GNU Linux-libre 6.9.1-gnu
[releases.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56
57 static bool vgic_present, kvm_arm_initialised;
58
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61
62 bool is_kvm_arm_initialised(void)
63 {
64         return kvm_arm_initialised;
65 }
66
67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68 {
69         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70 }
71
72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73                             struct kvm_enable_cap *cap)
74 {
75         int r;
76         u64 new_cap;
77
78         if (cap->flags)
79                 return -EINVAL;
80
81         switch (cap->cap) {
82         case KVM_CAP_ARM_NISV_TO_USER:
83                 r = 0;
84                 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85                         &kvm->arch.flags);
86                 break;
87         case KVM_CAP_ARM_MTE:
88                 mutex_lock(&kvm->lock);
89                 if (!system_supports_mte() || kvm->created_vcpus) {
90                         r = -EINVAL;
91                 } else {
92                         r = 0;
93                         set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94                 }
95                 mutex_unlock(&kvm->lock);
96                 break;
97         case KVM_CAP_ARM_SYSTEM_SUSPEND:
98                 r = 0;
99                 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100                 break;
101         case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102                 new_cap = cap->args[0];
103
104                 mutex_lock(&kvm->slots_lock);
105                 /*
106                  * To keep things simple, allow changing the chunk
107                  * size only when no memory slots have been created.
108                  */
109                 if (!kvm_are_all_memslots_empty(kvm)) {
110                         r = -EINVAL;
111                 } else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112                         r = -EINVAL;
113                 } else {
114                         r = 0;
115                         kvm->arch.mmu.split_page_chunk_size = new_cap;
116                 }
117                 mutex_unlock(&kvm->slots_lock);
118                 break;
119         default:
120                 r = -EINVAL;
121                 break;
122         }
123
124         return r;
125 }
126
127 static int kvm_arm_default_max_vcpus(void)
128 {
129         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130 }
131
132 /**
133  * kvm_arch_init_vm - initializes a VM data structure
134  * @kvm:        pointer to the KVM struct
135  */
136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137 {
138         int ret;
139
140         mutex_init(&kvm->arch.config_lock);
141
142 #ifdef CONFIG_LOCKDEP
143         /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144         mutex_lock(&kvm->lock);
145         mutex_lock(&kvm->arch.config_lock);
146         mutex_unlock(&kvm->arch.config_lock);
147         mutex_unlock(&kvm->lock);
148 #endif
149
150         ret = kvm_share_hyp(kvm, kvm + 1);
151         if (ret)
152                 return ret;
153
154         ret = pkvm_init_host_vm(kvm);
155         if (ret)
156                 goto err_unshare_kvm;
157
158         if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159                 ret = -ENOMEM;
160                 goto err_unshare_kvm;
161         }
162         cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163
164         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165         if (ret)
166                 goto err_free_cpumask;
167
168         kvm_vgic_early_init(kvm);
169
170         kvm_timer_init_vm(kvm);
171
172         /* The maximum number of VCPUs is limited by the host's GIC model */
173         kvm->max_vcpus = kvm_arm_default_max_vcpus();
174
175         kvm_arm_init_hypercalls(kvm);
176
177         bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178
179         return 0;
180
181 err_free_cpumask:
182         free_cpumask_var(kvm->arch.supported_cpus);
183 err_unshare_kvm:
184         kvm_unshare_hyp(kvm, kvm + 1);
185         return ret;
186 }
187
188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189 {
190         return VM_FAULT_SIGBUS;
191 }
192
193 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
194 {
195         kvm_sys_regs_create_debugfs(kvm);
196 }
197
198 /**
199  * kvm_arch_destroy_vm - destroy the VM data structure
200  * @kvm:        pointer to the KVM struct
201  */
202 void kvm_arch_destroy_vm(struct kvm *kvm)
203 {
204         bitmap_free(kvm->arch.pmu_filter);
205         free_cpumask_var(kvm->arch.supported_cpus);
206
207         kvm_vgic_destroy(kvm);
208
209         if (is_protected_kvm_enabled())
210                 pkvm_destroy_hyp_vm(kvm);
211
212         kfree(kvm->arch.mpidr_data);
213         kfree(kvm->arch.sysreg_masks);
214         kvm_destroy_vcpus(kvm);
215
216         kvm_unshare_hyp(kvm, kvm + 1);
217
218         kvm_arm_teardown_hypercalls(kvm);
219 }
220
221 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
222 {
223         int r;
224         switch (ext) {
225         case KVM_CAP_IRQCHIP:
226                 r = vgic_present;
227                 break;
228         case KVM_CAP_IOEVENTFD:
229         case KVM_CAP_USER_MEMORY:
230         case KVM_CAP_SYNC_MMU:
231         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
232         case KVM_CAP_ONE_REG:
233         case KVM_CAP_ARM_PSCI:
234         case KVM_CAP_ARM_PSCI_0_2:
235         case KVM_CAP_READONLY_MEM:
236         case KVM_CAP_MP_STATE:
237         case KVM_CAP_IMMEDIATE_EXIT:
238         case KVM_CAP_VCPU_EVENTS:
239         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
240         case KVM_CAP_ARM_NISV_TO_USER:
241         case KVM_CAP_ARM_INJECT_EXT_DABT:
242         case KVM_CAP_SET_GUEST_DEBUG:
243         case KVM_CAP_VCPU_ATTRIBUTES:
244         case KVM_CAP_PTP_KVM:
245         case KVM_CAP_ARM_SYSTEM_SUSPEND:
246         case KVM_CAP_IRQFD_RESAMPLE:
247         case KVM_CAP_COUNTER_OFFSET:
248                 r = 1;
249                 break;
250         case KVM_CAP_SET_GUEST_DEBUG2:
251                 return KVM_GUESTDBG_VALID_MASK;
252         case KVM_CAP_ARM_SET_DEVICE_ADDR:
253                 r = 1;
254                 break;
255         case KVM_CAP_NR_VCPUS:
256                 /*
257                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
258                  * architectures, as it does not always bound it to
259                  * KVM_CAP_MAX_VCPUS. It should not matter much because
260                  * this is just an advisory value.
261                  */
262                 r = min_t(unsigned int, num_online_cpus(),
263                           kvm_arm_default_max_vcpus());
264                 break;
265         case KVM_CAP_MAX_VCPUS:
266         case KVM_CAP_MAX_VCPU_ID:
267                 if (kvm)
268                         r = kvm->max_vcpus;
269                 else
270                         r = kvm_arm_default_max_vcpus();
271                 break;
272         case KVM_CAP_MSI_DEVID:
273                 if (!kvm)
274                         r = -EINVAL;
275                 else
276                         r = kvm->arch.vgic.msis_require_devid;
277                 break;
278         case KVM_CAP_ARM_USER_IRQ:
279                 /*
280                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
281                  * (bump this number if adding more devices)
282                  */
283                 r = 1;
284                 break;
285         case KVM_CAP_ARM_MTE:
286                 r = system_supports_mte();
287                 break;
288         case KVM_CAP_STEAL_TIME:
289                 r = kvm_arm_pvtime_supported();
290                 break;
291         case KVM_CAP_ARM_EL1_32BIT:
292                 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
293                 break;
294         case KVM_CAP_GUEST_DEBUG_HW_BPS:
295                 r = get_num_brps();
296                 break;
297         case KVM_CAP_GUEST_DEBUG_HW_WPS:
298                 r = get_num_wrps();
299                 break;
300         case KVM_CAP_ARM_PMU_V3:
301                 r = kvm_arm_support_pmu_v3();
302                 break;
303         case KVM_CAP_ARM_INJECT_SERROR_ESR:
304                 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
305                 break;
306         case KVM_CAP_ARM_VM_IPA_SIZE:
307                 r = get_kvm_ipa_limit();
308                 break;
309         case KVM_CAP_ARM_SVE:
310                 r = system_supports_sve();
311                 break;
312         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
313         case KVM_CAP_ARM_PTRAUTH_GENERIC:
314                 r = system_has_full_ptr_auth();
315                 break;
316         case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
317                 if (kvm)
318                         r = kvm->arch.mmu.split_page_chunk_size;
319                 else
320                         r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
321                 break;
322         case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
323                 r = kvm_supported_block_sizes();
324                 break;
325         case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
326                 r = BIT(0);
327                 break;
328         default:
329                 r = 0;
330         }
331
332         return r;
333 }
334
335 long kvm_arch_dev_ioctl(struct file *filp,
336                         unsigned int ioctl, unsigned long arg)
337 {
338         return -EINVAL;
339 }
340
341 struct kvm *kvm_arch_alloc_vm(void)
342 {
343         size_t sz = sizeof(struct kvm);
344
345         if (!has_vhe())
346                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
347
348         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
349 }
350
351 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
352 {
353         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
354                 return -EBUSY;
355
356         if (id >= kvm->max_vcpus)
357                 return -EINVAL;
358
359         return 0;
360 }
361
362 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
363 {
364         int err;
365
366         spin_lock_init(&vcpu->arch.mp_state_lock);
367
368 #ifdef CONFIG_LOCKDEP
369         /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
370         mutex_lock(&vcpu->mutex);
371         mutex_lock(&vcpu->kvm->arch.config_lock);
372         mutex_unlock(&vcpu->kvm->arch.config_lock);
373         mutex_unlock(&vcpu->mutex);
374 #endif
375
376         /* Force users to call KVM_ARM_VCPU_INIT */
377         vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
378
379         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
380
381         /*
382          * Default value for the FP state, will be overloaded at load
383          * time if we support FP (pretty likely)
384          */
385         vcpu->arch.fp_state = FP_STATE_FREE;
386
387         /* Set up the timer */
388         kvm_timer_vcpu_init(vcpu);
389
390         kvm_pmu_vcpu_init(vcpu);
391
392         kvm_arm_reset_debug_ptr(vcpu);
393
394         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
395
396         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
397
398         err = kvm_vgic_vcpu_init(vcpu);
399         if (err)
400                 return err;
401
402         return kvm_share_hyp(vcpu, vcpu + 1);
403 }
404
405 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
406 {
407 }
408
409 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
410 {
411         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
412                 static_branch_dec(&userspace_irqchip_in_use);
413
414         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
415         kvm_timer_vcpu_terminate(vcpu);
416         kvm_pmu_vcpu_destroy(vcpu);
417         kvm_vgic_vcpu_destroy(vcpu);
418         kvm_arm_vcpu_destroy(vcpu);
419 }
420
421 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
422 {
423
424 }
425
426 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
427 {
428
429 }
430
431 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
432 {
433         struct kvm_s2_mmu *mmu;
434         int *last_ran;
435
436         mmu = vcpu->arch.hw_mmu;
437         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
438
439         /*
440          * We guarantee that both TLBs and I-cache are private to each
441          * vcpu. If detecting that a vcpu from the same VM has
442          * previously run on the same physical CPU, call into the
443          * hypervisor code to nuke the relevant contexts.
444          *
445          * We might get preempted before the vCPU actually runs, but
446          * over-invalidation doesn't affect correctness.
447          */
448         if (*last_ran != vcpu->vcpu_idx) {
449                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
450                 *last_ran = vcpu->vcpu_idx;
451         }
452
453         vcpu->cpu = cpu;
454
455         kvm_vgic_load(vcpu);
456         kvm_timer_vcpu_load(vcpu);
457         if (has_vhe())
458                 kvm_vcpu_load_vhe(vcpu);
459         kvm_arch_vcpu_load_fp(vcpu);
460         kvm_vcpu_pmu_restore_guest(vcpu);
461         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
462                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
463
464         if (single_task_running())
465                 vcpu_clear_wfx_traps(vcpu);
466         else
467                 vcpu_set_wfx_traps(vcpu);
468
469         if (vcpu_has_ptrauth(vcpu))
470                 vcpu_ptrauth_disable(vcpu);
471         kvm_arch_vcpu_load_debug_state_flags(vcpu);
472
473         if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
474                 vcpu_set_on_unsupported_cpu(vcpu);
475 }
476
477 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
478 {
479         kvm_arch_vcpu_put_debug_state_flags(vcpu);
480         kvm_arch_vcpu_put_fp(vcpu);
481         if (has_vhe())
482                 kvm_vcpu_put_vhe(vcpu);
483         kvm_timer_vcpu_put(vcpu);
484         kvm_vgic_put(vcpu);
485         kvm_vcpu_pmu_restore_host(vcpu);
486         kvm_arm_vmid_clear_active();
487
488         vcpu_clear_on_unsupported_cpu(vcpu);
489         vcpu->cpu = -1;
490 }
491
492 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
493 {
494         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
495         kvm_make_request(KVM_REQ_SLEEP, vcpu);
496         kvm_vcpu_kick(vcpu);
497 }
498
499 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
500 {
501         spin_lock(&vcpu->arch.mp_state_lock);
502         __kvm_arm_vcpu_power_off(vcpu);
503         spin_unlock(&vcpu->arch.mp_state_lock);
504 }
505
506 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
507 {
508         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
509 }
510
511 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
512 {
513         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
514         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
515         kvm_vcpu_kick(vcpu);
516 }
517
518 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
519 {
520         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
521 }
522
523 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
524                                     struct kvm_mp_state *mp_state)
525 {
526         *mp_state = READ_ONCE(vcpu->arch.mp_state);
527
528         return 0;
529 }
530
531 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
532                                     struct kvm_mp_state *mp_state)
533 {
534         int ret = 0;
535
536         spin_lock(&vcpu->arch.mp_state_lock);
537
538         switch (mp_state->mp_state) {
539         case KVM_MP_STATE_RUNNABLE:
540                 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
541                 break;
542         case KVM_MP_STATE_STOPPED:
543                 __kvm_arm_vcpu_power_off(vcpu);
544                 break;
545         case KVM_MP_STATE_SUSPENDED:
546                 kvm_arm_vcpu_suspend(vcpu);
547                 break;
548         default:
549                 ret = -EINVAL;
550         }
551
552         spin_unlock(&vcpu->arch.mp_state_lock);
553
554         return ret;
555 }
556
557 /**
558  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
559  * @v:          The VCPU pointer
560  *
561  * If the guest CPU is not waiting for interrupts or an interrupt line is
562  * asserted, the CPU is by definition runnable.
563  */
564 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
565 {
566         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
567         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
568                 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
569 }
570
571 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
572 {
573         return vcpu_mode_priv(vcpu);
574 }
575
576 #ifdef CONFIG_GUEST_PERF_EVENTS
577 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
578 {
579         return *vcpu_pc(vcpu);
580 }
581 #endif
582
583 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
584 {
585         return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
586 }
587
588 static void kvm_init_mpidr_data(struct kvm *kvm)
589 {
590         struct kvm_mpidr_data *data = NULL;
591         unsigned long c, mask, nr_entries;
592         u64 aff_set = 0, aff_clr = ~0UL;
593         struct kvm_vcpu *vcpu;
594
595         mutex_lock(&kvm->arch.config_lock);
596
597         if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1)
598                 goto out;
599
600         kvm_for_each_vcpu(c, vcpu, kvm) {
601                 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
602                 aff_set |= aff;
603                 aff_clr &= aff;
604         }
605
606         /*
607          * A significant bit can be either 0 or 1, and will only appear in
608          * aff_set. Use aff_clr to weed out the useless stuff.
609          */
610         mask = aff_set ^ aff_clr;
611         nr_entries = BIT_ULL(hweight_long(mask));
612
613         /*
614          * Don't let userspace fool us. If we need more than a single page
615          * to describe the compressed MPIDR array, just fall back to the
616          * iterative method. Single vcpu VMs do not need this either.
617          */
618         if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
619                 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
620                                GFP_KERNEL_ACCOUNT);
621
622         if (!data)
623                 goto out;
624
625         data->mpidr_mask = mask;
626
627         kvm_for_each_vcpu(c, vcpu, kvm) {
628                 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
629                 u16 index = kvm_mpidr_index(data, aff);
630
631                 data->cmpidr_to_idx[index] = c;
632         }
633
634         kvm->arch.mpidr_data = data;
635 out:
636         mutex_unlock(&kvm->arch.config_lock);
637 }
638
639 /*
640  * Handle both the initialisation that is being done when the vcpu is
641  * run for the first time, as well as the updates that must be
642  * performed each time we get a new thread dealing with this vcpu.
643  */
644 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
645 {
646         struct kvm *kvm = vcpu->kvm;
647         int ret;
648
649         if (!kvm_vcpu_initialized(vcpu))
650                 return -ENOEXEC;
651
652         if (!kvm_arm_vcpu_is_finalized(vcpu))
653                 return -EPERM;
654
655         ret = kvm_arch_vcpu_run_map_fp(vcpu);
656         if (ret)
657                 return ret;
658
659         if (likely(vcpu_has_run_once(vcpu)))
660                 return 0;
661
662         kvm_init_mpidr_data(kvm);
663
664         kvm_arm_vcpu_init_debug(vcpu);
665
666         if (likely(irqchip_in_kernel(kvm))) {
667                 /*
668                  * Map the VGIC hardware resources before running a vcpu the
669                  * first time on this VM.
670                  */
671                 ret = kvm_vgic_map_resources(kvm);
672                 if (ret)
673                         return ret;
674         }
675
676         if (vcpu_has_nv(vcpu)) {
677                 ret = kvm_init_nv_sysregs(vcpu->kvm);
678                 if (ret)
679                         return ret;
680         }
681
682         /*
683          * This needs to happen after NV has imposed its own restrictions on
684          * the feature set
685          */
686         kvm_init_sysreg(vcpu);
687
688         ret = kvm_timer_enable(vcpu);
689         if (ret)
690                 return ret;
691
692         ret = kvm_arm_pmu_v3_enable(vcpu);
693         if (ret)
694                 return ret;
695
696         if (is_protected_kvm_enabled()) {
697                 ret = pkvm_create_hyp_vm(kvm);
698                 if (ret)
699                         return ret;
700         }
701
702         if (!irqchip_in_kernel(kvm)) {
703                 /*
704                  * Tell the rest of the code that there are userspace irqchip
705                  * VMs in the wild.
706                  */
707                 static_branch_inc(&userspace_irqchip_in_use);
708         }
709
710         /*
711          * Initialize traps for protected VMs.
712          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
713          * the code is in place for first run initialization at EL2.
714          */
715         if (kvm_vm_is_protected(kvm))
716                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
717
718         mutex_lock(&kvm->arch.config_lock);
719         set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
720         mutex_unlock(&kvm->arch.config_lock);
721
722         return ret;
723 }
724
725 bool kvm_arch_intc_initialized(struct kvm *kvm)
726 {
727         return vgic_initialized(kvm);
728 }
729
730 void kvm_arm_halt_guest(struct kvm *kvm)
731 {
732         unsigned long i;
733         struct kvm_vcpu *vcpu;
734
735         kvm_for_each_vcpu(i, vcpu, kvm)
736                 vcpu->arch.pause = true;
737         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
738 }
739
740 void kvm_arm_resume_guest(struct kvm *kvm)
741 {
742         unsigned long i;
743         struct kvm_vcpu *vcpu;
744
745         kvm_for_each_vcpu(i, vcpu, kvm) {
746                 vcpu->arch.pause = false;
747                 __kvm_vcpu_wake_up(vcpu);
748         }
749 }
750
751 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
752 {
753         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
754
755         rcuwait_wait_event(wait,
756                            (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
757                            TASK_INTERRUPTIBLE);
758
759         if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
760                 /* Awaken to handle a signal, request we sleep again later. */
761                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
762         }
763
764         /*
765          * Make sure we will observe a potential reset request if we've
766          * observed a change to the power state. Pairs with the smp_wmb() in
767          * kvm_psci_vcpu_on().
768          */
769         smp_rmb();
770 }
771
772 /**
773  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
774  * @vcpu:       The VCPU pointer
775  *
776  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
777  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
778  * on when a wake event arrives, e.g. there may already be a pending wake event.
779  */
780 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
781 {
782         /*
783          * Sync back the state of the GIC CPU interface so that we have
784          * the latest PMR and group enables. This ensures that
785          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
786          * we have pending interrupts, e.g. when determining if the
787          * vCPU should block.
788          *
789          * For the same reason, we want to tell GICv4 that we need
790          * doorbells to be signalled, should an interrupt become pending.
791          */
792         preempt_disable();
793         kvm_vgic_vmcr_sync(vcpu);
794         vcpu_set_flag(vcpu, IN_WFI);
795         vgic_v4_put(vcpu);
796         preempt_enable();
797
798         kvm_vcpu_halt(vcpu);
799         vcpu_clear_flag(vcpu, IN_WFIT);
800
801         preempt_disable();
802         vcpu_clear_flag(vcpu, IN_WFI);
803         vgic_v4_load(vcpu);
804         preempt_enable();
805 }
806
807 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
808 {
809         if (!kvm_arm_vcpu_suspended(vcpu))
810                 return 1;
811
812         kvm_vcpu_wfi(vcpu);
813
814         /*
815          * The suspend state is sticky; we do not leave it until userspace
816          * explicitly marks the vCPU as runnable. Request that we suspend again
817          * later.
818          */
819         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
820
821         /*
822          * Check to make sure the vCPU is actually runnable. If so, exit to
823          * userspace informing it of the wakeup condition.
824          */
825         if (kvm_arch_vcpu_runnable(vcpu)) {
826                 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
827                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
828                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
829                 return 0;
830         }
831
832         /*
833          * Otherwise, we were unblocked to process a different event, such as a
834          * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
835          * process the event.
836          */
837         return 1;
838 }
839
840 /**
841  * check_vcpu_requests - check and handle pending vCPU requests
842  * @vcpu:       the VCPU pointer
843  *
844  * Return: 1 if we should enter the guest
845  *         0 if we should exit to userspace
846  *         < 0 if we should exit to userspace, where the return value indicates
847  *         an error
848  */
849 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
850 {
851         if (kvm_request_pending(vcpu)) {
852                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
853                         kvm_vcpu_sleep(vcpu);
854
855                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
856                         kvm_reset_vcpu(vcpu);
857
858                 /*
859                  * Clear IRQ_PENDING requests that were made to guarantee
860                  * that a VCPU sees new virtual interrupts.
861                  */
862                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
863
864                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
865                         kvm_update_stolen_time(vcpu);
866
867                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
868                         /* The distributor enable bits were changed */
869                         preempt_disable();
870                         vgic_v4_put(vcpu);
871                         vgic_v4_load(vcpu);
872                         preempt_enable();
873                 }
874
875                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
876                         kvm_vcpu_reload_pmu(vcpu);
877
878                 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
879                         kvm_vcpu_pmu_restore_guest(vcpu);
880
881                 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
882                         return kvm_vcpu_suspend(vcpu);
883
884                 if (kvm_dirty_ring_check_request(vcpu))
885                         return 0;
886         }
887
888         return 1;
889 }
890
891 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
892 {
893         if (likely(!vcpu_mode_is_32bit(vcpu)))
894                 return false;
895
896         if (vcpu_has_nv(vcpu))
897                 return true;
898
899         return !kvm_supports_32bit_el0();
900 }
901
902 /**
903  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
904  * @vcpu:       The VCPU pointer
905  * @ret:        Pointer to write optional return code
906  *
907  * Returns: true if the VCPU needs to return to a preemptible + interruptible
908  *          and skip guest entry.
909  *
910  * This function disambiguates between two different types of exits: exits to a
911  * preemptible + interruptible kernel context and exits to userspace. For an
912  * exit to userspace, this function will write the return code to ret and return
913  * true. For an exit to preemptible + interruptible kernel context (i.e. check
914  * for pending work and re-enter), return true without writing to ret.
915  */
916 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
917 {
918         struct kvm_run *run = vcpu->run;
919
920         /*
921          * If we're using a userspace irqchip, then check if we need
922          * to tell a userspace irqchip about timer or PMU level
923          * changes and if so, exit to userspace (the actual level
924          * state gets updated in kvm_timer_update_run and
925          * kvm_pmu_update_run below).
926          */
927         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
928                 if (kvm_timer_should_notify_user(vcpu) ||
929                     kvm_pmu_should_notify_user(vcpu)) {
930                         *ret = -EINTR;
931                         run->exit_reason = KVM_EXIT_INTR;
932                         return true;
933                 }
934         }
935
936         if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
937                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
938                 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
939                 run->fail_entry.cpu = smp_processor_id();
940                 *ret = 0;
941                 return true;
942         }
943
944         return kvm_request_pending(vcpu) ||
945                         xfer_to_guest_mode_work_pending();
946 }
947
948 /*
949  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
950  * the vCPU is running.
951  *
952  * This must be noinstr as instrumentation may make use of RCU, and this is not
953  * safe during the EQS.
954  */
955 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
956 {
957         int ret;
958
959         guest_state_enter_irqoff();
960         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
961         guest_state_exit_irqoff();
962
963         return ret;
964 }
965
966 /**
967  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
968  * @vcpu:       The VCPU pointer
969  *
970  * This function is called through the VCPU_RUN ioctl called from user space. It
971  * will execute VM code in a loop until the time slice for the process is used
972  * or some emulation is needed from user space in which case the function will
973  * return with return value 0 and with the kvm_run structure filled in with the
974  * required data for the requested emulation.
975  */
976 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
977 {
978         struct kvm_run *run = vcpu->run;
979         int ret;
980
981         if (run->exit_reason == KVM_EXIT_MMIO) {
982                 ret = kvm_handle_mmio_return(vcpu);
983                 if (ret)
984                         return ret;
985         }
986
987         vcpu_load(vcpu);
988
989         if (run->immediate_exit) {
990                 ret = -EINTR;
991                 goto out;
992         }
993
994         kvm_sigset_activate(vcpu);
995
996         ret = 1;
997         run->exit_reason = KVM_EXIT_UNKNOWN;
998         run->flags = 0;
999         while (ret > 0) {
1000                 /*
1001                  * Check conditions before entering the guest
1002                  */
1003                 ret = xfer_to_guest_mode_handle_work(vcpu);
1004                 if (!ret)
1005                         ret = 1;
1006
1007                 if (ret > 0)
1008                         ret = check_vcpu_requests(vcpu);
1009
1010                 /*
1011                  * Preparing the interrupts to be injected also
1012                  * involves poking the GIC, which must be done in a
1013                  * non-preemptible context.
1014                  */
1015                 preempt_disable();
1016
1017                 /*
1018                  * The VMID allocator only tracks active VMIDs per
1019                  * physical CPU, and therefore the VMID allocated may not be
1020                  * preserved on VMID roll-over if the task was preempted,
1021                  * making a thread's VMID inactive. So we need to call
1022                  * kvm_arm_vmid_update() in non-premptible context.
1023                  */
1024                 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1025                     has_vhe())
1026                         __load_stage2(vcpu->arch.hw_mmu,
1027                                       vcpu->arch.hw_mmu->arch);
1028
1029                 kvm_pmu_flush_hwstate(vcpu);
1030
1031                 local_irq_disable();
1032
1033                 kvm_vgic_flush_hwstate(vcpu);
1034
1035                 kvm_pmu_update_vcpu_events(vcpu);
1036
1037                 /*
1038                  * Ensure we set mode to IN_GUEST_MODE after we disable
1039                  * interrupts and before the final VCPU requests check.
1040                  * See the comment in kvm_vcpu_exiting_guest_mode() and
1041                  * Documentation/virt/kvm/vcpu-requests.rst
1042                  */
1043                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1044
1045                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1046                         vcpu->mode = OUTSIDE_GUEST_MODE;
1047                         isb(); /* Ensure work in x_flush_hwstate is committed */
1048                         kvm_pmu_sync_hwstate(vcpu);
1049                         if (static_branch_unlikely(&userspace_irqchip_in_use))
1050                                 kvm_timer_sync_user(vcpu);
1051                         kvm_vgic_sync_hwstate(vcpu);
1052                         local_irq_enable();
1053                         preempt_enable();
1054                         continue;
1055                 }
1056
1057                 kvm_arm_setup_debug(vcpu);
1058                 kvm_arch_vcpu_ctxflush_fp(vcpu);
1059
1060                 /**************************************************************
1061                  * Enter the guest
1062                  */
1063                 trace_kvm_entry(*vcpu_pc(vcpu));
1064                 guest_timing_enter_irqoff();
1065
1066                 ret = kvm_arm_vcpu_enter_exit(vcpu);
1067
1068                 vcpu->mode = OUTSIDE_GUEST_MODE;
1069                 vcpu->stat.exits++;
1070                 /*
1071                  * Back from guest
1072                  *************************************************************/
1073
1074                 kvm_arm_clear_debug(vcpu);
1075
1076                 /*
1077                  * We must sync the PMU state before the vgic state so
1078                  * that the vgic can properly sample the updated state of the
1079                  * interrupt line.
1080                  */
1081                 kvm_pmu_sync_hwstate(vcpu);
1082
1083                 /*
1084                  * Sync the vgic state before syncing the timer state because
1085                  * the timer code needs to know if the virtual timer
1086                  * interrupts are active.
1087                  */
1088                 kvm_vgic_sync_hwstate(vcpu);
1089
1090                 /*
1091                  * Sync the timer hardware state before enabling interrupts as
1092                  * we don't want vtimer interrupts to race with syncing the
1093                  * timer virtual interrupt state.
1094                  */
1095                 if (static_branch_unlikely(&userspace_irqchip_in_use))
1096                         kvm_timer_sync_user(vcpu);
1097
1098                 kvm_arch_vcpu_ctxsync_fp(vcpu);
1099
1100                 /*
1101                  * We must ensure that any pending interrupts are taken before
1102                  * we exit guest timing so that timer ticks are accounted as
1103                  * guest time. Transiently unmask interrupts so that any
1104                  * pending interrupts are taken.
1105                  *
1106                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1107                  * context synchronization event) is necessary to ensure that
1108                  * pending interrupts are taken.
1109                  */
1110                 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1111                         local_irq_enable();
1112                         isb();
1113                         local_irq_disable();
1114                 }
1115
1116                 guest_timing_exit_irqoff();
1117
1118                 local_irq_enable();
1119
1120                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1121
1122                 /* Exit types that need handling before we can be preempted */
1123                 handle_exit_early(vcpu, ret);
1124
1125                 preempt_enable();
1126
1127                 /*
1128                  * The ARMv8 architecture doesn't give the hypervisor
1129                  * a mechanism to prevent a guest from dropping to AArch32 EL0
1130                  * if implemented by the CPU. If we spot the guest in such
1131                  * state and that we decided it wasn't supposed to do so (like
1132                  * with the asymmetric AArch32 case), return to userspace with
1133                  * a fatal error.
1134                  */
1135                 if (vcpu_mode_is_bad_32bit(vcpu)) {
1136                         /*
1137                          * As we have caught the guest red-handed, decide that
1138                          * it isn't fit for purpose anymore by making the vcpu
1139                          * invalid. The VMM can try and fix it by issuing  a
1140                          * KVM_ARM_VCPU_INIT if it really wants to.
1141                          */
1142                         vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1143                         ret = ARM_EXCEPTION_IL;
1144                 }
1145
1146                 ret = handle_exit(vcpu, ret);
1147         }
1148
1149         /* Tell userspace about in-kernel device output levels */
1150         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1151                 kvm_timer_update_run(vcpu);
1152                 kvm_pmu_update_run(vcpu);
1153         }
1154
1155         kvm_sigset_deactivate(vcpu);
1156
1157 out:
1158         /*
1159          * In the unlikely event that we are returning to userspace
1160          * with pending exceptions or PC adjustment, commit these
1161          * adjustments in order to give userspace a consistent view of
1162          * the vcpu state. Note that this relies on __kvm_adjust_pc()
1163          * being preempt-safe on VHE.
1164          */
1165         if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1166                      vcpu_get_flag(vcpu, INCREMENT_PC)))
1167                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1168
1169         vcpu_put(vcpu);
1170         return ret;
1171 }
1172
1173 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1174 {
1175         int bit_index;
1176         bool set;
1177         unsigned long *hcr;
1178
1179         if (number == KVM_ARM_IRQ_CPU_IRQ)
1180                 bit_index = __ffs(HCR_VI);
1181         else /* KVM_ARM_IRQ_CPU_FIQ */
1182                 bit_index = __ffs(HCR_VF);
1183
1184         hcr = vcpu_hcr(vcpu);
1185         if (level)
1186                 set = test_and_set_bit(bit_index, hcr);
1187         else
1188                 set = test_and_clear_bit(bit_index, hcr);
1189
1190         /*
1191          * If we didn't change anything, no need to wake up or kick other CPUs
1192          */
1193         if (set == level)
1194                 return 0;
1195
1196         /*
1197          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1198          * trigger a world-switch round on the running physical CPU to set the
1199          * virtual IRQ/FIQ fields in the HCR appropriately.
1200          */
1201         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1202         kvm_vcpu_kick(vcpu);
1203
1204         return 0;
1205 }
1206
1207 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1208                           bool line_status)
1209 {
1210         u32 irq = irq_level->irq;
1211         unsigned int irq_type, vcpu_id, irq_num;
1212         struct kvm_vcpu *vcpu = NULL;
1213         bool level = irq_level->level;
1214
1215         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1216         vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1217         vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1218         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1219
1220         trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1221
1222         switch (irq_type) {
1223         case KVM_ARM_IRQ_TYPE_CPU:
1224                 if (irqchip_in_kernel(kvm))
1225                         return -ENXIO;
1226
1227                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1228                 if (!vcpu)
1229                         return -EINVAL;
1230
1231                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1232                         return -EINVAL;
1233
1234                 return vcpu_interrupt_line(vcpu, irq_num, level);
1235         case KVM_ARM_IRQ_TYPE_PPI:
1236                 if (!irqchip_in_kernel(kvm))
1237                         return -ENXIO;
1238
1239                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1240                 if (!vcpu)
1241                         return -EINVAL;
1242
1243                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1244                         return -EINVAL;
1245
1246                 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1247         case KVM_ARM_IRQ_TYPE_SPI:
1248                 if (!irqchip_in_kernel(kvm))
1249                         return -ENXIO;
1250
1251                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1252                         return -EINVAL;
1253
1254                 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1255         }
1256
1257         return -EINVAL;
1258 }
1259
1260 static unsigned long system_supported_vcpu_features(void)
1261 {
1262         unsigned long features = KVM_VCPU_VALID_FEATURES;
1263
1264         if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1265                 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1266
1267         if (!kvm_arm_support_pmu_v3())
1268                 clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1269
1270         if (!system_supports_sve())
1271                 clear_bit(KVM_ARM_VCPU_SVE, &features);
1272
1273         if (!system_has_full_ptr_auth()) {
1274                 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1275                 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1276         }
1277
1278         if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1279                 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1280
1281         return features;
1282 }
1283
1284 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1285                                         const struct kvm_vcpu_init *init)
1286 {
1287         unsigned long features = init->features[0];
1288         int i;
1289
1290         if (features & ~KVM_VCPU_VALID_FEATURES)
1291                 return -ENOENT;
1292
1293         for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1294                 if (init->features[i])
1295                         return -ENOENT;
1296         }
1297
1298         if (features & ~system_supported_vcpu_features())
1299                 return -EINVAL;
1300
1301         /*
1302          * For now make sure that both address/generic pointer authentication
1303          * features are requested by the userspace together.
1304          */
1305         if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1306             test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1307                 return -EINVAL;
1308
1309         /* Disallow NV+SVE for the time being */
1310         if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) &&
1311             test_bit(KVM_ARM_VCPU_SVE, &features))
1312                 return -EINVAL;
1313
1314         if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1315                 return 0;
1316
1317         /* MTE is incompatible with AArch32 */
1318         if (kvm_has_mte(vcpu->kvm))
1319                 return -EINVAL;
1320
1321         /* NV is incompatible with AArch32 */
1322         if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1323                 return -EINVAL;
1324
1325         return 0;
1326 }
1327
1328 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1329                                   const struct kvm_vcpu_init *init)
1330 {
1331         unsigned long features = init->features[0];
1332
1333         return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1334                              KVM_VCPU_MAX_FEATURES);
1335 }
1336
1337 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1338 {
1339         struct kvm *kvm = vcpu->kvm;
1340         int ret = 0;
1341
1342         /*
1343          * When the vCPU has a PMU, but no PMU is set for the guest
1344          * yet, set the default one.
1345          */
1346         if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1347                 ret = kvm_arm_set_default_pmu(kvm);
1348
1349         return ret;
1350 }
1351
1352 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1353                                  const struct kvm_vcpu_init *init)
1354 {
1355         unsigned long features = init->features[0];
1356         struct kvm *kvm = vcpu->kvm;
1357         int ret = -EINVAL;
1358
1359         mutex_lock(&kvm->arch.config_lock);
1360
1361         if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1362             kvm_vcpu_init_changed(vcpu, init))
1363                 goto out_unlock;
1364
1365         bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1366
1367         ret = kvm_setup_vcpu(vcpu);
1368         if (ret)
1369                 goto out_unlock;
1370
1371         /* Now we know what it is, we can reset it. */
1372         kvm_reset_vcpu(vcpu);
1373
1374         set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1375         vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1376         ret = 0;
1377 out_unlock:
1378         mutex_unlock(&kvm->arch.config_lock);
1379         return ret;
1380 }
1381
1382 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1383                                const struct kvm_vcpu_init *init)
1384 {
1385         int ret;
1386
1387         if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1388             init->target != kvm_target_cpu())
1389                 return -EINVAL;
1390
1391         ret = kvm_vcpu_init_check_features(vcpu, init);
1392         if (ret)
1393                 return ret;
1394
1395         if (!kvm_vcpu_initialized(vcpu))
1396                 return __kvm_vcpu_set_target(vcpu, init);
1397
1398         if (kvm_vcpu_init_changed(vcpu, init))
1399                 return -EINVAL;
1400
1401         kvm_reset_vcpu(vcpu);
1402         return 0;
1403 }
1404
1405 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1406                                          struct kvm_vcpu_init *init)
1407 {
1408         bool power_off = false;
1409         int ret;
1410
1411         /*
1412          * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1413          * reflecting it in the finalized feature set, thus limiting its scope
1414          * to a single KVM_ARM_VCPU_INIT call.
1415          */
1416         if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1417                 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1418                 power_off = true;
1419         }
1420
1421         ret = kvm_vcpu_set_target(vcpu, init);
1422         if (ret)
1423                 return ret;
1424
1425         /*
1426          * Ensure a rebooted VM will fault in RAM pages and detect if the
1427          * guest MMU is turned off and flush the caches as needed.
1428          *
1429          * S2FWB enforces all memory accesses to RAM being cacheable,
1430          * ensuring that the data side is always coherent. We still
1431          * need to invalidate the I-cache though, as FWB does *not*
1432          * imply CTR_EL0.DIC.
1433          */
1434         if (vcpu_has_run_once(vcpu)) {
1435                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1436                         stage2_unmap_vm(vcpu->kvm);
1437                 else
1438                         icache_inval_all_pou();
1439         }
1440
1441         vcpu_reset_hcr(vcpu);
1442         vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1443
1444         /*
1445          * Handle the "start in power-off" case.
1446          */
1447         spin_lock(&vcpu->arch.mp_state_lock);
1448
1449         if (power_off)
1450                 __kvm_arm_vcpu_power_off(vcpu);
1451         else
1452                 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1453
1454         spin_unlock(&vcpu->arch.mp_state_lock);
1455
1456         return 0;
1457 }
1458
1459 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1460                                  struct kvm_device_attr *attr)
1461 {
1462         int ret = -ENXIO;
1463
1464         switch (attr->group) {
1465         default:
1466                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1467                 break;
1468         }
1469
1470         return ret;
1471 }
1472
1473 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1474                                  struct kvm_device_attr *attr)
1475 {
1476         int ret = -ENXIO;
1477
1478         switch (attr->group) {
1479         default:
1480                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1481                 break;
1482         }
1483
1484         return ret;
1485 }
1486
1487 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1488                                  struct kvm_device_attr *attr)
1489 {
1490         int ret = -ENXIO;
1491
1492         switch (attr->group) {
1493         default:
1494                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1495                 break;
1496         }
1497
1498         return ret;
1499 }
1500
1501 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1502                                    struct kvm_vcpu_events *events)
1503 {
1504         memset(events, 0, sizeof(*events));
1505
1506         return __kvm_arm_vcpu_get_events(vcpu, events);
1507 }
1508
1509 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1510                                    struct kvm_vcpu_events *events)
1511 {
1512         int i;
1513
1514         /* check whether the reserved field is zero */
1515         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1516                 if (events->reserved[i])
1517                         return -EINVAL;
1518
1519         /* check whether the pad field is zero */
1520         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1521                 if (events->exception.pad[i])
1522                         return -EINVAL;
1523
1524         return __kvm_arm_vcpu_set_events(vcpu, events);
1525 }
1526
1527 long kvm_arch_vcpu_ioctl(struct file *filp,
1528                          unsigned int ioctl, unsigned long arg)
1529 {
1530         struct kvm_vcpu *vcpu = filp->private_data;
1531         void __user *argp = (void __user *)arg;
1532         struct kvm_device_attr attr;
1533         long r;
1534
1535         switch (ioctl) {
1536         case KVM_ARM_VCPU_INIT: {
1537                 struct kvm_vcpu_init init;
1538
1539                 r = -EFAULT;
1540                 if (copy_from_user(&init, argp, sizeof(init)))
1541                         break;
1542
1543                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1544                 break;
1545         }
1546         case KVM_SET_ONE_REG:
1547         case KVM_GET_ONE_REG: {
1548                 struct kvm_one_reg reg;
1549
1550                 r = -ENOEXEC;
1551                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1552                         break;
1553
1554                 r = -EFAULT;
1555                 if (copy_from_user(&reg, argp, sizeof(reg)))
1556                         break;
1557
1558                 /*
1559                  * We could owe a reset due to PSCI. Handle the pending reset
1560                  * here to ensure userspace register accesses are ordered after
1561                  * the reset.
1562                  */
1563                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1564                         kvm_reset_vcpu(vcpu);
1565
1566                 if (ioctl == KVM_SET_ONE_REG)
1567                         r = kvm_arm_set_reg(vcpu, &reg);
1568                 else
1569                         r = kvm_arm_get_reg(vcpu, &reg);
1570                 break;
1571         }
1572         case KVM_GET_REG_LIST: {
1573                 struct kvm_reg_list __user *user_list = argp;
1574                 struct kvm_reg_list reg_list;
1575                 unsigned n;
1576
1577                 r = -ENOEXEC;
1578                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1579                         break;
1580
1581                 r = -EPERM;
1582                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1583                         break;
1584
1585                 r = -EFAULT;
1586                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1587                         break;
1588                 n = reg_list.n;
1589                 reg_list.n = kvm_arm_num_regs(vcpu);
1590                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1591                         break;
1592                 r = -E2BIG;
1593                 if (n < reg_list.n)
1594                         break;
1595                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1596                 break;
1597         }
1598         case KVM_SET_DEVICE_ATTR: {
1599                 r = -EFAULT;
1600                 if (copy_from_user(&attr, argp, sizeof(attr)))
1601                         break;
1602                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1603                 break;
1604         }
1605         case KVM_GET_DEVICE_ATTR: {
1606                 r = -EFAULT;
1607                 if (copy_from_user(&attr, argp, sizeof(attr)))
1608                         break;
1609                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1610                 break;
1611         }
1612         case KVM_HAS_DEVICE_ATTR: {
1613                 r = -EFAULT;
1614                 if (copy_from_user(&attr, argp, sizeof(attr)))
1615                         break;
1616                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1617                 break;
1618         }
1619         case KVM_GET_VCPU_EVENTS: {
1620                 struct kvm_vcpu_events events;
1621
1622                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1623                         return -EINVAL;
1624
1625                 if (copy_to_user(argp, &events, sizeof(events)))
1626                         return -EFAULT;
1627
1628                 return 0;
1629         }
1630         case KVM_SET_VCPU_EVENTS: {
1631                 struct kvm_vcpu_events events;
1632
1633                 if (copy_from_user(&events, argp, sizeof(events)))
1634                         return -EFAULT;
1635
1636                 return kvm_arm_vcpu_set_events(vcpu, &events);
1637         }
1638         case KVM_ARM_VCPU_FINALIZE: {
1639                 int what;
1640
1641                 if (!kvm_vcpu_initialized(vcpu))
1642                         return -ENOEXEC;
1643
1644                 if (get_user(what, (const int __user *)argp))
1645                         return -EFAULT;
1646
1647                 return kvm_arm_vcpu_finalize(vcpu, what);
1648         }
1649         default:
1650                 r = -EINVAL;
1651         }
1652
1653         return r;
1654 }
1655
1656 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1657 {
1658
1659 }
1660
1661 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1662                                         struct kvm_arm_device_addr *dev_addr)
1663 {
1664         switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1665         case KVM_ARM_DEVICE_VGIC_V2:
1666                 if (!vgic_present)
1667                         return -ENXIO;
1668                 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1669         default:
1670                 return -ENODEV;
1671         }
1672 }
1673
1674 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1675 {
1676         switch (attr->group) {
1677         case KVM_ARM_VM_SMCCC_CTRL:
1678                 return kvm_vm_smccc_has_attr(kvm, attr);
1679         default:
1680                 return -ENXIO;
1681         }
1682 }
1683
1684 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1685 {
1686         switch (attr->group) {
1687         case KVM_ARM_VM_SMCCC_CTRL:
1688                 return kvm_vm_smccc_set_attr(kvm, attr);
1689         default:
1690                 return -ENXIO;
1691         }
1692 }
1693
1694 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1695 {
1696         struct kvm *kvm = filp->private_data;
1697         void __user *argp = (void __user *)arg;
1698         struct kvm_device_attr attr;
1699
1700         switch (ioctl) {
1701         case KVM_CREATE_IRQCHIP: {
1702                 int ret;
1703                 if (!vgic_present)
1704                         return -ENXIO;
1705                 mutex_lock(&kvm->lock);
1706                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1707                 mutex_unlock(&kvm->lock);
1708                 return ret;
1709         }
1710         case KVM_ARM_SET_DEVICE_ADDR: {
1711                 struct kvm_arm_device_addr dev_addr;
1712
1713                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1714                         return -EFAULT;
1715                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1716         }
1717         case KVM_ARM_PREFERRED_TARGET: {
1718                 struct kvm_vcpu_init init = {
1719                         .target = KVM_ARM_TARGET_GENERIC_V8,
1720                 };
1721
1722                 if (copy_to_user(argp, &init, sizeof(init)))
1723                         return -EFAULT;
1724
1725                 return 0;
1726         }
1727         case KVM_ARM_MTE_COPY_TAGS: {
1728                 struct kvm_arm_copy_mte_tags copy_tags;
1729
1730                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1731                         return -EFAULT;
1732                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1733         }
1734         case KVM_ARM_SET_COUNTER_OFFSET: {
1735                 struct kvm_arm_counter_offset offset;
1736
1737                 if (copy_from_user(&offset, argp, sizeof(offset)))
1738                         return -EFAULT;
1739                 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1740         }
1741         case KVM_HAS_DEVICE_ATTR: {
1742                 if (copy_from_user(&attr, argp, sizeof(attr)))
1743                         return -EFAULT;
1744
1745                 return kvm_vm_has_attr(kvm, &attr);
1746         }
1747         case KVM_SET_DEVICE_ATTR: {
1748                 if (copy_from_user(&attr, argp, sizeof(attr)))
1749                         return -EFAULT;
1750
1751                 return kvm_vm_set_attr(kvm, &attr);
1752         }
1753         case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1754                 struct reg_mask_range range;
1755
1756                 if (copy_from_user(&range, argp, sizeof(range)))
1757                         return -EFAULT;
1758                 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1759         }
1760         default:
1761                 return -EINVAL;
1762         }
1763 }
1764
1765 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1766 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1767 {
1768         struct kvm_vcpu *tmp_vcpu;
1769
1770         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1771                 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1772                 mutex_unlock(&tmp_vcpu->mutex);
1773         }
1774 }
1775
1776 void unlock_all_vcpus(struct kvm *kvm)
1777 {
1778         lockdep_assert_held(&kvm->lock);
1779
1780         unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1781 }
1782
1783 /* Returns true if all vcpus were locked, false otherwise */
1784 bool lock_all_vcpus(struct kvm *kvm)
1785 {
1786         struct kvm_vcpu *tmp_vcpu;
1787         unsigned long c;
1788
1789         lockdep_assert_held(&kvm->lock);
1790
1791         /*
1792          * Any time a vcpu is in an ioctl (including running), the
1793          * core KVM code tries to grab the vcpu->mutex.
1794          *
1795          * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1796          * other VCPUs can fiddle with the state while we access it.
1797          */
1798         kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1799                 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1800                         unlock_vcpus(kvm, c - 1);
1801                         return false;
1802                 }
1803         }
1804
1805         return true;
1806 }
1807
1808 static unsigned long nvhe_percpu_size(void)
1809 {
1810         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1811                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1812 }
1813
1814 static unsigned long nvhe_percpu_order(void)
1815 {
1816         unsigned long size = nvhe_percpu_size();
1817
1818         return size ? get_order(size) : 0;
1819 }
1820
1821 /* A lookup table holding the hypervisor VA for each vector slot */
1822 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1823
1824 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1825 {
1826         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1827 }
1828
1829 static int kvm_init_vector_slots(void)
1830 {
1831         int err;
1832         void *base;
1833
1834         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1835         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1836
1837         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1838         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1839
1840         if (kvm_system_needs_idmapped_vectors() &&
1841             !is_protected_kvm_enabled()) {
1842                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1843                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1844                 if (err)
1845                         return err;
1846         }
1847
1848         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1849         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1850         return 0;
1851 }
1852
1853 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1854 {
1855         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1856         u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1857         unsigned long tcr;
1858
1859         /*
1860          * Calculate the raw per-cpu offset without a translation from the
1861          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1862          * so that we can use adr_l to access per-cpu variables in EL2.
1863          * Also drop the KASAN tag which gets in the way...
1864          */
1865         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1866                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1867
1868         params->mair_el2 = read_sysreg(mair_el1);
1869
1870         tcr = read_sysreg(tcr_el1);
1871         if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1872                 tcr |= TCR_EPD1_MASK;
1873         } else {
1874                 tcr &= TCR_EL2_MASK;
1875                 tcr |= TCR_EL2_RES1;
1876         }
1877         tcr &= ~TCR_T0SZ_MASK;
1878         tcr |= TCR_T0SZ(hyp_va_bits);
1879         tcr &= ~TCR_EL2_PS_MASK;
1880         tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
1881         if (kvm_lpa2_is_enabled())
1882                 tcr |= TCR_EL2_DS;
1883         params->tcr_el2 = tcr;
1884
1885         params->pgd_pa = kvm_mmu_get_httbr();
1886         if (is_protected_kvm_enabled())
1887                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1888         else
1889                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1890         if (cpus_have_final_cap(ARM64_KVM_HVHE))
1891                 params->hcr_el2 |= HCR_E2H;
1892         params->vttbr = params->vtcr = 0;
1893
1894         /*
1895          * Flush the init params from the data cache because the struct will
1896          * be read while the MMU is off.
1897          */
1898         kvm_flush_dcache_to_poc(params, sizeof(*params));
1899 }
1900
1901 static void hyp_install_host_vector(void)
1902 {
1903         struct kvm_nvhe_init_params *params;
1904         struct arm_smccc_res res;
1905
1906         /* Switch from the HYP stub to our own HYP init vector */
1907         __hyp_set_vectors(kvm_get_idmap_vector());
1908
1909         /*
1910          * Call initialization code, and switch to the full blown HYP code.
1911          * If the cpucaps haven't been finalized yet, something has gone very
1912          * wrong, and hyp will crash and burn when it uses any
1913          * cpus_have_*_cap() wrapper.
1914          */
1915         BUG_ON(!system_capabilities_finalized());
1916         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1917         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1918         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1919 }
1920
1921 static void cpu_init_hyp_mode(void)
1922 {
1923         hyp_install_host_vector();
1924
1925         /*
1926          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1927          * at EL2.
1928          */
1929         if (this_cpu_has_cap(ARM64_SSBS) &&
1930             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1931                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1932         }
1933 }
1934
1935 static void cpu_hyp_reset(void)
1936 {
1937         if (!is_kernel_in_hyp_mode())
1938                 __hyp_reset_vectors();
1939 }
1940
1941 /*
1942  * EL2 vectors can be mapped and rerouted in a number of ways,
1943  * depending on the kernel configuration and CPU present:
1944  *
1945  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1946  *   placed in one of the vector slots, which is executed before jumping
1947  *   to the real vectors.
1948  *
1949  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1950  *   containing the hardening sequence is mapped next to the idmap page,
1951  *   and executed before jumping to the real vectors.
1952  *
1953  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1954  *   empty slot is selected, mapped next to the idmap page, and
1955  *   executed before jumping to the real vectors.
1956  *
1957  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1958  * VHE, as we don't have hypervisor-specific mappings. If the system
1959  * is VHE and yet selects this capability, it will be ignored.
1960  */
1961 static void cpu_set_hyp_vector(void)
1962 {
1963         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1964         void *vector = hyp_spectre_vector_selector[data->slot];
1965
1966         if (!is_protected_kvm_enabled())
1967                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1968         else
1969                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1970 }
1971
1972 static void cpu_hyp_init_context(void)
1973 {
1974         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1975
1976         if (!is_kernel_in_hyp_mode())
1977                 cpu_init_hyp_mode();
1978 }
1979
1980 static void cpu_hyp_init_features(void)
1981 {
1982         cpu_set_hyp_vector();
1983         kvm_arm_init_debug();
1984
1985         if (is_kernel_in_hyp_mode())
1986                 kvm_timer_init_vhe();
1987
1988         if (vgic_present)
1989                 kvm_vgic_init_cpu_hardware();
1990 }
1991
1992 static void cpu_hyp_reinit(void)
1993 {
1994         cpu_hyp_reset();
1995         cpu_hyp_init_context();
1996         cpu_hyp_init_features();
1997 }
1998
1999 static void cpu_hyp_init(void *discard)
2000 {
2001         if (!__this_cpu_read(kvm_hyp_initialized)) {
2002                 cpu_hyp_reinit();
2003                 __this_cpu_write(kvm_hyp_initialized, 1);
2004         }
2005 }
2006
2007 static void cpu_hyp_uninit(void *discard)
2008 {
2009         if (__this_cpu_read(kvm_hyp_initialized)) {
2010                 cpu_hyp_reset();
2011                 __this_cpu_write(kvm_hyp_initialized, 0);
2012         }
2013 }
2014
2015 int kvm_arch_hardware_enable(void)
2016 {
2017         /*
2018          * Most calls to this function are made with migration
2019          * disabled, but not with preemption disabled. The former is
2020          * enough to ensure correctness, but most of the helpers
2021          * expect the later and will throw a tantrum otherwise.
2022          */
2023         preempt_disable();
2024
2025         cpu_hyp_init(NULL);
2026
2027         kvm_vgic_cpu_up();
2028         kvm_timer_cpu_up();
2029
2030         preempt_enable();
2031
2032         return 0;
2033 }
2034
2035 void kvm_arch_hardware_disable(void)
2036 {
2037         kvm_timer_cpu_down();
2038         kvm_vgic_cpu_down();
2039
2040         if (!is_protected_kvm_enabled())
2041                 cpu_hyp_uninit(NULL);
2042 }
2043
2044 #ifdef CONFIG_CPU_PM
2045 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2046                                     unsigned long cmd,
2047                                     void *v)
2048 {
2049         /*
2050          * kvm_hyp_initialized is left with its old value over
2051          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2052          * re-enable hyp.
2053          */
2054         switch (cmd) {
2055         case CPU_PM_ENTER:
2056                 if (__this_cpu_read(kvm_hyp_initialized))
2057                         /*
2058                          * don't update kvm_hyp_initialized here
2059                          * so that the hyp will be re-enabled
2060                          * when we resume. See below.
2061                          */
2062                         cpu_hyp_reset();
2063
2064                 return NOTIFY_OK;
2065         case CPU_PM_ENTER_FAILED:
2066         case CPU_PM_EXIT:
2067                 if (__this_cpu_read(kvm_hyp_initialized))
2068                         /* The hyp was enabled before suspend. */
2069                         cpu_hyp_reinit();
2070
2071                 return NOTIFY_OK;
2072
2073         default:
2074                 return NOTIFY_DONE;
2075         }
2076 }
2077
2078 static struct notifier_block hyp_init_cpu_pm_nb = {
2079         .notifier_call = hyp_init_cpu_pm_notifier,
2080 };
2081
2082 static void __init hyp_cpu_pm_init(void)
2083 {
2084         if (!is_protected_kvm_enabled())
2085                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2086 }
2087 static void __init hyp_cpu_pm_exit(void)
2088 {
2089         if (!is_protected_kvm_enabled())
2090                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2091 }
2092 #else
2093 static inline void __init hyp_cpu_pm_init(void)
2094 {
2095 }
2096 static inline void __init hyp_cpu_pm_exit(void)
2097 {
2098 }
2099 #endif
2100
2101 static void __init init_cpu_logical_map(void)
2102 {
2103         unsigned int cpu;
2104
2105         /*
2106          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2107          * Only copy the set of online CPUs whose features have been checked
2108          * against the finalized system capabilities. The hypervisor will not
2109          * allow any other CPUs from the `possible` set to boot.
2110          */
2111         for_each_online_cpu(cpu)
2112                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2113 }
2114
2115 #define init_psci_0_1_impl_state(config, what)  \
2116         config.psci_0_1_ ## what ## _implemented = psci_ops.what
2117
2118 static bool __init init_psci_relay(void)
2119 {
2120         /*
2121          * If PSCI has not been initialized, protected KVM cannot install
2122          * itself on newly booted CPUs.
2123          */
2124         if (!psci_ops.get_version) {
2125                 kvm_err("Cannot initialize protected mode without PSCI\n");
2126                 return false;
2127         }
2128
2129         kvm_host_psci_config.version = psci_ops.get_version();
2130         kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2131
2132         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2133                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2134                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2135                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2136                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2137                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2138         }
2139         return true;
2140 }
2141
2142 static int __init init_subsystems(void)
2143 {
2144         int err = 0;
2145
2146         /*
2147          * Enable hardware so that subsystem initialisation can access EL2.
2148          */
2149         on_each_cpu(cpu_hyp_init, NULL, 1);
2150
2151         /*
2152          * Register CPU lower-power notifier
2153          */
2154         hyp_cpu_pm_init();
2155
2156         /*
2157          * Init HYP view of VGIC
2158          */
2159         err = kvm_vgic_hyp_init();
2160         switch (err) {
2161         case 0:
2162                 vgic_present = true;
2163                 break;
2164         case -ENODEV:
2165         case -ENXIO:
2166                 vgic_present = false;
2167                 err = 0;
2168                 break;
2169         default:
2170                 goto out;
2171         }
2172
2173         /*
2174          * Init HYP architected timer support
2175          */
2176         err = kvm_timer_hyp_init(vgic_present);
2177         if (err)
2178                 goto out;
2179
2180         kvm_register_perf_callbacks(NULL);
2181
2182 out:
2183         if (err)
2184                 hyp_cpu_pm_exit();
2185
2186         if (err || !is_protected_kvm_enabled())
2187                 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2188
2189         return err;
2190 }
2191
2192 static void __init teardown_subsystems(void)
2193 {
2194         kvm_unregister_perf_callbacks();
2195         hyp_cpu_pm_exit();
2196 }
2197
2198 static void __init teardown_hyp_mode(void)
2199 {
2200         int cpu;
2201
2202         free_hyp_pgds();
2203         for_each_possible_cpu(cpu) {
2204                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2205                 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2206         }
2207 }
2208
2209 static int __init do_pkvm_init(u32 hyp_va_bits)
2210 {
2211         void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2212         int ret;
2213
2214         preempt_disable();
2215         cpu_hyp_init_context();
2216         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2217                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2218                                 hyp_va_bits);
2219         cpu_hyp_init_features();
2220
2221         /*
2222          * The stub hypercalls are now disabled, so set our local flag to
2223          * prevent a later re-init attempt in kvm_arch_hardware_enable().
2224          */
2225         __this_cpu_write(kvm_hyp_initialized, 1);
2226         preempt_enable();
2227
2228         return ret;
2229 }
2230
2231 static u64 get_hyp_id_aa64pfr0_el1(void)
2232 {
2233         /*
2234          * Track whether the system isn't affected by spectre/meltdown in the
2235          * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2236          * Although this is per-CPU, we make it global for simplicity, e.g., not
2237          * to have to worry about vcpu migration.
2238          *
2239          * Unlike for non-protected VMs, userspace cannot override this for
2240          * protected VMs.
2241          */
2242         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2243
2244         val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2245                  ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2246
2247         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2248                           arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2249         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2250                           arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2251
2252         return val;
2253 }
2254
2255 static void kvm_hyp_init_symbols(void)
2256 {
2257         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2258         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2259         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2260         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2261         kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2262         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2263         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2264         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2265         kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2266         kvm_nvhe_sym(__icache_flags) = __icache_flags;
2267         kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2268 }
2269
2270 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2271 {
2272         void *addr = phys_to_virt(hyp_mem_base);
2273         int ret;
2274
2275         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2276         if (ret)
2277                 return ret;
2278
2279         ret = do_pkvm_init(hyp_va_bits);
2280         if (ret)
2281                 return ret;
2282
2283         free_hyp_pgds();
2284
2285         return 0;
2286 }
2287
2288 static void pkvm_hyp_init_ptrauth(void)
2289 {
2290         struct kvm_cpu_context *hyp_ctxt;
2291         int cpu;
2292
2293         for_each_possible_cpu(cpu) {
2294                 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2295                 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2296                 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2297                 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2298                 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2299                 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2300                 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2301                 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2302                 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2303                 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2304                 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2305         }
2306 }
2307
2308 /* Inits Hyp-mode on all online CPUs */
2309 static int __init init_hyp_mode(void)
2310 {
2311         u32 hyp_va_bits;
2312         int cpu;
2313         int err = -ENOMEM;
2314
2315         /*
2316          * The protected Hyp-mode cannot be initialized if the memory pool
2317          * allocation has failed.
2318          */
2319         if (is_protected_kvm_enabled() && !hyp_mem_base)
2320                 goto out_err;
2321
2322         /*
2323          * Allocate Hyp PGD and setup Hyp identity mapping
2324          */
2325         err = kvm_mmu_init(&hyp_va_bits);
2326         if (err)
2327                 goto out_err;
2328
2329         /*
2330          * Allocate stack pages for Hypervisor-mode
2331          */
2332         for_each_possible_cpu(cpu) {
2333                 unsigned long stack_page;
2334
2335                 stack_page = __get_free_page(GFP_KERNEL);
2336                 if (!stack_page) {
2337                         err = -ENOMEM;
2338                         goto out_err;
2339                 }
2340
2341                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2342         }
2343
2344         /*
2345          * Allocate and initialize pages for Hypervisor-mode percpu regions.
2346          */
2347         for_each_possible_cpu(cpu) {
2348                 struct page *page;
2349                 void *page_addr;
2350
2351                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2352                 if (!page) {
2353                         err = -ENOMEM;
2354                         goto out_err;
2355                 }
2356
2357                 page_addr = page_address(page);
2358                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2359                 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2360         }
2361
2362         /*
2363          * Map the Hyp-code called directly from the host
2364          */
2365         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2366                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2367         if (err) {
2368                 kvm_err("Cannot map world-switch code\n");
2369                 goto out_err;
2370         }
2371
2372         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2373                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2374         if (err) {
2375                 kvm_err("Cannot map .hyp.rodata section\n");
2376                 goto out_err;
2377         }
2378
2379         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2380                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2381         if (err) {
2382                 kvm_err("Cannot map rodata section\n");
2383                 goto out_err;
2384         }
2385
2386         /*
2387          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2388          * section thanks to an assertion in the linker script. Map it RW and
2389          * the rest of .bss RO.
2390          */
2391         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2392                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2393         if (err) {
2394                 kvm_err("Cannot map hyp bss section: %d\n", err);
2395                 goto out_err;
2396         }
2397
2398         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2399                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2400         if (err) {
2401                 kvm_err("Cannot map bss section\n");
2402                 goto out_err;
2403         }
2404
2405         /*
2406          * Map the Hyp stack pages
2407          */
2408         for_each_possible_cpu(cpu) {
2409                 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2410                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2411
2412                 err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2413                 if (err) {
2414                         kvm_err("Cannot map hyp stack\n");
2415                         goto out_err;
2416                 }
2417
2418                 /*
2419                  * Save the stack PA in nvhe_init_params. This will be needed
2420                  * to recreate the stack mapping in protected nVHE mode.
2421                  * __hyp_pa() won't do the right thing there, since the stack
2422                  * has been mapped in the flexible private VA space.
2423                  */
2424                 params->stack_pa = __pa(stack_page);
2425         }
2426
2427         for_each_possible_cpu(cpu) {
2428                 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2429                 char *percpu_end = percpu_begin + nvhe_percpu_size();
2430
2431                 /* Map Hyp percpu pages */
2432                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2433                 if (err) {
2434                         kvm_err("Cannot map hyp percpu region\n");
2435                         goto out_err;
2436                 }
2437
2438                 /* Prepare the CPU initialization parameters */
2439                 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2440         }
2441
2442         kvm_hyp_init_symbols();
2443
2444         if (is_protected_kvm_enabled()) {
2445                 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2446                     cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2447                         pkvm_hyp_init_ptrauth();
2448
2449                 init_cpu_logical_map();
2450
2451                 if (!init_psci_relay()) {
2452                         err = -ENODEV;
2453                         goto out_err;
2454                 }
2455
2456                 err = kvm_hyp_init_protection(hyp_va_bits);
2457                 if (err) {
2458                         kvm_err("Failed to init hyp memory protection\n");
2459                         goto out_err;
2460                 }
2461         }
2462
2463         return 0;
2464
2465 out_err:
2466         teardown_hyp_mode();
2467         kvm_err("error initializing Hyp mode: %d\n", err);
2468         return err;
2469 }
2470
2471 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2472 {
2473         struct kvm_vcpu *vcpu;
2474         unsigned long i;
2475
2476         mpidr &= MPIDR_HWID_BITMASK;
2477
2478         if (kvm->arch.mpidr_data) {
2479                 u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr);
2480
2481                 vcpu = kvm_get_vcpu(kvm,
2482                                     kvm->arch.mpidr_data->cmpidr_to_idx[idx]);
2483                 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2484                         vcpu = NULL;
2485
2486                 return vcpu;
2487         }
2488
2489         kvm_for_each_vcpu(i, vcpu, kvm) {
2490                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2491                         return vcpu;
2492         }
2493         return NULL;
2494 }
2495
2496 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2497 {
2498         return irqchip_in_kernel(kvm);
2499 }
2500
2501 bool kvm_arch_has_irq_bypass(void)
2502 {
2503         return true;
2504 }
2505
2506 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2507                                       struct irq_bypass_producer *prod)
2508 {
2509         struct kvm_kernel_irqfd *irqfd =
2510                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2511
2512         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2513                                           &irqfd->irq_entry);
2514 }
2515 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2516                                       struct irq_bypass_producer *prod)
2517 {
2518         struct kvm_kernel_irqfd *irqfd =
2519                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2520
2521         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2522                                      &irqfd->irq_entry);
2523 }
2524
2525 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2526 {
2527         struct kvm_kernel_irqfd *irqfd =
2528                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2529
2530         kvm_arm_halt_guest(irqfd->kvm);
2531 }
2532
2533 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2534 {
2535         struct kvm_kernel_irqfd *irqfd =
2536                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2537
2538         kvm_arm_resume_guest(irqfd->kvm);
2539 }
2540
2541 /* Initialize Hyp-mode and memory mappings on all CPUs */
2542 static __init int kvm_arm_init(void)
2543 {
2544         int err;
2545         bool in_hyp_mode;
2546
2547         if (!is_hyp_mode_available()) {
2548                 kvm_info("HYP mode not available\n");
2549                 return -ENODEV;
2550         }
2551
2552         if (kvm_get_mode() == KVM_MODE_NONE) {
2553                 kvm_info("KVM disabled from command line\n");
2554                 return -ENODEV;
2555         }
2556
2557         err = kvm_sys_reg_table_init();
2558         if (err) {
2559                 kvm_info("Error initializing system register tables");
2560                 return err;
2561         }
2562
2563         in_hyp_mode = is_kernel_in_hyp_mode();
2564
2565         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2566             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2567                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2568                          "Only trusted guests should be used on this system.\n");
2569
2570         err = kvm_set_ipa_limit();
2571         if (err)
2572                 return err;
2573
2574         err = kvm_arm_init_sve();
2575         if (err)
2576                 return err;
2577
2578         err = kvm_arm_vmid_alloc_init();
2579         if (err) {
2580                 kvm_err("Failed to initialize VMID allocator.\n");
2581                 return err;
2582         }
2583
2584         if (!in_hyp_mode) {
2585                 err = init_hyp_mode();
2586                 if (err)
2587                         goto out_err;
2588         }
2589
2590         err = kvm_init_vector_slots();
2591         if (err) {
2592                 kvm_err("Cannot initialise vector slots\n");
2593                 goto out_hyp;
2594         }
2595
2596         err = init_subsystems();
2597         if (err)
2598                 goto out_hyp;
2599
2600         kvm_info("%s%sVHE mode initialized successfully\n",
2601                  in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2602                                      "Protected " : "Hyp "),
2603                  in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2604                                      "h" : "n"));
2605
2606         /*
2607          * FIXME: Do something reasonable if kvm_init() fails after pKVM
2608          * hypervisor protection is finalized.
2609          */
2610         err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2611         if (err)
2612                 goto out_subs;
2613
2614         kvm_arm_initialised = true;
2615
2616         return 0;
2617
2618 out_subs:
2619         teardown_subsystems();
2620 out_hyp:
2621         if (!in_hyp_mode)
2622                 teardown_hyp_mode();
2623 out_err:
2624         kvm_arm_vmid_alloc_free();
2625         return err;
2626 }
2627
2628 static int __init early_kvm_mode_cfg(char *arg)
2629 {
2630         if (!arg)
2631                 return -EINVAL;
2632
2633         if (strcmp(arg, "none") == 0) {
2634                 kvm_mode = KVM_MODE_NONE;
2635                 return 0;
2636         }
2637
2638         if (!is_hyp_mode_available()) {
2639                 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2640                 return 0;
2641         }
2642
2643         if (strcmp(arg, "protected") == 0) {
2644                 if (!is_kernel_in_hyp_mode())
2645                         kvm_mode = KVM_MODE_PROTECTED;
2646                 else
2647                         pr_warn_once("Protected KVM not available with VHE\n");
2648
2649                 return 0;
2650         }
2651
2652         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2653                 kvm_mode = KVM_MODE_DEFAULT;
2654                 return 0;
2655         }
2656
2657         if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2658                 kvm_mode = KVM_MODE_NV;
2659                 return 0;
2660         }
2661
2662         return -EINVAL;
2663 }
2664 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2665
2666 enum kvm_mode kvm_get_mode(void)
2667 {
2668         return kvm_mode;
2669 }
2670
2671 module_init(kvm_arm_init);