CAP_SYNC_MMU:
226         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
227         case KVM_CAP_ONE_REG:
228         case KVM_CAP_ARM_PSCI:
229         case KVM_CAP_ARM_PSCI_0_2:
230         case KVM_CAP_READONLY_MEM:
231         case KVM_CAP_MP_STATE:
232         case KVM_CAP_IMMEDIATE_EXIT:
233         case KVM_CAP_VCPU_EVENTS:
234         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
235         case KVM_CAP_ARM_NISV_TO_USER:
236         case KVM_CAP_ARM_INJECT_EXT_DABT:
237         case KVM_CAP_SET_GUEST_DEBUG:
238         case KVM_CAP_VCPU_ATTRIBUTES:
239         case KVM_CAP_PTP_KVM:
240         case KVM_CAP_ARM_SYSTEM_SUSPEND:
241         case KVM_CAP_IRQFD_RESAMPLE:
242         case KVM_CAP_COUNTER_OFFSET:
243                 r = 1;
244                 break;
245         case KVM_CAP_SET_GUEST_DEBUG2:
246                 return KVM_GUESTDBG_VALID_MASK;
247         case KVM_CAP_ARM_SET_DEVICE_ADDR:
248                 r = 1;
249                 break;
250         case KVM_CAP_NR_VCPUS:
251                 /*
252                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
253                  * architectures, as it does not always bound it to
254                  * KVM_CAP_MAX_VCPUS. It should not matter much because
255                  * this is just an advisory value.
256                  */
257                 r = min_t(unsigned int, num_online_cpus(),
258                           kvm_arm_default_max_vcpus());
259                 break;
260         case KVM_CAP_MAX_VCPUS:
261         case KVM_CAP_MAX_VCPU_ID:
262                 if (kvm)
263                         r = kvm->max_vcpus;
264                 else
265                         r = kvm_arm_default_max_vcpus();
266                 break;
267         case KVM_CAP_MSI_DEVID:
268                 if (!kvm)
269                         r = -EINVAL;
270                 else
271                         r = kvm->arch.vgic.msis_require_devid;
272                 break;
273         case KVM_CAP_ARM_USER_IRQ:
274                 /*
275                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
276                  * (bump this number if adding more devices)
277                  */
278                 r = 1;
279                 break;
280         case KVM_CAP_ARM_MTE:
281                 r = system_supports_mte();
282                 break;
283         case KVM_CAP_STEAL_TIME:
284                 r = kvm_arm_pvtime_supported();
285                 break;
286         case KVM_CAP_ARM_EL1_32BIT:
287                 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
288                 break;
289         case KVM_CAP_GUEST_DEBUG_HW_BPS:
290                 r = get_num_brps();
291                 break;
292         case KVM_CAP_GUEST_DEBUG_HW_WPS:
293                 r = get_num_wrps();
294                 break;
295         case KVM_CAP_ARM_PMU_V3:
296                 r = kvm_arm_support_pmu_v3();
297                 break;
298         case KVM_CAP_ARM_INJECT_SERROR_ESR:
299                 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
300                 break;
301         case KVM_CAP_ARM_VM_IPA_SIZE:
302                 r = get_kvm_ipa_limit();
303                 break;
304         case KVM_CAP_ARM_SVE:
305                 r = system_supports_sve();
306                 break;
307         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
308         case KVM_CAP_ARM_PTRAUTH_GENERIC:
309                 r = system_has_full_ptr_auth();
310                 break;
311         case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
312                 if (kvm)
313                         r = kvm->arch.mmu.split_page_chunk_size;
314                 else
315                         r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
316                 break;
317         case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
318                 r = kvm_supported_block_sizes();
319                 break;
320         case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
321                 r = BIT(0);
322                 break;
323         default:
324                 r = 0;
325         }
326
327         return r;
328 }
329
330 long kvm_arch_dev_ioctl(struct file *filp,
331                         unsigned int ioctl, unsigned long arg)
332 {
333         return -EINVAL;
334 }
335
336 struct kvm *kvm_arch_alloc_vm(void)
337 {
338         size_t sz = sizeof(struct kvm);
339
340         if (!has_vhe())
341                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
342
343         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
344 }
345
346 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
347 {
348         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
349                 return -EBUSY;
350
351         if (id >= kvm->max_vcpus)
352                 return -EINVAL;
353
354         return 0;
355 }
356
357 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
358 {
359         int err;
360
361         spin_lock_init(&vcpu->arch.mp_state_lock);
362
363 #ifdef CONFIG_LOCKDEP
364         /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
365         mutex_lock(&vcpu->mutex);
366         mutex_lock(&vcpu->kvm->arch.config_lock);
367         mutex_unlock(&vcpu->kvm->arch.config_lock);
368         mutex_unlock(&vcpu->mutex);
369 #endif
370
371         /* Force users to call KVM_ARM_VCPU_INIT */
372         vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
373
374         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
375
376         /*
377          * Default value for the FP state, will be overloaded at load
378          * time if we support FP (pretty likely)
379          */
380         vcpu->arch.fp_state = FP_STATE_FREE;
381
382         /* Set up the timer */
383         kvm_timer_vcpu_init(vcpu);
384
385         kvm_pmu_vcpu_init(vcpu);
386
387         kvm_arm_reset_debug_ptr(vcpu);
388
389         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
390
391         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
392
393         err = kvm_vgic_vcpu_init(vcpu);
394         if (err)
395                 return err;
396
397         return kvm_share_hyp(vcpu, vcpu + 1);
398 }
399
400 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
401 {
402 }
403
404 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
405 {
406         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
407                 static_branch_dec(&userspace_irqchip_in_use);
408
409         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
410         kvm_timer_vcpu_terminate(vcpu);
411         kvm_pmu_vcpu_destroy(vcpu);
412         kvm_vgic_vcpu_destroy(vcpu);
413         kvm_arm_vcpu_destroy(vcpu);
414 }
415
416 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
417 {
418
419 }
420
421 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
422 {
423
424 }
425
426 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
427 {
428         struct kvm_s2_mmu *mmu;
429         int *last_ran;
430
431         mmu = vcpu->arch.hw_mmu;
432         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
433
434         /*
435          * We guarantee that both TLBs and I-cache are private to each
436          * vcpu. If detecting that a vcpu from the same VM has
437          * previously run on the same physical CPU, call into the
438          * hypervisor code to nuke the relevant contexts.
439          *
440          * We might get preempted before the vCPU actually runs, but
441          * over-invalidation doesn't affect correctness.
442          */
443         if (*last_ran != vcpu->vcpu_idx) {
444                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
445                 *last_ran = vcpu->vcpu_idx;
446         }
447
448         vcpu->cpu = cpu;
449
450         kvm_vgic_load(vcpu);
451         kvm_timer_vcpu_load(vcpu);
452         if (has_vhe())
453                 kvm_vcpu_load_vhe(vcpu);
454         kvm_arch_vcpu_load_fp(vcpu);
455         kvm_vcpu_pmu_restore_guest(vcpu);
456         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
457                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
458
459         if (single_task_running())
460                 vcpu_clear_wfx_traps(vcpu);
461         else
462                 vcpu_set_wfx_traps(vcpu);
463
464         if (vcpu_has_ptrauth(vcpu))
465                 vcpu_ptrauth_disable(vcpu);
466         kvm_arch_vcpu_load_debug_state_flags(vcpu);
467
468         if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
469                 vcpu_set_on_unsupported_cpu(vcpu);
470 }
471
472 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
473 {
474         kvm_arch_vcpu_put_debug_state_flags(vcpu);
475         kvm_arch_vcpu_put_fp(vcpu);
476         if (has_vhe())
477                 kvm_vcpu_put_vhe(vcpu);
478         kvm_timer_vcpu_put(vcpu);
479         kvm_vgic_put(vcpu);
480         kvm_vcpu_pmu_restore_host(vcpu);
481         kvm_arm_vmid_clear_active();
482
483         vcpu_clear_on_unsupported_cpu(vcpu);
484         vcpu->cpu = -1;
485 }
486
487 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
488 {
489         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
490         kvm_make_request(KVM_REQ_SLEEP, vcpu);
491         kvm_vcpu_kick(vcpu);
492 }
493
494 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
495 {
496         spin_lock(&vcpu->arch.mp_state_lock);
497         __kvm_arm_vcpu_power_off(vcpu);
498         spin_unlock(&vcpu->arch.mp_state_lock);
499 }
500
501 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
502 {
503         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
504 }
505
506 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
507 {
508         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
509         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
510         kvm_vcpu_kick(vcpu);
511 }
512
513 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
514 {
515         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
516 }
517
518 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
519                                     struct kvm_mp_state *mp_state)
520 {
521         *mp_state = READ_ONCE(vcpu->arch.mp_state);
522
523         return 0;
524 }
525
526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
527                                     struct kvm_mp_state *mp_state)
528 {
529         int ret = 0;
530
531         spin_lock(&vcpu->arch.mp_state_lock);
532
533         switch (mp_state->mp_state) {
534         case KVM_MP_STATE_RUNNABLE:
535                 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
536                 break;
537         case KVM_MP_STATE_STOPPED:
538                 __kvm_arm_vcpu_power_off(vcpu);
539                 break;
540         case KVM_MP_STATE_SUSPENDED:
541                 kvm_arm_vcpu_suspend(vcpu);
542                 break;
543         default:
544                 ret = -EINVAL;
545         }
546
547         spin_unlock(&vcpu->arch.mp_state_lock);
548
549         return ret;
550 }
551
552 /**
553  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
554  * @v:          The VCPU pointer
555  *
556  * If the guest CPU is not waiting for interrupts or an interrupt line is
557  * asserted, the CPU is by definition runnable.
558  */
559 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
560 {
561         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
562         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
563                 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
564 }
565
566 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
567 {
568         return vcpu_mode_priv(vcpu);
569 }
570
571 #ifdef CONFIG_GUEST_PERF_EVENTS
572 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
573 {
574         return *vcpu_pc(vcpu);
575 }
576 #endif
577
578 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
579 {
580         return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
581 }
582
583 static void kvm_init_mpidr_data(struct kvm *kvm)
584 {
585         struct kvm_mpidr_data *data = NULL;
586         unsigned long c, mask, nr_entries;
587         u64 aff_set = 0, aff_clr = ~0UL;
588         struct kvm_vcpu *vcpu;
589
590         mutex_lock(&kvm->arch.config_lock);
591
592         if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1)
593                 goto out;
594
595         kvm_for_each_vcpu(c, vcpu, kvm) {
596                 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
597                 aff_set |= aff;
598                 aff_clr &= aff;
599         }
600
601         /*
602          * A significant bit can be either 0 or 1, and will only appear in
603          * aff_set. Use aff_clr to weed out the useless stuff.
604          */
605         mask = aff_set ^ aff_clr;
606         nr_entries = BIT_ULL(hweight_long(mask));
607
608         /*
609          * Don't let userspace fool us. If we need more than a single page
610          * to describe the compressed MPIDR array, just fall back to the
611          * iterative method. Single vcpu VMs do not need this either.
612          */
613         if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
614                 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
615                                GFP_KERNEL_ACCOUNT);
616
617         if (!data)
618                 goto out;
619
620         data->mpidr_mask = mask;
621
622         kvm_for_each_vcpu(c, vcpu, kvm) {
623                 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
624                 u16 index = kvm_mpidr_index(data, aff);
625
626                 data->cmpidr_to_idx[index] = c;
627         }
628
629         kvm->arch.mpidr_data = data;
630 out:
631         mutex_unlock(&kvm->arch.config_lock);
632 }
633
634 /*
635  * Handle both the initialisation that is being done when the vcpu is
636  * run for the first time, as well as the updates that must be
637  * performed each time we get a new thread dealing with this vcpu.
638  */
639 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
640 {
641         struct kvm *kvm = vcpu->kvm;
642         int ret;
643
644         if (!kvm_vcpu_initialized(vcpu))
645                 return -ENOEXEC;
646
647         if (!kvm_arm_vcpu_is_finalized(vcpu))
648                 return -EPERM;
649
650         ret = kvm_arch_vcpu_run_map_fp(vcpu);
651         if (ret)
652                 return ret;
653
654         if (likely(vcpu_has_run_once(vcpu)))
655                 return 0;
656
657         kvm_init_mpidr_data(kvm);
658
659         kvm_arm_vcpu_init_debug(vcpu);
660
661         if (likely(irqchip_in_kernel(kvm))) {
662                 /*
663                  * Map the VGIC hardware resources before running a vcpu the
664                  * first time on this VM.
665                  */
666                 ret = kvm_vgic_map_resources(kvm);
667                 if (ret)
668                         return ret;
669         }
670
671         if (vcpu_has_nv(vcpu)) {
672                 ret = kvm_init_nv_sysregs(vcpu->kvm);
673                 if (ret)
674                         return ret;
675         }
676
677         ret = kvm_timer_enable(vcpu);
678         if (ret)
679                 return ret;
680
681         ret = kvm_arm_pmu_v3_enable(vcpu);
682         if (ret)
683                 return ret;
684
685         if (is_protected_kvm_enabled()) {
686                 ret = pkvm_create_hyp_vm(kvm);
687                 if (ret)
688                         return ret;
689         }
690
691         if (!irqchip_in_kernel(kvm)) {
692                 /*
693                  * Tell the rest of the code that there are userspace irqchip
694                  * VMs in the wild.
695                  */
696                 static_branch_inc(&userspace_irqchip_in_use);
697         }
698
699         /*
700          * Initialize traps for protected VMs.
701          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
702          * the code is in place for first run initialization at EL2.
703          */
704         if (kvm_vm_is_protected(kvm))
705                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
706
707         mutex_lock(&kvm->arch.config_lock);
708         set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
709         mutex_unlock(&kvm->arch.config_lock);
710
711         return ret;
712 }
713
714 bool kvm_arch_intc_initialized(struct kvm *kvm)
715 {
716         return vgic_initialized(kvm);
717 }
718
719 void kvm_arm_halt_guest(struct kvm *kvm)
720 {
721         unsigned long i;
722         struct kvm_vcpu *vcpu;
723
724         kvm_for_each_vcpu(i, vcpu, kvm)
725                 vcpu->arch.pause = true;
726         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
727 }
728
729 void kvm_arm_resume_guest(struct kvm *kvm)
730 {
731         unsigned long i;
732         struct kvm_vcpu *vcpu;
733
734         kvm_for_each_vcpu(i, vcpu, kvm) {
735                 vcpu->arch.pause = false;
736                 __kvm_vcpu_wake_up(vcpu);
737         }
738 }
739
740 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
741 {
742         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
743
744         rcuwait_wait_event(wait,
745                            (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
746                            TASK_INTERRUPTIBLE);
747
748         if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
749                 /* Awaken to handle a signal, request we sleep again later. */
750                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
751         }
752
753         /*
754          * Make sure we will observe a potential reset request if we've
755          * observed a change to the power state. Pairs with the smp_wmb() in
756          * kvm_psci_vcpu_on().
757          */
758         smp_rmb();
759 }
760
761 /**
762  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
763  * @vcpu:       The VCPU pointer
764  *
765  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
766  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
767  * on when a wake event arrives, e.g. there may already be a pending wake event.
768  */
769 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
770 {
771         /*
772          * Sync back the state of the GIC CPU interface so that we have
773          * the latest PMR and group enables. This ensures that
774          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
775          * we have pending interrupts, e.g. when determining if the
776          * vCPU should block.
777          *
778          * For the same reason, we want to tell GICv4 that we need
779          * doorbells to be signalled, should an interrupt become pending.
780          */
781         preempt_disable();
782         kvm_vgic_vmcr_sync(vcpu);
783         vcpu_set_flag(vcpu, IN_WFI);
784         vgic_v4_put(vcpu);
785         preempt_enable();
786
787         kvm_vcpu_halt(vcpu);
788         vcpu_clear_flag(vcpu, IN_WFIT);
789
790         preempt_disable();
791         vcpu_clear_flag(vcpu, IN_WFI);
792         vgic_v4_load(vcpu);
793         preempt_enable();
794 }
795
796 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
797 {
798         if (!kvm_arm_vcpu_suspended(vcpu))
799                 return 1;
800
801         kvm_vcpu_wfi(vcpu);
802
803         /*
804          * The suspend state is sticky; we do not leave it until userspace
805          * explicitly marks the vCPU as runnable. Request that we suspend again
806          * later.
807          */
808         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
809
810         /*
811          * Check to make sure the vCPU is actually runnable. If so, exit to
812          * userspace informing it of the wakeup condition.
813          */
814         if (kvm_arch_vcpu_runnable(vcpu)) {
815                 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
816                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
817                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
818                 return 0;
819         }
820
821         /*
822          * Otherwise, we were unblocked to process a different event, such as a
823          * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
824          * process the event.
825          */
826         return 1;
827 }
828
829 /**
830  * check_vcpu_requests - check and handle pending vCPU requests
831  * @vcpu:       the VCPU pointer
832  *
833  * Return: 1 if we should enter the guest
834  *         0 if we should exit to userspace
835  *         < 0 if we should exit to userspace, where the return value indicates
836  *         an error
837  */
838 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
839 {
840         if (kvm_request_pending(vcpu)) {
841                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
842                         kvm_vcpu_sleep(vcpu);
843
844                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
845                         kvm_reset_vcpu(vcpu);
846
847                 /*
848                  * Clear IRQ_PENDING requests that were made to guarantee
849                  * that a VCPU sees new virtual interrupts.
850                  */
851                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
852
853                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
854                         kvm_update_stolen_time(vcpu);
855
856                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
857                         /* The distributor enable bits were changed */
858                         preempt_disable();
859                         vgic_v4_put(vcpu);
860                         vgic_v4_load(vcpu);
861                         preempt_enable();
862                 }
863
864                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
865                         kvm_vcpu_reload_pmu(vcpu);
866
867                 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
868                         kvm_vcpu_pmu_restore_guest(vcpu);
869
870                 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
871                         return kvm_vcpu_suspend(vcpu);
872
873                 if (kvm_dirty_ring_check_request(vcpu))
874                         return 0;
875         }
876
877         return 1;
878 }
879
880 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
881 {
882         if (likely(!vcpu_mode_is_32bit(vcpu)))
883                 return false;
884
885         if (vcpu_has_nv(vcpu))
886                 return true;
887
888         return !kvm_supports_32bit_el0();
889 }
890
891 /**
892  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
893  * @vcpu:       The VCPU pointer
894  * @ret:        Pointer to write optional return code
895  *
896  * Returns: true if the VCPU needs to return to a preemptible + interruptible
897  *          and skip guest entry.
898  *
899  * This function disambiguates between two different types of exits: exits to a
900  * preemptible + interruptible kernel context and exits to userspace. For an
901  * exit to userspace, this function will write the return code to ret and return
902  * true. For an exit to preemptible + interruptible kernel context (i.e. check
903  * for pending work and re-enter), return true without writing to ret.
904  */
905 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
906 {
907         struct kvm_run *run = vcpu->run;
908
909         /*
910          * If we're using a userspace irqchip, then check if we need
911          * to tell a userspace irqchip about timer or PMU level
912          * changes and if so, exit to userspace (the actual level
913          * state gets updated in kvm_timer_update_run and
914          * kvm_pmu_update_run below).
915          */
916         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
917                 if (kvm_timer_should_notify_user(vcpu) ||
918                     kvm_pmu_should_notify_user(vcpu)) {
919                         *ret = -EINTR;
920                         run->exit_reason = KVM_EXIT_INTR;
921                         return true;
922                 }
923         }
924
925         if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
926                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
927                 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
928                 run->fail_entry.cpu = smp_processor_id();
929                 *ret = 0;
930                 return true;
931         }
932
933         return kvm_request_pending(vcpu) ||
934                         xfer_to_guest_mode_work_pending();
935 }
936
937 /*
938  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
939  * the vCPU is running.
940  *
941  * This must be noinstr as instrumentation may make use of RCU, and this is not
942  * safe during the EQS.
943  */
944 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
945 {
946         int ret;
947
948         guest_state_enter_irqoff();
949         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
950         guest_state_exit_irqoff();
951
952         return ret;
953 }
954
955 /**
956  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
957  * @vcpu:       The VCPU pointer
958  *
959  * This function is called through the VCPU_RUN ioctl called from user space. It
960  * will execute VM code in a loop until the time slice for the process is used
961  * or some emulation is needed from user space in which case the function will
962  * return with return value 0 and with the kvm_run structure filled in with the
963  * required data for the requested emulation.
964  */
965 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
966 {
967         struct kvm_run *run = vcpu->run;
968         int ret;
969
970         if (run->exit_reason == KVM_EXIT_MMIO) {
971                 ret = kvm_handle_mmio_return(vcpu);
972                 if (ret)
973                         return ret;
974         }
975
976         vcpu_load(vcpu);
977
978         if (run->immediate_exit) {
979                 ret = -EINTR;
980                 goto out;
981         }
982
983         kvm_sigset_activate(vcpu);
984
985         ret = 1;
986         run->exit_reason = KVM_EXIT_UNKNOWN;
987         run->flags = 0;
988         while (ret > 0) {
989                 /*
990                  * Check conditions before entering the guest
991                  */
992                 ret = xfer_to_guest_mode_handle_work(vcpu);
993                 if (!ret)
994                         ret = 1;
995
996                 if (ret > 0)
997                         ret = check_vcpu_requests(vcpu);
998
999                 /*
1000                  * Preparing the interrupts to be injected also
1001                  * involves poking the GIC, which must be done in a
1002                  * non-preemptible context.
1003                  */
1004                 preempt_disable();
1005
1006                 /*
1007                  * The VMID allocator only tracks active VMIDs per
1008                  * physical CPU, and therefore the VMID allocated may not be
1009                  * preserved on VMID roll-over if the task was preempted,
1010                  * making a thread's VMID inactive. So we need to call
1011                  * kvm_arm_vmid_update() in non-premptible context.
1012                  */
1013                 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1014                     has_vhe())
1015                         __load_stage2(vcpu->arch.hw_mmu,
1016                                       vcpu->arch.hw_mmu->arch);
1017
1018                 kvm_pmu_flush_hwstate(vcpu);
1019
1020                 local_irq_disable();
1021
1022                 kvm_vgic_flush_hwstate(vcpu);
1023
1024                 kvm_pmu_update_vcpu_events(vcpu);
1025
1026                 /*
1027                  * Ensure we set mode to IN_GUEST_MODE after we disable
1028                  * interrupts and before the final VCPU requests check.
1029                  * See the comment in kvm_vcpu_exiting_guest_mode() and
1030                  * Documentation/virt/kvm/vcpu-requests.rst
1031                  */
1032                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1033
1034                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1035                         vcpu->mode = OUTSIDE_GUEST_MODE;
1036                         isb(); /* Ensure work in x_flush_hwstate is committed */
1037                         kvm_pmu_sync_hwstate(vcpu);
1038                         if (static_branch_unlikely(&userspace_irqchip_in_use))
1039                                 kvm_timer_sync_user(vcpu);
1040                         kvm_vgic_sync_hwstate(vcpu);
1041                         local_irq_enable();
1042                         preempt_enable();
1043                         continue;
1044                 }
1045
1046                 kvm_arm_setup_debug(vcpu);
1047                 kvm_arch_vcpu_ctxflush_fp(vcpu);
1048
1049                 /**************************************************************
1050                  * Enter the guest
1051                  */
1052                 trace_kvm_entry(*vcpu_pc(vcpu));
1053                 guest_timing_enter_irqoff();
1054
1055                 ret = kvm_arm_vcpu_enter_exit(vcpu);
1056
1057                 vcpu->mode = OUTSIDE_GUEST_MODE;
1058                 vcpu->stat.exits++;
1059                 /*
1060                  * Back from guest
1061                  *************************************************************/
1062
1063                 kvm_arm_clear_debug(vcpu);
1064
1065                 /*
1066                  * We must sync the PMU state before the vgic state so
1067                  * that the vgic can properly sample the updated state of the
1068                  * interrupt line.
1069                  */
1070                 kvm_pmu_sync_hwstate(vcpu);
1071
1072                 /*
1073                  * Sync the vgic state before syncing the timer state because
1074                  * the timer code needs to know if the virtual timer
1075                  * interrupts are active.
1076                  */
1077                 kvm_vgic_sync_hwstate(vcpu);
1078
1079                 /*
1080                  * Sync the timer hardware state before enabling interrupts as
1081                  * we don't want vtimer interrupts to race with syncing the
1082                  * timer virtual interrupt state.
1083                  */
1084                 if (static_branch_unlikely(&userspace_irqchip_in_use))
1085                         kvm_timer_sync_user(vcpu);
1086
1087                 kvm_arch_vcpu_ctxsync_fp(vcpu);
1088
1089                 /*
1090                  * We must ensure that any pending interrupts are taken before
1091                  * we exit guest timing so that timer ticks are accounted as
1092                  * guest time. Transiently unmask interrupts so that any
1093                  * pending interrupts are taken.
1094                  *
1095                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1096                  * context synchronization event) is necessary to ensure that
1097                  * pending interrupts are taken.
1098                  */
1099                 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1100                         local_irq_enable();
1101                         isb();
1102                         local_irq_disable();
1103                 }
1104
1105                 guest_timing_exit_irqoff();
1106
1107                 local_irq_enable();
1108
1109                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1110
1111                 /* Exit types that need handling before we can be preempted */
1112                 handle_exit_early(vcpu, ret);
1113
1114                 preempt_enable();
1115
1116                 /*
1117                  * The ARMv8 architecture doesn't give the hypervisor
1118                  * a mechanism to prevent a guest from dropping to AArch32 EL0
1119                  * if implemented by the CPU. If we spot the guest in such
1120                  * state and that we decided it wasn't supposed to do so (like
1121                  * with the asymmetric AArch32 case), return to userspace with
1122                  * a fatal error.
1123                  */
1124                 if (vcpu_mode_is_bad_32bit(vcpu)) {
1125                         /*
1126                          * As we have caught the guest red-handed, decide that
1127                          * it isn't fit for purpose anymore by making the vcpu
1128                          * invalid. The VMM can try and fix it by issuing  a
1129                          * KVM_ARM_VCPU_INIT if it really wants to.
1130                          */
1131                         vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1132                         ret = ARM_EXCEPTION_IL;
1133                 }
1134
1135                 ret = handle_exit(vcpu, ret);
1136         }
1137
1138         /* Tell userspace about in-kernel device output levels */
1139         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1140                 kvm_timer_update_run(vcpu);
1141                 kvm_pmu_update_run(vcpu);
1142         }
1143
1144         kvm_sigset_deactivate(vcpu);
1145
1146 out:
1147         /*
1148          * In the unlikely event that we are returning to userspace
1149          * with pending exceptions or PC adjustment, commit these
1150          * adjustments in order to give userspace a consistent view of
1151          * the vcpu state. Note that this relies on __kvm_adjust_pc()
1152          * being preempt-safe on VHE.
1153          */
1154         if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1155                      vcpu_get_flag(vcpu, INCREMENT_PC)))
1156                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1157
1158         vcpu_put(vcpu);
1159         return ret;
1160 }
1161
1162 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1163 {
1164         int bit_index;
1165         bool set;
1166         unsigned long *hcr;
1167
1168         if (number == KVM_ARM_IRQ_CPU_IRQ)
1169                 bit_index = __ffs(HCR_VI);
1170         else /* KVM_ARM_IRQ_CPU_FIQ */
1171                 bit_index = __ffs(HCR_VF);
1172
1173         hcr = vcpu_hcr(vcpu);
1174         if (level)
1175                 set = test_and_set_bit(bit_index, hcr);
1176         else
1177                 set = test_and_clear_bit(bit_index, hcr);
1178
1179         /*
1180          * If we didn't change anything, no need to wake up or kick other CPUs
1181          */
1182         if (set == level)
1183                 return 0;
1184
1185         /*
1186          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1187          * trigger a world-switch round on the running physical CPU to set the
1188          * virtual IRQ/FIQ fields in the HCR appropriately.
1189          */
1190         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1191         kvm_vcpu_kick(vcpu);
1192
1193         return 0;
1194 }
1195
1196 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1197                           bool line_status)
1198 {
1199         u32 irq = irq_level->irq;
1200         unsigned int irq_type, vcpu_id, irq_num;
1201         struct kvm_vcpu *vcpu = NULL;
1202         bool level = irq_level->level;
1203
1204         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1205         vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1206         vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1207         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1208
1209         trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1210
1211         switch (irq_type) {
1212         case KVM_ARM_IRQ_TYPE_CPU:
1213                 if (irqchip_in_kernel(kvm))
1214                         return -ENXIO;
1215
1216                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1217                 if (!vcpu)
1218                         return -EINVAL;
1219
1220                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1221                         return -EINVAL;
1222
1223                 return vcpu_interrupt_line(vcpu, irq_num, level);
1224         case KVM_ARM_IRQ_TYPE_PPI:
1225                 if (!irqchip_in_kernel(kvm))
1226                         return -ENXIO;
1227
1228                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1229                 if (!vcpu)
1230                         return -EINVAL;
1231
1232                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1233                         return -EINVAL;
1234
1235                 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1236         case KVM_ARM_IRQ_TYPE_SPI:
1237                 if (!irqchip_in_kernel(kvm))
1238                         return -ENXIO;
1239
1240                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1241                         return -EINVAL;
1242
1243                 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1244         }
1245
1246         return -EINVAL;
1247 }
1248
1249 static unsigned long system_supported_vcpu_features(void)
1250 {
1251         unsigned long features = KVM_VCPU_VALID_FEATURES;
1252
1253         if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1254                 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1255
1256         if (!kvm_arm_support_pmu_v3())
1257                 clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1258
1259         if (!system_supports_sve())
1260                 clear_bit(KVM_ARM_VCPU_SVE, &features);
1261
1262         if (!system_has_full_ptr_auth()) {
1263                 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1264                 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1265         }
1266
1267         if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1268                 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1269
1270         return features;
1271 }
1272
1273 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1274                                         const struct kvm_vcpu_init *init)
1275 {
1276         unsigned long features = init->features[0];
1277         int i;
1278
1279         if (features & ~KVM_VCPU_VALID_FEATURES)
1280                 return -ENOENT;
1281
1282         for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1283                 if (init->features[i])
1284                         return -ENOENT;
1285         }
1286
1287         if (features & ~system_supported_vcpu_features())
1288                 return -EINVAL;
1289
1290         /*
1291          * For now make sure that both address/generic pointer authentication
1292          * features are requested by the userspace together.
1293          */
1294         if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1295             test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1296                 return -EINVAL;
1297
1298         /* Disallow NV+SVE for the time being */
1299         if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) &&
1300             test_bit(KVM_ARM_VCPU_SVE, &features))
1301                 return -EINVAL;
1302
1303         if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1304                 return 0;
1305
1306         /* MTE is incompatible with AArch32 */
1307         if (kvm_has_mte(vcpu->kvm))
1308                 return -EINVAL;
1309
1310         /* NV is incompatible with AArch32 */
1311         if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1312                 return -EINVAL;
1313
1314         return 0;
1315 }
1316
1317 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1318                                   const struct kvm_vcpu_init *init)
1319 {
1320         unsigned long features = init->features[0];
1321
1322         return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1323                              KVM_VCPU_MAX_FEATURES);
1324 }
1325
1326 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1327 {
1328         struct kvm *kvm = vcpu->kvm;
1329         int ret = 0;
1330
1331         /*
1332          * When the vCPU has a PMU, but no PMU is set for the guest
1333          * yet, set the default one.
1334          */
1335         if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1336                 ret = kvm_arm_set_default_pmu(kvm);
1337
1338         return ret;
1339 }
1340
1341 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1342                                  const struct kvm_vcpu_init *init)
1343 {
1344         unsigned long features = init->features[0];
1345         struct kvm *kvm = vcpu->kvm;
1346         int ret = -EINVAL;
1347
1348         mutex_lock(&kvm->arch.config_lock);
1349
1350         if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1351             kvm_vcpu_init_changed(vcpu, init))
1352                 goto out_unlock;
1353
1354         bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1355
1356         ret = kvm_setup_vcpu(vcpu);
1357         if (ret)
1358                 goto out_unlock;
1359
1360         /* Now we know what it is, we can reset it. */
1361         kvm_reset_vcpu(vcpu);
1362
1363         set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1364         vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1365         ret = 0;
1366 out_unlock:
1367         mutex_unlock(&kvm->arch.config_lock);
1368         return ret;
1369 }
1370
1371 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1372                                const struct kvm_vcpu_init *init)
1373 {
1374         int ret;
1375
1376         if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1377             init->target != kvm_target_cpu())
1378                 return -EINVAL;
1379
1380         ret = kvm_vcpu_init_check_features(vcpu, init);
1381         if (ret)
1382                 return ret;
1383
1384         if (!kvm_vcpu_initialized(vcpu))
1385                 return __kvm_vcpu_set_target(vcpu, init);
1386
1387         if (kvm_vcpu_init_changed(vcpu, init))
1388                 return -EINVAL;
1389
1390         kvm_reset_vcpu(vcpu);
1391         return 0;
1392 }
1393
1394 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1395                                          struct kvm_vcpu_init *init)
1396 {
1397         bool power_off = false;
1398         int ret;
1399
1400         /*
1401          * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1402          * reflecting it in the finalized feature set, thus limiting its scope
1403          * to a single KVM_ARM_VCPU_INIT call.
1404          */
1405         if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1406                 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1407                 power_off = true;
1408         }
1409
1410         ret = kvm_vcpu_set_target(vcpu, init);
1411         if (ret)
1412                 return ret;
1413
1414         /*
1415          * Ensure a rebooted VM will fault in RAM pages and detect if the
1416          * guest MMU is turned off and flush the caches as needed.
1417          *
1418          * S2FWB enforces all memory accesses to RAM being cacheable,
1419          * ensuring that the data side is always coherent. We still
1420          * need to invalidate the I-cache though, as FWB does *not*
1421          * imply CTR_EL0.DIC.
1422          */
1423         if (vcpu_has_run_once(vcpu)) {
1424                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1425                         stage2_unmap_vm(vcpu->kvm);
1426                 else
1427                         icache_inval_all_pou();
1428         }
1429
1430         vcpu_reset_hcr(vcpu);
1431         vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1432
1433         /*
1434          * Handle the "start in power-off" case.
1435          */
1436         spin_lock(&vcpu->arch.mp_state_lock);
1437
1438         if (power_off)
1439                 __kvm_arm_vcpu_power_off(vcpu);
1440         else
1441                 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1442
1443         spin_unlock(&vcpu->arch.mp_state_lock);
1444
1445         return 0;
1446 }
1447
1448 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1449                                  struct kvm_device_attr *attr)
1450 {
1451         int ret = -ENXIO;
1452
1453         switch (attr->group) {
1454         default:
1455                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1456                 break;
1457         }
1458
1459         return ret;
1460 }
1461
1462 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1463                                  struct kvm_device_attr *attr)
1464 {
1465         int ret = -ENXIO;
1466
1467         switch (attr->group) {
1468         default:
1469                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1470                 break;
1471         }
1472
1473         return ret;
1474 }
1475
1476 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1477                                  struct kvm_device_attr *attr)
1478 {
1479         int ret = -ENXIO;
1480
1481         switch (attr->group) {
1482         default:
1483                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1484                 break;
1485         }
1486
1487         return ret;
1488 }
1489
1490 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1491                                    struct kvm_vcpu_events *events)
1492 {
1493         memset(events, 0, sizeof(*events));
1494
1495         return __kvm_arm_vcpu_get_events(vcpu, events);
1496 }
1497
1498 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1499                                    struct kvm_vcpu_events *events)
1500 {
1501         int i;
1502
1503         /* check whether the reserved field is zero */
1504         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1505                 if (events->reserved[i])
1506                         return -EINVAL;
1507
1508         /* check whether the pad field is zero */
1509         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1510                 if (events->exception.pad[i])
1511                         return -EINVAL;
1512
1513         return __kvm_arm_vcpu_set_events(vcpu, events);
1514 }
1515
1516 long kvm_arch_vcpu_ioctl(struct file *filp,
1517                          unsigned int ioctl, unsigned long arg)
1518 {
1519         struct kvm_vcpu *vcpu = filp->private_data;
1520         void __user *argp = (void __user *)arg;
1521         struct kvm_device_attr attr;
1522         long r;
1523
1524         switch (ioctl) {
1525         case KVM_ARM_VCPU_INIT: {
1526                 struct kvm_vcpu_init init;
1527
1528                 r = -EFAULT;
1529                 if (copy_from_user(&init, argp, sizeof(init)))
1530                         break;
1531
1532                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1533                 break;
1534         }
1535         case KVM_SET_ONE_REG:
1536         case KVM_GET_ONE_REG: {
1537                 struct kvm_one_reg reg;
1538
1539                 r = -ENOEXEC;
1540                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1541                         break;
1542
1543                 r = -EFAULT;
1544                 if (copy_from_user(&reg, argp, sizeof(reg)))
1545                         break;
1546
1547                 /*
1548                  * We could owe a reset due to PSCI. Handle the pending reset
1549                  * here to ensure userspace register accesses are ordered after
1550                  * the reset.
1551                  */
1552                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1553                         kvm_reset_vcpu(vcpu);
1554
1555                 if (ioctl == KVM_SET_ONE_REG)
1556                         r = kvm_arm_set_reg(vcpu, &reg);
1557                 else
1558                         r = kvm_arm_get_reg(vcpu, &reg);
1559                 break;
1560         }
1561         case KVM_GET_REG_LIST: {
1562                 struct kvm_reg_list __user *user_list = argp;
1563                 struct kvm_reg_list reg_list;
1564                 unsigned n;
1565
1566                 r = -ENOEXEC;
1567                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1568                         break;
1569
1570                 r = -EPERM;
1571                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1572                         break;
1573
1574                 r = -EFAULT;
1575                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1576                         break;
1577                 n = reg_list.n;
1578                 reg_list.n = kvm_arm_num_regs(vcpu);
1579                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1580                         break;
1581                 r = -E2BIG;
1582                 if (n < reg_list.n)
1583                         break;
1584                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1585                 break;
1586         }
1587         case KVM_SET_DEVICE_ATTR: {
1588                 r = -EFAULT;
1589                 if (copy_from_user(&attr, argp, sizeof(attr)))
1590                         break;
1591                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1592                 break;
1593         }
1594         case KVM_GET_DEVICE_ATTR: {
1595                 r = -EFAULT;
1596                 if (copy_from_user(&attr, argp, sizeof(attr)))
1597                         break;
1598                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1599                 break;
1600         }
1601         case KVM_HAS_DEVICE_ATTR: {
1602                 r = -EFAULT;
1603                 if (copy_from_user(&attr, argp, sizeof(attr)))
1604                         break;
1605                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1606                 break;
1607         }
1608         case KVM_GET_VCPU_EVENTS: {
1609                 struct kvm_vcpu_events events;
1610
1611                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1612                         return -EINVAL;
1613
1614                 if (copy_to_user(argp, &events, sizeof(events)))
1615                         return -EFAULT;
1616
1617                 return 0;
1618         }
1619         case KVM_SET_VCPU_EVENTS: {
1620                 struct kvm_vcpu_events events;
1621
1622                 if (copy_from_user(&events, argp, sizeof(events)))
1623                         return -EFAULT;
1624
1625                 return kvm_arm_vcpu_set_events(vcpu, &events);
1626         }
1627         case KVM_ARM_VCPU_FINALIZE: {
1628                 int what;
1629
1630                 if (!kvm_vcpu_initialized(vcpu))
1631                         return -ENOEXEC;
1632
1633                 if (get_user(what, (const int __user *)argp))
1634                         return -EFAULT;
1635
1636                 return kvm_arm_vcpu_finalize(vcpu, what);
1637         }
1638         default:
1639                 r = -EINVAL;
1640         }
1641
1642         return r;
1643 }
1644
1645 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1646 {
1647
1648 }
1649
1650 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1651                                         struct kvm_arm_device_addr *dev_addr)
1652 {
1653         switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1654         case KVM_ARM_DEVICE_VGIC_V2:
1655                 if (!vgic_present)
1656                         return -ENXIO;
1657                 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1658         default:
1659                 return -ENODEV;
1660         }
1661 }
1662
1663 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1664 {
1665         switch (attr->group) {
1666         case KVM_ARM_VM_SMCCC_CTRL:
1667                 return kvm_vm_smccc_has_attr(kvm, attr);
1668         default:
1669                 return -ENXIO;
1670         }
1671 }
1672
1673 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1674 {
1675         switch (attr->group) {
1676         case KVM_ARM_VM_SMCCC_CTRL:
1677                 return kvm_vm_smccc_set_attr(kvm, attr);
1678         default:
1679                 return -ENXIO;
1680         }
1681 }
1682
1683 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1684 {
1685         struct kvm *kvm = filp->private_data;
1686         void __user *argp = (void __user *)arg;
1687         struct kvm_device_attr attr;
1688
1689         switch (ioctl) {
1690         case KVM_CREATE_IRQCHIP: {
1691                 int ret;
1692                 if (!vgic_present)
1693                         return -ENXIO;
1694                 mutex_lock(&kvm->lock);
1695                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1696                 mutex_unlock(&kvm->lock);
1697                 return ret;
1698         }
1699         case KVM_ARM_SET_DEVICE_ADDR: {
1700                 struct kvm_arm_device_addr dev_addr;
1701
1702                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1703                         return -EFAULT;
1704                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1705         }
1706         case KVM_ARM_PREFERRED_TARGET: {
1707                 struct kvm_vcpu_init init = {
1708                         .target = KVM_ARM_TARGET_GENERIC_V8,
1709                 };
1710
1711                 if (copy_to_user(argp, &init, sizeof(init)))
1712                         return -EFAULT;
1713
1714                 return 0;
1715         }
1716         case KVM_ARM_MTE_COPY_TAGS: {
1717                 struct kvm_arm_copy_mte_tags copy_tags;
1718
1719                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1720                         return -EFAULT;
1721                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1722         }
1723         case KVM_ARM_SET_COUNTER_OFFSET: {
1724                 struct kvm_arm_counter_offset offset;
1725
1726                 if (copy_from_user(&offset, argp, sizeof(offset)))
1727                         return -EFAULT;
1728                 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1729         }
1730         case KVM_HAS_DEVICE_ATTR: {
1731                 if (copy_from_user(&attr, argp, sizeof(attr)))
1732                         return -EFAULT;
1733
1734                 return kvm_vm_has_attr(kvm, &attr);
1735         }
1736         case KVM_SET_DEVICE_ATTR: {
1737                 if (copy_from_user(&attr, argp, sizeof(attr)))
1738                         return -EFAULT;
1739
1740                 return kvm_vm_set_attr(kvm, &attr);
1741         }
1742         case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1743                 struct reg_mask_range range;
1744
1745                 if (copy_from_user(&range, argp, sizeof(range)))
1746                         return -EFAULT;
1747                 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1748         }
1749         default:
1750                 return -EINVAL;
1751         }
1752 }
1753
1754 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1755 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1756 {
1757         struct kvm_vcpu *tmp_vcpu;
1758
1759         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1760                 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1761                 mutex_unlock(&tmp_vcpu->mutex);
1762         }
1763 }
1764
1765 void unlock_all_vcpus(struct kvm *kvm)
1766 {
1767         lockdep_assert_held(&kvm->lock);
1768
1769         unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1770 }
1771
1772 /* Returns true if all vcpus were locked, false otherwise */
1773 bool lock_all_vcpus(struct kvm *kvm)
1774 {
1775         struct kvm_vcpu *tmp_vcpu;
1776         unsigned long c;
1777
1778         lockdep_assert_held(&kvm->lock);
1779
1780         /*
1781          * Any time a vcpu is in an ioctl (including running), the
1782          * core KVM code tries to grab the vcpu->mutex.
1783          *
1784          * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1785          * other VCPUs can fiddle with the state while we access it.
1786          */
1787         kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1788                 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1789                         unlock_vcpus(kvm, c - 1);
1790                         return false;
1791                 }
1792         }
1793
1794         return true;
1795 }
1796
1797 static unsigned long nvhe_percpu_size(void)
1798 {
1799         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1800                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1801 }
1802
1803 static unsigned long nvhe_percpu_order(void)
1804 {
1805         unsigned long size = nvhe_percpu_size();
1806
1807         return size ? get_order(size) : 0;
1808 }
1809
1810 /* A lookup table holding the hypervisor VA for each vector slot */
1811 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1812
1813 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1814 {
1815         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1816 }
1817
1818 static int kvm_init_vector_slots(void)
1819 {
1820         int err;
1821         void *base;
1822
1823         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1824         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1825
1826         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1827         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1828
1829         if (kvm_system_needs_idmapped_vectors() &&
1830             !is_protected_kvm_enabled()) {
1831                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1832                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1833                 if (err)
1834                         return err;
1835         }
1836
1837         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1838         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1839         return 0;
1840 }
1841
1842 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1843 {
1844         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1845         u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1846         unsigned long tcr;
1847
1848         /*
1849          * Calculate the raw per-cpu offset without a translation from the
1850          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1851          * so that we can use adr_l to access per-cpu variables in EL2.
1852          * Also drop the KASAN tag which gets in the way...
1853          */
1854         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1855                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1856
1857         params->mair_el2 = read_sysreg(mair_el1);
1858
1859         tcr = read_sysreg(tcr_el1);
1860         if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1861                 tcr |= TCR_EPD1_MASK;
1862         } else {
1863                 tcr &= TCR_EL2_MASK;
1864                 tcr |= TCR_EL2_RES1;
1865         }
1866         tcr &= ~TCR_T0SZ_MASK;
1867         tcr |= TCR_T0SZ(hyp_va_bits);
1868         tcr &= ~TCR_EL2_PS_MASK;
1869         tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
1870         if (kvm_lpa2_is_enabled())
1871                 tcr |= TCR_EL2_DS;
1872         params->tcr_el2 = tcr;
1873
1874         params->pgd_pa = kvm_mmu_get_httbr();
1875         if (is_protected_kvm_enabled())
1876                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1877         else
1878                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1879         if (cpus_have_final_cap(ARM64_KVM_HVHE))
1880                 params->hcr_el2 |= HCR_E2H;
1881         params->vttbr = params->vtcr = 0;
1882
1883         /*
1884          * Flush the init params from the data cache because the struct will
1885          * be read while the MMU is off.
1886          */
1887         kvm_flush_dcache_to_poc(params, sizeof(*params));
1888 }
1889
1890 static void hyp_install_host_vector(void)
1891 {
1892         struct kvm_nvhe_init_params *params;
1893         struct arm_smccc_res res;
1894
1895         /* Switch from the HYP stub to our own HYP init vector */
1896         __hyp_set_vectors(kvm_get_idmap_vector());
1897
1898         /*
1899          * Call initialization code, and switch to the full blown HYP code.
1900          * If the cpucaps haven't been finalized yet, something has gone very
1901          * wrong, and hyp will crash and burn when it uses any
1902          * cpus_have_*_cap() wrapper.
1903          */
1904         BUG_ON(!system_capabilities_finalized());
1905         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1906         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1907         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1908 }
1909
1910 static void cpu_init_hyp_mode(void)
1911 {
1912         hyp_install_host_vector();
1913
1914         /*
1915          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1916          * at EL2.
1917          */
1918         if (this_cpu_has_cap(ARM64_SSBS) &&
1919             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1920                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1921         }
1922 }
1923
1924 static void cpu_hyp_reset(void)
1925 {
1926         if (!is_kernel_in_hyp_mode())
1927                 __hyp_reset_vectors();
1928 }
1929
1930 /*
1931  * EL2 vectors can be mapped and rerouted in a number of ways,
1932  * depending on the kernel configuration and CPU present:
1933  *
1934  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1935  *   placed in one of the vector slots, which is executed before jumping
1936  *   to the real vectors.
1937  *
1938  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1939  *   containing the hardening sequence is mapped next to the idmap page,
1940  *   and executed before jumping to the real vectors.
1941  *
1942  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1943  *   empty slot is selected, mapped next to the idmap page, and
1944  *   executed before jumping to the real vectors.
1945  *
1946  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1947  * VHE, as we don't have hypervisor-specific mappings. If the system
1948  * is VHE and yet selects this capability, it will be ignored.
1949  */
1950 static void cpu_set_hyp_vector(void)
1951 {
1952         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1953         void *vector = hyp_spectre_vector_selector[data->slot];
1954
1955         if (!is_protected_kvm_enabled())
1956                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1957         else
1958                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1959 }
1960
1961 static void cpu_hyp_init_context(void)
1962 {
1963         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1964
1965         if (!is_kernel_in_hyp_mode())
1966                 cpu_init_hyp_mode();
1967 }
1968
1969 static void cpu_hyp_init_features(void)
1970 {
1971         cpu_set_hyp_vector();
1972         kvm_arm_init_debug();
1973
1974         if (is_kernel_in_hyp_mode())
1975                 kvm_timer_init_vhe();
1976
1977         if (vgic_present)
1978                 kvm_vgic_init_cpu_hardware();
1979 }
1980
1981 static void cpu_hyp_reinit(void)
1982 {
1983         cpu_hyp_reset();
1984         cpu_hyp_init_context();
1985         cpu_hyp_init_features();
1986 }
1987
1988 static void cpu_hyp_init(void *discard)
1989 {
1990         if (!__this_cpu_read(kvm_hyp_initialized)) {
1991                 cpu_hyp_reinit();
1992                 __this_cpu_write(kvm_hyp_initialized, 1);
1993         }
1994 }
1995
1996 static void cpu_hyp_uninit(void *discard)
1997 {
1998         if (__this_cpu_read(kvm_hyp_initialized)) {
1999                 cpu_hyp_reset();
2000                 __this_cpu_write(kvm_hyp_initialized, 0);
2001         }
2002 }
2003
2004 int kvm_arch_hardware_enable(void)
2005 {
2006         /*
2007          * Most calls to this function are made with migration
2008          * disabled, but not with preemption disabled. The former is
2009          * enough to ensure correctness, but most of the helpers
2010          * expect the later and will throw a tantrum otherwise.
2011          */
2012         preempt_disable();
2013
2014         cpu_hyp_init(NULL);
2015
2016         kvm_vgic_cpu_up();
2017         kvm_timer_cpu_up();
2018
2019         preempt_enable();
2020
2021         return 0;
2022 }
2023
2024 void kvm_arch_hardware_disable(void)
2025 {
2026         kvm_timer_cpu_down();
2027         kvm_vgic_cpu_down();
2028
2029         if (!is_protected_kvm_enabled())
2030                 cpu_hyp_uninit(NULL);
2031 }
2032
2033 #ifdef CONFIG_CPU_PM
2034 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2035                                     unsigned long cmd,
2036                                     void *v)
2037 {
2038         /*
2039          * kvm_hyp_initialized is left with its old value over
2040          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2041          * re-enable hyp.
2042          */
2043         switch (cmd) {
2044         case CPU_PM_ENTER:
2045                 if (__this_cpu_read(kvm_hyp_initialized))
2046                         /*
2047                          * don't update kvm_hyp_initialized here
2048                          * so that the hyp will be re-enabled
2049                          * when we resume. See below.
2050                          */
2051                         cpu_hyp_reset();
2052
2053                 return NOTIFY_OK;
2054         case CPU_PM_ENTER_FAILED:
2055         case CPU_PM_EXIT:
2056                 if (__this_cpu_read(kvm_hyp_initialized))
2057                         /* The hyp was enabled before suspend. */
2058                         cpu_hyp_reinit();
2059
2060                 return NOTIFY_OK;
2061
2062         default:
2063                 return NOTIFY_DONE;
2064         }
2065 }
2066
2067 static struct notifier_block hyp_init_cpu_pm_nb = {
2068         .notifier_call = hyp_init_cpu_pm_notifier,
2069 };
2070
2071 static void __init hyp_cpu_pm_init(void)
2072 {
2073         if (!is_protected_kvm_enabled())
2074                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2075 }
2076 static void __init hyp_cpu_pm_exit(void)
2077 {
2078         if (!is_protected_kvm_enabled())
2079                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2080 }
2081 #else
2082 static inline void __init hyp_cpu_pm_init(void)
2083 {
2084 }
2085 static inline void __init hyp_cpu_pm_exit(void)
2086 {
2087 }
2088 #endif
2089
2090 static void __init init_cpu_logical_map(void)
2091 {
2092         unsigned int cpu;
2093
2094         /*
2095          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2096          * Only copy the set of online CPUs whose features have been checked
2097          * against the finalized system capabilities. The hypervisor will not
2098          * allow any other CPUs from the `possible` set to boot.
2099          */
2100         for_each_online_cpu(cpu)
2101                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2102 }
2103
2104 #define init_psci_0_1_impl_state(config, what)  \
2105         config.psci_0_1_ ## what ## _implemented = psci_ops.what
2106
2107 static bool __init init_psci_relay(void)
2108 {
2109         /*
2110          * If PSCI has not been initialized, protected KVM cannot install
2111          * itself on newly booted CPUs.
2112          */
2113         if (!psci_ops.get_version) {
2114                 kvm_err("Cannot initialize protected mode without PSCI\n");
2115                 return false;
2116         }
2117
2118         kvm_host_psci_config.version = psci_ops.get_version();
2119         kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2120
2121         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2122                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2123                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2124                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2125                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2126                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2127         }
2128         return true;
2129 }
2130
2131 static int __init init_subsystems(void)
2132 {
2133         int err = 0;
2134
2135         /*
2136          * Enable hardware so that subsystem initialisation can access EL2.
2137          */
2138         on_each_cpu(cpu_hyp_init, NULL, 1);
2139
2140         /*
2141          * Register CPU lower-power notifier
2142          */
2143         hyp_cpu_pm_init();
2144
2145         /*
2146          * Init HYP view of VGIC
2147          */
2148         err = kvm_vgic_hyp_init();
2149         switch (err) {
2150         case 0:
2151                 vgic_present = true;
2152                 break;
2153         case -ENODEV:
2154         case -ENXIO:
2155                 vgic_present = false;
2156                 err = 0;
2157                 break;
2158         default:
2159                 goto out;
2160         }
2161
2162         /*
2163          * Init HYP architected timer support
2164          */
2165         err = kvm_timer_hyp_init(vgic_present);
2166         if (err)
2167                 goto out;
2168
2169         kvm_register_perf_callbacks(NULL);
2170
2171 out:
2172         if (err)
2173                 hyp_cpu_pm_exit();
2174
2175         if (err || !is_protected_kvm_enabled())
2176                 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2177
2178         return err;
2179 }
2180
2181 static void __init teardown_subsystems(void)
2182 {
2183         kvm_unregister_perf_callbacks();
2184         hyp_cpu_pm_exit();
2185 }
2186
2187 static void __init teardown_hyp_mode(void)
2188 {
2189         int cpu;
2190
2191         free_hyp_pgds();
2192         for_each_possible_cpu(cpu) {
2193                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2194                 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2195         }
2196 }
2197
2198 static int __init do_pkvm_init(u32 hyp_va_bits)
2199 {
2200         void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2201         int ret;
2202
2203         preempt_disable();
2204         cpu_hyp_init_context();
2205         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2206                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2207                                 hyp_va_bits);
2208         cpu_hyp_init_features();
2209
2210         /*
2211          * The stub hypercalls are now disabled, so set our local flag to
2212          * prevent a later re-init attempt in kvm_arch_hardware_enable().
2213          */
2214         __this_cpu_write(kvm_hyp_initialized, 1);
2215         preempt_enable();
2216
2217         return ret;
2218 }
2219
2220 static u64 get_hyp_id_aa64pfr0_el1(void)
2221 {
2222         /*
2223          * Track whether the system isn't affected by spectre/meltdown in the
2224          * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2225          * Although this is per-CPU, we make it global for simplicity, e.g., not
2226          * to have to worry about vcpu migration.
2227          *
2228          * Unlike for non-protected VMs, userspace cannot override this for
2229          * protected VMs.
2230          */
2231         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2232
2233         val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2234                  ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2235
2236         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2237                           arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2238         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2239                           arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2240
2241         return val;
2242 }
2243
2244 static void kvm_hyp_init_symbols(void)
2245 {
2246         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2247         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2248         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2249         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2250         kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2251         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2252         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2253         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2254         kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2255         kvm_nvhe_sym(__icache_flags) = __icache_flags;
2256         kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2257 }
2258
2259 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2260 {
2261         void *addr = phys_to_virt(hyp_mem_base);
2262         int ret;
2263
2264         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2265         if (ret)
2266                 return ret;
2267
2268         ret = do_pkvm_init(hyp_va_bits);
2269         if (ret)
2270                 return ret;
2271
2272         free_hyp_pgds();
2273
2274         return 0;
2275 }
2276
2277 static void pkvm_hyp_init_ptrauth(void)
2278 {
2279         struct kvm_cpu_context *hyp_ctxt;
2280         int cpu;
2281
2282         for_each_possible_cpu(cpu) {
2283                 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2284                 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2285                 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2286                 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2287                 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2288                 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2289                 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2290                 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2291                 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2292                 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2293                 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2294         }
2295 }
2296
2297 /* Inits Hyp-mode on all online CPUs */
2298 static int __init init_hyp_mode(void)
2299 {
2300         u32 hyp_va_bits;
2301         int cpu;
2302         int err = -ENOMEM;
2303
2304         /*
2305          * The protected Hyp-mode cannot be initialized if the memory pool
2306          * allocation has failed.
2307          */
2308         if (is_protected_kvm_enabled() && !hyp_mem_base)
2309                 goto out_err;
2310
2311         /*
2312          * Allocate Hyp PGD and setup Hyp identity mapping
2313          */
2314         err = kvm_mmu_init(&hyp_va_bits);
2315         if (err)
2316                 goto out_err;
2317
2318         /*
2319          * Allocate stack pages for Hypervisor-mode
2320          */
2321         for_each_possible_cpu(cpu) {
2322                 unsigned long stack_page;
2323
2324                 stack_page = __get_free_page(GFP_KERNEL);
2325                 if (!stack_page) {
2326                         err = -ENOMEM;
2327                         goto out_err;
2328                 }
2329
2330                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2331         }
2332
2333         /*
2334          * Allocate and initialize pages for Hypervisor-mode percpu regions.
2335          */
2336         for_each_possible_cpu(cpu) {
2337                 struct page *page;
2338                 void *page_addr;
2339
2340                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2341                 if (!page) {
2342                         err = -ENOMEM;
2343                         goto out_err;
2344                 }
2345
2346                 page_addr = page_address(page);
2347                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2348                 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2349         }
2350
2351         /*
2352          * Map the Hyp-code called directly from the host
2353          */
2354         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2355                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2356         if (err) {
2357                 kvm_err("Cannot map world-switch code\n");
2358                 goto out_err;
2359         }
2360
2361         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2362                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2363         if (err) {
2364                 kvm_err("Cannot map .hyp.rodata section\n");
2365                 goto out_err;
2366         }
2367
2368         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2369                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2370         if (err) {
2371                 kvm_err("Cannot map rodata section\n");
2372                 goto out_err;
2373         }
2374
2375         /*
2376          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2377          * section thanks to an assertion in the linker script. Map it RW and
2378          * the rest of .bss RO.
2379          */
2380         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2381                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2382         if (err) {
2383                 kvm_err("Cannot map hyp bss section: %d\n", err);
2384                 goto out_err;
2385         }
2386
2387         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2388                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2389         if (err) {
2390                 kvm_err("Cannot map bss section\n");
2391                 goto out_err;
2392         }
2393
2394         /*
2395          * Map the Hyp stack pages
2396          */
2397         for_each_possible_cpu(cpu) {
2398                 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2399                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2400
2401                 err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2402                 if (err) {
2403                         kvm_err("Cannot map hyp stack\n");
2404                         goto out_err;
2405                 }
2406
2407                 /*
2408                  * Save the stack PA in nvhe_init_params. This will be needed
2409                  * to recreate the stack mapping in protected nVHE mode.
2410                  * __hyp_pa() won't do the right thing there, since the stack
2411                  * has been mapped in the flexible private VA space.
2412                  */
2413                 params->stack_pa = __pa(stack_page);
2414         }
2415
2416         for_each_possible_cpu(cpu) {
2417                 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2418                 char *percpu_end = percpu_begin + nvhe_percpu_size();
2419
2420                 /* Map Hyp percpu pages */
2421                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2422                 if (err) {
2423                         kvm_err("Cannot map hyp percpu region\n");
2424                         goto out_err;
2425                 }
2426
2427                 /* Prepare the CPU initialization parameters */
2428                 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2429         }
2430
2431         kvm_hyp_init_symbols();
2432
2433         if (is_protected_kvm_enabled()) {
2434                 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2435                     cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2436                         pkvm_hyp_init_ptrauth();
2437
2438                 init_cpu_logical_map();
2439
2440                 if (!init_psci_relay()) {
2441                         err = -ENODEV;
2442                         goto out_err;
2443                 }
2444
2445                 err = kvm_hyp_init_protection(hyp_va_bits);
2446                 if (err) {
2447                         kvm_err("Failed to init hyp memory protection\n");
2448                         goto out_err;
2449                 }
2450         }
2451
2452         return 0;
2453
2454 out_err:
2455         teardown_hyp_mode();
2456         kvm_err("error initializing Hyp mode: %d\n", err);
2457         return err;
2458 }
2459
2460 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2461 {
2462         struct kvm_vcpu *vcpu;
2463         unsigned long i;
2464
2465         mpidr &= MPIDR_HWID_BITMASK;
2466
2467         if (kvm->arch.mpidr_data) {
2468                 u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr);
2469
2470                 vcpu = kvm_get_vcpu(kvm,
2471                                     kvm->arch.mpidr_data->cmpidr_to_idx[idx]);
2472                 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2473                         vcpu = NULL;
2474
2475                 return vcpu;
2476         }
2477
2478         kvm_for_each_vcpu(i, vcpu, kvm) {
2479                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2480                         return vcpu;
2481         }
2482         return NULL;
2483 }
2484
2485 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2486 {
2487         return irqchip_in_kernel(kvm);
2488 }
2489
2490 bool kvm_arch_has_irq_bypass(void)
2491 {
2492         return true;
2493 }
2494
2495 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2496                                       struct irq_bypass_producer *prod)
2497 {
2498         struct kvm_kernel_irqfd *irqfd =
2499                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2500
2501         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2502                                           &irqfd->irq_entry);
2503 }
2504 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2505                                       struct irq_bypass_producer *prod)
2506 {
2507         struct kvm_kernel_irqfd *irqfd =
2508                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2509
2510         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2511                                      &irqfd->irq_entry);
2512 }
2513
2514 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2515 {
2516         struct kvm_kernel_irqfd *irqfd =
2517                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2518
2519         kvm_arm_halt_guest(irqfd->kvm);
2520 }
2521
2522 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2523 {
2524         struct kvm_kernel_irqfd *irqfd =
2525                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2526
2527         kvm_arm_resume_guest(irqfd->kvm);
2528 }
2529
2530 /* Initialize Hyp-mode and memory mappings on all CPUs */
2531 static __init int kvm_arm_init(void)
2532 {
2533         int err;
2534         bool in_hyp_mode;
2535
2536         if (!is_hyp_mode_available()) {
2537                 kvm_info("HYP mode not available\n");
2538                 return -ENODEV;
2539         }
2540
2541         if (kvm_get_mode() == KVM_MODE_NONE) {
2542                 kvm_info("KVM disabled from command line\n");
2543                 return -ENODEV;
2544         }
2545
2546         err = kvm_sys_reg_table_init();
2547         if (err) {
2548                 kvm_info("Error initializing system register tables");
2549                 return err;
2550         }
2551
2552         in_hyp_mode = is_kernel_in_hyp_mode();
2553
2554         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2555             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2556                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2557                          "Only trusted guests should be used on this system.\n");
2558
2559         err = kvm_set_ipa_limit();
2560         if (err)
2561                 return err;
2562
2563         err = kvm_arm_init_sve();
2564         if (err)
2565                 return err;
2566
2567         err = kvm_arm_vmid_alloc_init();
2568         if (err) {
2569                 kvm_err("Failed to initialize VMID allocator.\n");
2570                 return err;
2571         }
2572
2573         if (!in_hyp_mode) {
2574                 err = init_hyp_mode();
2575                 if (err)
2576                         goto out_err;
2577         }
2578
2579         err = kvm_init_vector_slots();
2580         if (err) {
2581                 kvm_err("Cannot initialise vector slots\n");
2582                 goto out_hyp;
2583         }
2584
2585         err = init_subsystems();
2586         if (err)
2587                 goto out_hyp;
2588
2589         if (is_protected_kvm_enabled()) {
2590                 kvm_info("Protected nVHE mode initialized successfully\n");
2591         } else if (in_hyp_mode) {
2592                 kvm_info("VHE mode initialized successfully\n");
2593         } else {
2594                 kvm_info("Hyp mode initialized successfully\n");
2595         }
2596
2597         /*
2598          * FIXME: Do something reasonable if kvm_init() fails after pKVM
2599          * hypervisor protection is finalized.
2600          */
2601         err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2602         if (err)
2603                 goto out_subs;
2604
2605         kvm_arm_initialised = true;
2606
2607         return 0;
2608
2609 out_subs:
2610         teardown_subsystems();
2611 out_hyp:
2612         if (!in_hyp_mode)
2613                 teardown_hyp_mode();
2614 out_err:
2615         kvm_arm_vmid_alloc_free();
2616         return err;
2617 }
2618
2619 static int __init early_kvm_mode_cfg(char *arg)
2620 {
2621         if (!arg)
2622                 return -EINVAL;
2623
2624         if (strcmp(arg, "none") == 0) {
2625                 kvm_mode = KVM_MODE_NONE;
2626                 return 0;
2627         }
2628
2629         if (!is_hyp_mode_available()) {
2630                 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2631                 return 0;
2632         }
2633
2634         if (strcmp(arg, "protected") == 0) {
2635                 if (!is_kernel_in_hyp_mode())
2636                         kvm_mode = KVM_MODE_PROTECTED;
2637                 else
2638                         pr_warn_once("Protected KVM not available with VHE\n");
2639
2640                 return 0;
2641         }
2642
2643         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2644                 kvm_mode = KVM_MODE_DEFAULT;
2645                 return 0;
2646         }
2647
2648         if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2649                 kvm_mode = KVM_MODE_NV;
2650                 return 0;
2651         }
2652
2653         return -EINVAL;
2654 }
2655 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2656
2657 enum kvm_mode kvm_get_mode(void)
2658 {
2659         return kvm_mode;
2660 }
2661
2662 module_init(kvm_arm_init);