GNU Linux-libre 5.15.72-gnu
[releases.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u32 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 static bool vgic_present;
62
63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
71 int kvm_arch_hardware_setup(void *opaque)
72 {
73         return 0;
74 }
75
76 int kvm_arch_check_processor_compat(void *opaque)
77 {
78         return 0;
79 }
80
81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
82                             struct kvm_enable_cap *cap)
83 {
84         int r;
85
86         if (cap->flags)
87                 return -EINVAL;
88
89         switch (cap->cap) {
90         case KVM_CAP_ARM_NISV_TO_USER:
91                 r = 0;
92                 kvm->arch.return_nisv_io_abort_to_user = true;
93                 break;
94         case KVM_CAP_ARM_MTE:
95                 mutex_lock(&kvm->lock);
96                 if (!system_supports_mte() || kvm->created_vcpus) {
97                         r = -EINVAL;
98                 } else {
99                         r = 0;
100                         kvm->arch.mte_enabled = true;
101                 }
102                 mutex_unlock(&kvm->lock);
103                 break;
104         default:
105                 r = -EINVAL;
106                 break;
107         }
108
109         return r;
110 }
111
112 static int kvm_arm_default_max_vcpus(void)
113 {
114         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
117 static void set_default_spectre(struct kvm *kvm)
118 {
119         /*
120          * The default is to expose CSV2 == 1 if the HW isn't affected.
121          * Although this is a per-CPU feature, we make it global because
122          * asymmetric systems are just a nuisance.
123          *
124          * Userspace can override this as long as it doesn't promise
125          * the impossible.
126          */
127         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128                 kvm->arch.pfr0_csv2 = 1;
129         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130                 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134  * kvm_arch_init_vm - initializes a VM data structure
135  * @kvm:        pointer to the KVM struct
136  */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         int ret;
140
141         ret = kvm_arm_setup_stage2(kvm, type);
142         if (ret)
143                 return ret;
144
145         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146         if (ret)
147                 return ret;
148
149         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150         if (ret)
151                 goto out_free_stage2_pgd;
152
153         kvm_vgic_early_init(kvm);
154
155         /* The maximum number of VCPUs is limited by the host's GIC model */
156         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157
158         set_default_spectre(kvm);
159
160         return ret;
161 out_free_stage2_pgd:
162         kvm_free_stage2_pgd(&kvm->arch.mmu);
163         return ret;
164 }
165
166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         bitmap_free(kvm->arch.pmu_filter);
181
182         kvm_vgic_destroy(kvm);
183
184         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
185                 if (kvm->vcpus[i]) {
186                         kvm_vcpu_destroy(kvm->vcpus[i]);
187                         kvm->vcpus[i] = NULL;
188                 }
189         }
190         atomic_set(&kvm->online_vcpus, 0);
191 }
192
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195         int r;
196         switch (ext) {
197         case KVM_CAP_IRQCHIP:
198                 r = vgic_present;
199                 break;
200         case KVM_CAP_IOEVENTFD:
201         case KVM_CAP_DEVICE_CTRL:
202         case KVM_CAP_USER_MEMORY:
203         case KVM_CAP_SYNC_MMU:
204         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205         case KVM_CAP_ONE_REG:
206         case KVM_CAP_ARM_PSCI:
207         case KVM_CAP_ARM_PSCI_0_2:
208         case KVM_CAP_READONLY_MEM:
209         case KVM_CAP_MP_STATE:
210         case KVM_CAP_IMMEDIATE_EXIT:
211         case KVM_CAP_VCPU_EVENTS:
212         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213         case KVM_CAP_ARM_NISV_TO_USER:
214         case KVM_CAP_ARM_INJECT_EXT_DABT:
215         case KVM_CAP_SET_GUEST_DEBUG:
216         case KVM_CAP_VCPU_ATTRIBUTES:
217         case KVM_CAP_PTP_KVM:
218                 r = 1;
219                 break;
220         case KVM_CAP_SET_GUEST_DEBUG2:
221                 return KVM_GUESTDBG_VALID_MASK;
222         case KVM_CAP_ARM_SET_DEVICE_ADDR:
223                 r = 1;
224                 break;
225         case KVM_CAP_NR_VCPUS:
226                 r = num_online_cpus();
227                 break;
228         case KVM_CAP_MAX_VCPUS:
229         case KVM_CAP_MAX_VCPU_ID:
230                 if (kvm)
231                         r = kvm->arch.max_vcpus;
232                 else
233                         r = kvm_arm_default_max_vcpus();
234                 break;
235         case KVM_CAP_MSI_DEVID:
236                 if (!kvm)
237                         r = -EINVAL;
238                 else
239                         r = kvm->arch.vgic.msis_require_devid;
240                 break;
241         case KVM_CAP_ARM_USER_IRQ:
242                 /*
243                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
244                  * (bump this number if adding more devices)
245                  */
246                 r = 1;
247                 break;
248         case KVM_CAP_ARM_MTE:
249                 r = system_supports_mte();
250                 break;
251         case KVM_CAP_STEAL_TIME:
252                 r = kvm_arm_pvtime_supported();
253                 break;
254         case KVM_CAP_ARM_EL1_32BIT:
255                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
256                 break;
257         case KVM_CAP_GUEST_DEBUG_HW_BPS:
258                 r = get_num_brps();
259                 break;
260         case KVM_CAP_GUEST_DEBUG_HW_WPS:
261                 r = get_num_wrps();
262                 break;
263         case KVM_CAP_ARM_PMU_V3:
264                 r = kvm_arm_support_pmu_v3();
265                 break;
266         case KVM_CAP_ARM_INJECT_SERROR_ESR:
267                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
268                 break;
269         case KVM_CAP_ARM_VM_IPA_SIZE:
270                 r = get_kvm_ipa_limit();
271                 break;
272         case KVM_CAP_ARM_SVE:
273                 r = system_supports_sve();
274                 break;
275         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
276         case KVM_CAP_ARM_PTRAUTH_GENERIC:
277                 r = system_has_full_ptr_auth();
278                 break;
279         default:
280                 r = 0;
281         }
282
283         return r;
284 }
285
286 long kvm_arch_dev_ioctl(struct file *filp,
287                         unsigned int ioctl, unsigned long arg)
288 {
289         return -EINVAL;
290 }
291
292 struct kvm *kvm_arch_alloc_vm(void)
293 {
294         if (!has_vhe())
295                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
296
297         return vzalloc(sizeof(struct kvm));
298 }
299
300 void kvm_arch_free_vm(struct kvm *kvm)
301 {
302         if (!has_vhe())
303                 kfree(kvm);
304         else
305                 vfree(kvm);
306 }
307
308 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
309 {
310         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
311                 return -EBUSY;
312
313         if (id >= kvm->arch.max_vcpus)
314                 return -EINVAL;
315
316         return 0;
317 }
318
319 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
320 {
321         int err;
322
323         /* Force users to call KVM_ARM_VCPU_INIT */
324         vcpu->arch.target = -1;
325         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
326
327         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
328
329         /* Set up the timer */
330         kvm_timer_vcpu_init(vcpu);
331
332         kvm_pmu_vcpu_init(vcpu);
333
334         kvm_arm_reset_debug_ptr(vcpu);
335
336         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
337
338         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
339
340         err = kvm_vgic_vcpu_init(vcpu);
341         if (err)
342                 return err;
343
344         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
345 }
346
347 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
348 {
349 }
350
351 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
352 {
353         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
354                 static_branch_dec(&userspace_irqchip_in_use);
355
356         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
357         kvm_timer_vcpu_terminate(vcpu);
358         kvm_pmu_vcpu_destroy(vcpu);
359
360         kvm_arm_vcpu_destroy(vcpu);
361 }
362
363 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
364 {
365         return kvm_timer_is_pending(vcpu);
366 }
367
368 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
369 {
370         /*
371          * If we're about to block (most likely because we've just hit a
372          * WFI), we need to sync back the state of the GIC CPU interface
373          * so that we have the latest PMR and group enables. This ensures
374          * that kvm_arch_vcpu_runnable has up-to-date data to decide
375          * whether we have pending interrupts.
376          *
377          * For the same reason, we want to tell GICv4 that we need
378          * doorbells to be signalled, should an interrupt become pending.
379          */
380         preempt_disable();
381         kvm_vgic_vmcr_sync(vcpu);
382         vgic_v4_put(vcpu, true);
383         preempt_enable();
384 }
385
386 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
387 {
388         preempt_disable();
389         vgic_v4_load(vcpu);
390         preempt_enable();
391 }
392
393 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
394 {
395         struct kvm_s2_mmu *mmu;
396         int *last_ran;
397
398         mmu = vcpu->arch.hw_mmu;
399         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
400
401         /*
402          * We guarantee that both TLBs and I-cache are private to each
403          * vcpu. If detecting that a vcpu from the same VM has
404          * previously run on the same physical CPU, call into the
405          * hypervisor code to nuke the relevant contexts.
406          *
407          * We might get preempted before the vCPU actually runs, but
408          * over-invalidation doesn't affect correctness.
409          */
410         if (*last_ran != vcpu->vcpu_id) {
411                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
412                 *last_ran = vcpu->vcpu_id;
413         }
414
415         vcpu->cpu = cpu;
416
417         kvm_vgic_load(vcpu);
418         kvm_timer_vcpu_load(vcpu);
419         if (has_vhe())
420                 kvm_vcpu_load_sysregs_vhe(vcpu);
421         kvm_arch_vcpu_load_fp(vcpu);
422         kvm_vcpu_pmu_restore_guest(vcpu);
423         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
424                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
425
426         if (single_task_running())
427                 vcpu_clear_wfx_traps(vcpu);
428         else
429                 vcpu_set_wfx_traps(vcpu);
430
431         if (vcpu_has_ptrauth(vcpu))
432                 vcpu_ptrauth_disable(vcpu);
433         kvm_arch_vcpu_load_debug_state_flags(vcpu);
434 }
435
436 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
437 {
438         kvm_arch_vcpu_put_debug_state_flags(vcpu);
439         kvm_arch_vcpu_put_fp(vcpu);
440         if (has_vhe())
441                 kvm_vcpu_put_sysregs_vhe(vcpu);
442         kvm_timer_vcpu_put(vcpu);
443         kvm_vgic_put(vcpu);
444         kvm_vcpu_pmu_restore_host(vcpu);
445
446         vcpu->cpu = -1;
447 }
448
449 static void vcpu_power_off(struct kvm_vcpu *vcpu)
450 {
451         vcpu->arch.power_off = true;
452         kvm_make_request(KVM_REQ_SLEEP, vcpu);
453         kvm_vcpu_kick(vcpu);
454 }
455
456 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
457                                     struct kvm_mp_state *mp_state)
458 {
459         if (vcpu->arch.power_off)
460                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
461         else
462                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
463
464         return 0;
465 }
466
467 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
468                                     struct kvm_mp_state *mp_state)
469 {
470         int ret = 0;
471
472         switch (mp_state->mp_state) {
473         case KVM_MP_STATE_RUNNABLE:
474                 vcpu->arch.power_off = false;
475                 break;
476         case KVM_MP_STATE_STOPPED:
477                 vcpu_power_off(vcpu);
478                 break;
479         default:
480                 ret = -EINVAL;
481         }
482
483         return ret;
484 }
485
486 /**
487  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
488  * @v:          The VCPU pointer
489  *
490  * If the guest CPU is not waiting for interrupts or an interrupt line is
491  * asserted, the CPU is by definition runnable.
492  */
493 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
494 {
495         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
496         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
497                 && !v->arch.power_off && !v->arch.pause);
498 }
499
500 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
501 {
502         return vcpu_mode_priv(vcpu);
503 }
504
505 /* Just ensure a guest exit from a particular CPU */
506 static void exit_vm_noop(void *info)
507 {
508 }
509
510 void force_vm_exit(const cpumask_t *mask)
511 {
512         preempt_disable();
513         smp_call_function_many(mask, exit_vm_noop, NULL, true);
514         preempt_enable();
515 }
516
517 /**
518  * need_new_vmid_gen - check that the VMID is still valid
519  * @vmid: The VMID to check
520  *
521  * return true if there is a new generation of VMIDs being used
522  *
523  * The hardware supports a limited set of values with the value zero reserved
524  * for the host, so we check if an assigned value belongs to a previous
525  * generation, which requires us to assign a new value. If we're the first to
526  * use a VMID for the new generation, we must flush necessary caches and TLBs
527  * on all CPUs.
528  */
529 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
530 {
531         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
532         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
533         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
534 }
535
536 /**
537  * update_vmid - Update the vmid with a valid VMID for the current generation
538  * @vmid: The stage-2 VMID information struct
539  */
540 static void update_vmid(struct kvm_vmid *vmid)
541 {
542         if (!need_new_vmid_gen(vmid))
543                 return;
544
545         spin_lock(&kvm_vmid_lock);
546
547         /*
548          * We need to re-check the vmid_gen here to ensure that if another vcpu
549          * already allocated a valid vmid for this vm, then this vcpu should
550          * use the same vmid.
551          */
552         if (!need_new_vmid_gen(vmid)) {
553                 spin_unlock(&kvm_vmid_lock);
554                 return;
555         }
556
557         /* First user of a new VMID generation? */
558         if (unlikely(kvm_next_vmid == 0)) {
559                 atomic64_inc(&kvm_vmid_gen);
560                 kvm_next_vmid = 1;
561
562                 /*
563                  * On SMP we know no other CPUs can use this CPU's or each
564                  * other's VMID after force_vm_exit returns since the
565                  * kvm_vmid_lock blocks them from reentry to the guest.
566                  */
567                 force_vm_exit(cpu_all_mask);
568                 /*
569                  * Now broadcast TLB + ICACHE invalidation over the inner
570                  * shareable domain to make sure all data structures are
571                  * clean.
572                  */
573                 kvm_call_hyp(__kvm_flush_vm_context);
574         }
575
576         WRITE_ONCE(vmid->vmid, kvm_next_vmid);
577         kvm_next_vmid++;
578         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
579
580         smp_wmb();
581         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
582
583         spin_unlock(&kvm_vmid_lock);
584 }
585
586 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
587 {
588         struct kvm *kvm = vcpu->kvm;
589         int ret = 0;
590
591         if (likely(vcpu->arch.has_run_once))
592                 return 0;
593
594         if (!kvm_arm_vcpu_is_finalized(vcpu))
595                 return -EPERM;
596
597         vcpu->arch.has_run_once = true;
598
599         kvm_arm_vcpu_init_debug(vcpu);
600
601         if (likely(irqchip_in_kernel(kvm))) {
602                 /*
603                  * Map the VGIC hardware resources before running a vcpu the
604                  * first time on this VM.
605                  */
606                 ret = kvm_vgic_map_resources(kvm);
607                 if (ret)
608                         return ret;
609         } else {
610                 /*
611                  * Tell the rest of the code that there are userspace irqchip
612                  * VMs in the wild.
613                  */
614                 static_branch_inc(&userspace_irqchip_in_use);
615         }
616
617         ret = kvm_timer_enable(vcpu);
618         if (ret)
619                 return ret;
620
621         ret = kvm_arm_pmu_v3_enable(vcpu);
622
623         return ret;
624 }
625
626 bool kvm_arch_intc_initialized(struct kvm *kvm)
627 {
628         return vgic_initialized(kvm);
629 }
630
631 void kvm_arm_halt_guest(struct kvm *kvm)
632 {
633         int i;
634         struct kvm_vcpu *vcpu;
635
636         kvm_for_each_vcpu(i, vcpu, kvm)
637                 vcpu->arch.pause = true;
638         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
639 }
640
641 void kvm_arm_resume_guest(struct kvm *kvm)
642 {
643         int i;
644         struct kvm_vcpu *vcpu;
645
646         kvm_for_each_vcpu(i, vcpu, kvm) {
647                 vcpu->arch.pause = false;
648                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
649         }
650 }
651
652 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
653 {
654         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
655
656         rcuwait_wait_event(wait,
657                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
658                            TASK_INTERRUPTIBLE);
659
660         if (vcpu->arch.power_off || vcpu->arch.pause) {
661                 /* Awaken to handle a signal, request we sleep again later. */
662                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
663         }
664
665         /*
666          * Make sure we will observe a potential reset request if we've
667          * observed a change to the power state. Pairs with the smp_wmb() in
668          * kvm_psci_vcpu_on().
669          */
670         smp_rmb();
671 }
672
673 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
674 {
675         return vcpu->arch.target >= 0;
676 }
677
678 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
679 {
680         if (kvm_request_pending(vcpu)) {
681                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
682                         vcpu_req_sleep(vcpu);
683
684                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
685                         kvm_reset_vcpu(vcpu);
686
687                 /*
688                  * Clear IRQ_PENDING requests that were made to guarantee
689                  * that a VCPU sees new virtual interrupts.
690                  */
691                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
692
693                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
694                         kvm_update_stolen_time(vcpu);
695
696                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
697                         /* The distributor enable bits were changed */
698                         preempt_disable();
699                         vgic_v4_put(vcpu, false);
700                         vgic_v4_load(vcpu);
701                         preempt_enable();
702                 }
703
704                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
705                         kvm_pmu_handle_pmcr(vcpu,
706                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
707         }
708 }
709
710 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
711 {
712         if (likely(!vcpu_mode_is_32bit(vcpu)))
713                 return false;
714
715         return !kvm_supports_32bit_el0();
716 }
717
718 /**
719  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
720  * @vcpu:       The VCPU pointer
721  * @ret:        Pointer to write optional return code
722  *
723  * Returns: true if the VCPU needs to return to a preemptible + interruptible
724  *          and skip guest entry.
725  *
726  * This function disambiguates between two different types of exits: exits to a
727  * preemptible + interruptible kernel context and exits to userspace. For an
728  * exit to userspace, this function will write the return code to ret and return
729  * true. For an exit to preemptible + interruptible kernel context (i.e. check
730  * for pending work and re-enter), return true without writing to ret.
731  */
732 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
733 {
734         struct kvm_run *run = vcpu->run;
735
736         /*
737          * If we're using a userspace irqchip, then check if we need
738          * to tell a userspace irqchip about timer or PMU level
739          * changes and if so, exit to userspace (the actual level
740          * state gets updated in kvm_timer_update_run and
741          * kvm_pmu_update_run below).
742          */
743         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
744                 if (kvm_timer_should_notify_user(vcpu) ||
745                     kvm_pmu_should_notify_user(vcpu)) {
746                         *ret = -EINTR;
747                         run->exit_reason = KVM_EXIT_INTR;
748                         return true;
749                 }
750         }
751
752         return kvm_request_pending(vcpu) ||
753                         need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
754                         xfer_to_guest_mode_work_pending();
755 }
756
757 /*
758  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
759  * the vCPU is running.
760  *
761  * This must be noinstr as instrumentation may make use of RCU, and this is not
762  * safe during the EQS.
763  */
764 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
765 {
766         int ret;
767
768         guest_state_enter_irqoff();
769         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
770         guest_state_exit_irqoff();
771
772         return ret;
773 }
774
775 /**
776  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
777  * @vcpu:       The VCPU pointer
778  *
779  * This function is called through the VCPU_RUN ioctl called from user space. It
780  * will execute VM code in a loop until the time slice for the process is used
781  * or some emulation is needed from user space in which case the function will
782  * return with return value 0 and with the kvm_run structure filled in with the
783  * required data for the requested emulation.
784  */
785 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
786 {
787         struct kvm_run *run = vcpu->run;
788         int ret;
789
790         if (unlikely(!kvm_vcpu_initialized(vcpu)))
791                 return -ENOEXEC;
792
793         ret = kvm_vcpu_first_run_init(vcpu);
794         if (ret)
795                 return ret;
796
797         if (run->exit_reason == KVM_EXIT_MMIO) {
798                 ret = kvm_handle_mmio_return(vcpu);
799                 if (ret)
800                         return ret;
801         }
802
803         vcpu_load(vcpu);
804
805         if (run->immediate_exit) {
806                 ret = -EINTR;
807                 goto out;
808         }
809
810         kvm_sigset_activate(vcpu);
811
812         ret = 1;
813         run->exit_reason = KVM_EXIT_UNKNOWN;
814         while (ret > 0) {
815                 /*
816                  * Check conditions before entering the guest
817                  */
818                 ret = xfer_to_guest_mode_handle_work(vcpu);
819                 if (!ret)
820                         ret = 1;
821
822                 update_vmid(&vcpu->arch.hw_mmu->vmid);
823
824                 check_vcpu_requests(vcpu);
825
826                 /*
827                  * Preparing the interrupts to be injected also
828                  * involves poking the GIC, which must be done in a
829                  * non-preemptible context.
830                  */
831                 preempt_disable();
832
833                 kvm_pmu_flush_hwstate(vcpu);
834
835                 local_irq_disable();
836
837                 kvm_vgic_flush_hwstate(vcpu);
838
839                 /*
840                  * Ensure we set mode to IN_GUEST_MODE after we disable
841                  * interrupts and before the final VCPU requests check.
842                  * See the comment in kvm_vcpu_exiting_guest_mode() and
843                  * Documentation/virt/kvm/vcpu-requests.rst
844                  */
845                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
846
847                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
848                         vcpu->mode = OUTSIDE_GUEST_MODE;
849                         isb(); /* Ensure work in x_flush_hwstate is committed */
850                         kvm_pmu_sync_hwstate(vcpu);
851                         if (static_branch_unlikely(&userspace_irqchip_in_use))
852                                 kvm_timer_sync_user(vcpu);
853                         kvm_vgic_sync_hwstate(vcpu);
854                         local_irq_enable();
855                         preempt_enable();
856                         continue;
857                 }
858
859                 kvm_arm_setup_debug(vcpu);
860
861                 /**************************************************************
862                  * Enter the guest
863                  */
864                 trace_kvm_entry(*vcpu_pc(vcpu));
865                 guest_timing_enter_irqoff();
866
867                 ret = kvm_arm_vcpu_enter_exit(vcpu);
868
869                 vcpu->mode = OUTSIDE_GUEST_MODE;
870                 vcpu->stat.exits++;
871                 /*
872                  * Back from guest
873                  *************************************************************/
874
875                 kvm_arm_clear_debug(vcpu);
876
877                 /*
878                  * We must sync the PMU state before the vgic state so
879                  * that the vgic can properly sample the updated state of the
880                  * interrupt line.
881                  */
882                 kvm_pmu_sync_hwstate(vcpu);
883
884                 /*
885                  * Sync the vgic state before syncing the timer state because
886                  * the timer code needs to know if the virtual timer
887                  * interrupts are active.
888                  */
889                 kvm_vgic_sync_hwstate(vcpu);
890
891                 /*
892                  * Sync the timer hardware state before enabling interrupts as
893                  * we don't want vtimer interrupts to race with syncing the
894                  * timer virtual interrupt state.
895                  */
896                 if (static_branch_unlikely(&userspace_irqchip_in_use))
897                         kvm_timer_sync_user(vcpu);
898
899                 kvm_arch_vcpu_ctxsync_fp(vcpu);
900
901                 /*
902                  * We must ensure that any pending interrupts are taken before
903                  * we exit guest timing so that timer ticks are accounted as
904                  * guest time. Transiently unmask interrupts so that any
905                  * pending interrupts are taken.
906                  *
907                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
908                  * context synchronization event) is necessary to ensure that
909                  * pending interrupts are taken.
910                  */
911                 local_irq_enable();
912                 isb();
913                 local_irq_disable();
914
915                 guest_timing_exit_irqoff();
916
917                 local_irq_enable();
918
919                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
920
921                 /* Exit types that need handling before we can be preempted */
922                 handle_exit_early(vcpu, ret);
923
924                 preempt_enable();
925
926                 /*
927                  * The ARMv8 architecture doesn't give the hypervisor
928                  * a mechanism to prevent a guest from dropping to AArch32 EL0
929                  * if implemented by the CPU. If we spot the guest in such
930                  * state and that we decided it wasn't supposed to do so (like
931                  * with the asymmetric AArch32 case), return to userspace with
932                  * a fatal error.
933                  */
934                 if (vcpu_mode_is_bad_32bit(vcpu)) {
935                         /*
936                          * As we have caught the guest red-handed, decide that
937                          * it isn't fit for purpose anymore by making the vcpu
938                          * invalid. The VMM can try and fix it by issuing  a
939                          * KVM_ARM_VCPU_INIT if it really wants to.
940                          */
941                         vcpu->arch.target = -1;
942                         ret = ARM_EXCEPTION_IL;
943                 }
944
945                 ret = handle_exit(vcpu, ret);
946         }
947
948         /* Tell userspace about in-kernel device output levels */
949         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
950                 kvm_timer_update_run(vcpu);
951                 kvm_pmu_update_run(vcpu);
952         }
953
954         kvm_sigset_deactivate(vcpu);
955
956 out:
957         /*
958          * In the unlikely event that we are returning to userspace
959          * with pending exceptions or PC adjustment, commit these
960          * adjustments in order to give userspace a consistent view of
961          * the vcpu state. Note that this relies on __kvm_adjust_pc()
962          * being preempt-safe on VHE.
963          */
964         if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
965                                          KVM_ARM64_INCREMENT_PC)))
966                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
967
968         vcpu_put(vcpu);
969         return ret;
970 }
971
972 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
973 {
974         int bit_index;
975         bool set;
976         unsigned long *hcr;
977
978         if (number == KVM_ARM_IRQ_CPU_IRQ)
979                 bit_index = __ffs(HCR_VI);
980         else /* KVM_ARM_IRQ_CPU_FIQ */
981                 bit_index = __ffs(HCR_VF);
982
983         hcr = vcpu_hcr(vcpu);
984         if (level)
985                 set = test_and_set_bit(bit_index, hcr);
986         else
987                 set = test_and_clear_bit(bit_index, hcr);
988
989         /*
990          * If we didn't change anything, no need to wake up or kick other CPUs
991          */
992         if (set == level)
993                 return 0;
994
995         /*
996          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
997          * trigger a world-switch round on the running physical CPU to set the
998          * virtual IRQ/FIQ fields in the HCR appropriately.
999          */
1000         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1001         kvm_vcpu_kick(vcpu);
1002
1003         return 0;
1004 }
1005
1006 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1007                           bool line_status)
1008 {
1009         u32 irq = irq_level->irq;
1010         unsigned int irq_type, vcpu_idx, irq_num;
1011         int nrcpus = atomic_read(&kvm->online_vcpus);
1012         struct kvm_vcpu *vcpu = NULL;
1013         bool level = irq_level->level;
1014
1015         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1016         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1017         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1018         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1019
1020         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1021
1022         switch (irq_type) {
1023         case KVM_ARM_IRQ_TYPE_CPU:
1024                 if (irqchip_in_kernel(kvm))
1025                         return -ENXIO;
1026
1027                 if (vcpu_idx >= nrcpus)
1028                         return -EINVAL;
1029
1030                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1031                 if (!vcpu)
1032                         return -EINVAL;
1033
1034                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1035                         return -EINVAL;
1036
1037                 return vcpu_interrupt_line(vcpu, irq_num, level);
1038         case KVM_ARM_IRQ_TYPE_PPI:
1039                 if (!irqchip_in_kernel(kvm))
1040                         return -ENXIO;
1041
1042                 if (vcpu_idx >= nrcpus)
1043                         return -EINVAL;
1044
1045                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1046                 if (!vcpu)
1047                         return -EINVAL;
1048
1049                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1050                         return -EINVAL;
1051
1052                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1053         case KVM_ARM_IRQ_TYPE_SPI:
1054                 if (!irqchip_in_kernel(kvm))
1055                         return -ENXIO;
1056
1057                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1058                         return -EINVAL;
1059
1060                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1061         }
1062
1063         return -EINVAL;
1064 }
1065
1066 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1067                                const struct kvm_vcpu_init *init)
1068 {
1069         unsigned int i, ret;
1070         u32 phys_target = kvm_target_cpu();
1071
1072         if (init->target != phys_target)
1073                 return -EINVAL;
1074
1075         /*
1076          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1077          * use the same target.
1078          */
1079         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1080                 return -EINVAL;
1081
1082         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1083         for (i = 0; i < sizeof(init->features) * 8; i++) {
1084                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1085
1086                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1087                         return -ENOENT;
1088
1089                 /*
1090                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1091                  * use the same feature set.
1092                  */
1093                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1094                     test_bit(i, vcpu->arch.features) != set)
1095                         return -EINVAL;
1096
1097                 if (set)
1098                         set_bit(i, vcpu->arch.features);
1099         }
1100
1101         vcpu->arch.target = phys_target;
1102
1103         /* Now we know what it is, we can reset it. */
1104         ret = kvm_reset_vcpu(vcpu);
1105         if (ret) {
1106                 vcpu->arch.target = -1;
1107                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1108         }
1109
1110         return ret;
1111 }
1112
1113 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1114                                          struct kvm_vcpu_init *init)
1115 {
1116         int ret;
1117
1118         ret = kvm_vcpu_set_target(vcpu, init);
1119         if (ret)
1120                 return ret;
1121
1122         /*
1123          * Ensure a rebooted VM will fault in RAM pages and detect if the
1124          * guest MMU is turned off and flush the caches as needed.
1125          *
1126          * S2FWB enforces all memory accesses to RAM being cacheable,
1127          * ensuring that the data side is always coherent. We still
1128          * need to invalidate the I-cache though, as FWB does *not*
1129          * imply CTR_EL0.DIC.
1130          */
1131         if (vcpu->arch.has_run_once) {
1132                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1133                         stage2_unmap_vm(vcpu->kvm);
1134                 else
1135                         icache_inval_all_pou();
1136         }
1137
1138         vcpu_reset_hcr(vcpu);
1139         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1140
1141         /*
1142          * Handle the "start in power-off" case.
1143          */
1144         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1145                 vcpu_power_off(vcpu);
1146         else
1147                 vcpu->arch.power_off = false;
1148
1149         return 0;
1150 }
1151
1152 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1153                                  struct kvm_device_attr *attr)
1154 {
1155         int ret = -ENXIO;
1156
1157         switch (attr->group) {
1158         default:
1159                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1160                 break;
1161         }
1162
1163         return ret;
1164 }
1165
1166 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1167                                  struct kvm_device_attr *attr)
1168 {
1169         int ret = -ENXIO;
1170
1171         switch (attr->group) {
1172         default:
1173                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1174                 break;
1175         }
1176
1177         return ret;
1178 }
1179
1180 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1181                                  struct kvm_device_attr *attr)
1182 {
1183         int ret = -ENXIO;
1184
1185         switch (attr->group) {
1186         default:
1187                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1188                 break;
1189         }
1190
1191         return ret;
1192 }
1193
1194 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1195                                    struct kvm_vcpu_events *events)
1196 {
1197         memset(events, 0, sizeof(*events));
1198
1199         return __kvm_arm_vcpu_get_events(vcpu, events);
1200 }
1201
1202 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1203                                    struct kvm_vcpu_events *events)
1204 {
1205         int i;
1206
1207         /* check whether the reserved field is zero */
1208         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1209                 if (events->reserved[i])
1210                         return -EINVAL;
1211
1212         /* check whether the pad field is zero */
1213         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1214                 if (events->exception.pad[i])
1215                         return -EINVAL;
1216
1217         return __kvm_arm_vcpu_set_events(vcpu, events);
1218 }
1219
1220 long kvm_arch_vcpu_ioctl(struct file *filp,
1221                          unsigned int ioctl, unsigned long arg)
1222 {
1223         struct kvm_vcpu *vcpu = filp->private_data;
1224         void __user *argp = (void __user *)arg;
1225         struct kvm_device_attr attr;
1226         long r;
1227
1228         switch (ioctl) {
1229         case KVM_ARM_VCPU_INIT: {
1230                 struct kvm_vcpu_init init;
1231
1232                 r = -EFAULT;
1233                 if (copy_from_user(&init, argp, sizeof(init)))
1234                         break;
1235
1236                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1237                 break;
1238         }
1239         case KVM_SET_ONE_REG:
1240         case KVM_GET_ONE_REG: {
1241                 struct kvm_one_reg reg;
1242
1243                 r = -ENOEXEC;
1244                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1245                         break;
1246
1247                 r = -EFAULT;
1248                 if (copy_from_user(&reg, argp, sizeof(reg)))
1249                         break;
1250
1251                 /*
1252                  * We could owe a reset due to PSCI. Handle the pending reset
1253                  * here to ensure userspace register accesses are ordered after
1254                  * the reset.
1255                  */
1256                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1257                         kvm_reset_vcpu(vcpu);
1258
1259                 if (ioctl == KVM_SET_ONE_REG)
1260                         r = kvm_arm_set_reg(vcpu, &reg);
1261                 else
1262                         r = kvm_arm_get_reg(vcpu, &reg);
1263                 break;
1264         }
1265         case KVM_GET_REG_LIST: {
1266                 struct kvm_reg_list __user *user_list = argp;
1267                 struct kvm_reg_list reg_list;
1268                 unsigned n;
1269
1270                 r = -ENOEXEC;
1271                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1272                         break;
1273
1274                 r = -EPERM;
1275                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1276                         break;
1277
1278                 r = -EFAULT;
1279                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1280                         break;
1281                 n = reg_list.n;
1282                 reg_list.n = kvm_arm_num_regs(vcpu);
1283                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1284                         break;
1285                 r = -E2BIG;
1286                 if (n < reg_list.n)
1287                         break;
1288                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1289                 break;
1290         }
1291         case KVM_SET_DEVICE_ATTR: {
1292                 r = -EFAULT;
1293                 if (copy_from_user(&attr, argp, sizeof(attr)))
1294                         break;
1295                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1296                 break;
1297         }
1298         case KVM_GET_DEVICE_ATTR: {
1299                 r = -EFAULT;
1300                 if (copy_from_user(&attr, argp, sizeof(attr)))
1301                         break;
1302                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1303                 break;
1304         }
1305         case KVM_HAS_DEVICE_ATTR: {
1306                 r = -EFAULT;
1307                 if (copy_from_user(&attr, argp, sizeof(attr)))
1308                         break;
1309                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1310                 break;
1311         }
1312         case KVM_GET_VCPU_EVENTS: {
1313                 struct kvm_vcpu_events events;
1314
1315                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1316                         return -EINVAL;
1317
1318                 if (copy_to_user(argp, &events, sizeof(events)))
1319                         return -EFAULT;
1320
1321                 return 0;
1322         }
1323         case KVM_SET_VCPU_EVENTS: {
1324                 struct kvm_vcpu_events events;
1325
1326                 if (copy_from_user(&events, argp, sizeof(events)))
1327                         return -EFAULT;
1328
1329                 return kvm_arm_vcpu_set_events(vcpu, &events);
1330         }
1331         case KVM_ARM_VCPU_FINALIZE: {
1332                 int what;
1333
1334                 if (!kvm_vcpu_initialized(vcpu))
1335                         return -ENOEXEC;
1336
1337                 if (get_user(what, (const int __user *)argp))
1338                         return -EFAULT;
1339
1340                 return kvm_arm_vcpu_finalize(vcpu, what);
1341         }
1342         default:
1343                 r = -EINVAL;
1344         }
1345
1346         return r;
1347 }
1348
1349 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1350 {
1351
1352 }
1353
1354 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1355                                         const struct kvm_memory_slot *memslot)
1356 {
1357         kvm_flush_remote_tlbs(kvm);
1358 }
1359
1360 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1361                                         struct kvm_arm_device_addr *dev_addr)
1362 {
1363         unsigned long dev_id, type;
1364
1365         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1366                 KVM_ARM_DEVICE_ID_SHIFT;
1367         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1368                 KVM_ARM_DEVICE_TYPE_SHIFT;
1369
1370         switch (dev_id) {
1371         case KVM_ARM_DEVICE_VGIC_V2:
1372                 if (!vgic_present)
1373                         return -ENXIO;
1374                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1375         default:
1376                 return -ENODEV;
1377         }
1378 }
1379
1380 long kvm_arch_vm_ioctl(struct file *filp,
1381                        unsigned int ioctl, unsigned long arg)
1382 {
1383         struct kvm *kvm = filp->private_data;
1384         void __user *argp = (void __user *)arg;
1385
1386         switch (ioctl) {
1387         case KVM_CREATE_IRQCHIP: {
1388                 int ret;
1389                 if (!vgic_present)
1390                         return -ENXIO;
1391                 mutex_lock(&kvm->lock);
1392                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1393                 mutex_unlock(&kvm->lock);
1394                 return ret;
1395         }
1396         case KVM_ARM_SET_DEVICE_ADDR: {
1397                 struct kvm_arm_device_addr dev_addr;
1398
1399                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1400                         return -EFAULT;
1401                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1402         }
1403         case KVM_ARM_PREFERRED_TARGET: {
1404                 int err;
1405                 struct kvm_vcpu_init init;
1406
1407                 err = kvm_vcpu_preferred_target(&init);
1408                 if (err)
1409                         return err;
1410
1411                 if (copy_to_user(argp, &init, sizeof(init)))
1412                         return -EFAULT;
1413
1414                 return 0;
1415         }
1416         case KVM_ARM_MTE_COPY_TAGS: {
1417                 struct kvm_arm_copy_mte_tags copy_tags;
1418
1419                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1420                         return -EFAULT;
1421                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1422         }
1423         default:
1424                 return -EINVAL;
1425         }
1426 }
1427
1428 static unsigned long nvhe_percpu_size(void)
1429 {
1430         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1431                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1432 }
1433
1434 static unsigned long nvhe_percpu_order(void)
1435 {
1436         unsigned long size = nvhe_percpu_size();
1437
1438         return size ? get_order(size) : 0;
1439 }
1440
1441 /* A lookup table holding the hypervisor VA for each vector slot */
1442 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1443
1444 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1445 {
1446         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1447 }
1448
1449 static int kvm_init_vector_slots(void)
1450 {
1451         int err;
1452         void *base;
1453
1454         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1455         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1456
1457         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1458         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1459
1460         if (kvm_system_needs_idmapped_vectors() &&
1461             !is_protected_kvm_enabled()) {
1462                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1463                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1464                 if (err)
1465                         return err;
1466         }
1467
1468         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1469         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1470         return 0;
1471 }
1472
1473 static void cpu_prepare_hyp_mode(int cpu)
1474 {
1475         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1476         unsigned long tcr;
1477
1478         /*
1479          * Calculate the raw per-cpu offset without a translation from the
1480          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1481          * so that we can use adr_l to access per-cpu variables in EL2.
1482          * Also drop the KASAN tag which gets in the way...
1483          */
1484         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1485                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1486
1487         params->mair_el2 = read_sysreg(mair_el1);
1488
1489         /*
1490          * The ID map may be configured to use an extended virtual address
1491          * range. This is only the case if system RAM is out of range for the
1492          * currently configured page size and VA_BITS, in which case we will
1493          * also need the extended virtual range for the HYP ID map, or we won't
1494          * be able to enable the EL2 MMU.
1495          *
1496          * However, at EL2, there is only one TTBR register, and we can't switch
1497          * between translation tables *and* update TCR_EL2.T0SZ at the same
1498          * time. Bottom line: we need to use the extended range with *both* our
1499          * translation tables.
1500          *
1501          * So use the same T0SZ value we use for the ID map.
1502          */
1503         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1504         tcr &= ~TCR_T0SZ_MASK;
1505         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1506         params->tcr_el2 = tcr;
1507
1508         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1509         params->pgd_pa = kvm_mmu_get_httbr();
1510         if (is_protected_kvm_enabled())
1511                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1512         else
1513                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1514         params->vttbr = params->vtcr = 0;
1515
1516         /*
1517          * Flush the init params from the data cache because the struct will
1518          * be read while the MMU is off.
1519          */
1520         kvm_flush_dcache_to_poc(params, sizeof(*params));
1521 }
1522
1523 static void hyp_install_host_vector(void)
1524 {
1525         struct kvm_nvhe_init_params *params;
1526         struct arm_smccc_res res;
1527
1528         /* Switch from the HYP stub to our own HYP init vector */
1529         __hyp_set_vectors(kvm_get_idmap_vector());
1530
1531         /*
1532          * Call initialization code, and switch to the full blown HYP code.
1533          * If the cpucaps haven't been finalized yet, something has gone very
1534          * wrong, and hyp will crash and burn when it uses any
1535          * cpus_have_const_cap() wrapper.
1536          */
1537         BUG_ON(!system_capabilities_finalized());
1538         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1539         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1540         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1541 }
1542
1543 static void cpu_init_hyp_mode(void)
1544 {
1545         hyp_install_host_vector();
1546
1547         /*
1548          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1549          * at EL2.
1550          */
1551         if (this_cpu_has_cap(ARM64_SSBS) &&
1552             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1553                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1554         }
1555 }
1556
1557 static void cpu_hyp_reset(void)
1558 {
1559         if (!is_kernel_in_hyp_mode())
1560                 __hyp_reset_vectors();
1561 }
1562
1563 /*
1564  * EL2 vectors can be mapped and rerouted in a number of ways,
1565  * depending on the kernel configuration and CPU present:
1566  *
1567  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1568  *   placed in one of the vector slots, which is executed before jumping
1569  *   to the real vectors.
1570  *
1571  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1572  *   containing the hardening sequence is mapped next to the idmap page,
1573  *   and executed before jumping to the real vectors.
1574  *
1575  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1576  *   empty slot is selected, mapped next to the idmap page, and
1577  *   executed before jumping to the real vectors.
1578  *
1579  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1580  * VHE, as we don't have hypervisor-specific mappings. If the system
1581  * is VHE and yet selects this capability, it will be ignored.
1582  */
1583 static void cpu_set_hyp_vector(void)
1584 {
1585         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1586         void *vector = hyp_spectre_vector_selector[data->slot];
1587
1588         if (!is_protected_kvm_enabled())
1589                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1590         else
1591                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1592 }
1593
1594 static void cpu_hyp_reinit(void)
1595 {
1596         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1597
1598         cpu_hyp_reset();
1599
1600         if (is_kernel_in_hyp_mode())
1601                 kvm_timer_init_vhe();
1602         else
1603                 cpu_init_hyp_mode();
1604
1605         cpu_set_hyp_vector();
1606
1607         kvm_arm_init_debug();
1608
1609         if (vgic_present)
1610                 kvm_vgic_init_cpu_hardware();
1611 }
1612
1613 static void _kvm_arch_hardware_enable(void *discard)
1614 {
1615         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1616                 cpu_hyp_reinit();
1617                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1618         }
1619 }
1620
1621 int kvm_arch_hardware_enable(void)
1622 {
1623         _kvm_arch_hardware_enable(NULL);
1624         return 0;
1625 }
1626
1627 static void _kvm_arch_hardware_disable(void *discard)
1628 {
1629         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1630                 cpu_hyp_reset();
1631                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1632         }
1633 }
1634
1635 void kvm_arch_hardware_disable(void)
1636 {
1637         if (!is_protected_kvm_enabled())
1638                 _kvm_arch_hardware_disable(NULL);
1639 }
1640
1641 #ifdef CONFIG_CPU_PM
1642 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1643                                     unsigned long cmd,
1644                                     void *v)
1645 {
1646         /*
1647          * kvm_arm_hardware_enabled is left with its old value over
1648          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1649          * re-enable hyp.
1650          */
1651         switch (cmd) {
1652         case CPU_PM_ENTER:
1653                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1654                         /*
1655                          * don't update kvm_arm_hardware_enabled here
1656                          * so that the hardware will be re-enabled
1657                          * when we resume. See below.
1658                          */
1659                         cpu_hyp_reset();
1660
1661                 return NOTIFY_OK;
1662         case CPU_PM_ENTER_FAILED:
1663         case CPU_PM_EXIT:
1664                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1665                         /* The hardware was enabled before suspend. */
1666                         cpu_hyp_reinit();
1667
1668                 return NOTIFY_OK;
1669
1670         default:
1671                 return NOTIFY_DONE;
1672         }
1673 }
1674
1675 static struct notifier_block hyp_init_cpu_pm_nb = {
1676         .notifier_call = hyp_init_cpu_pm_notifier,
1677 };
1678
1679 static void hyp_cpu_pm_init(void)
1680 {
1681         if (!is_protected_kvm_enabled())
1682                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1683 }
1684 static void hyp_cpu_pm_exit(void)
1685 {
1686         if (!is_protected_kvm_enabled())
1687                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1688 }
1689 #else
1690 static inline void hyp_cpu_pm_init(void)
1691 {
1692 }
1693 static inline void hyp_cpu_pm_exit(void)
1694 {
1695 }
1696 #endif
1697
1698 static void init_cpu_logical_map(void)
1699 {
1700         unsigned int cpu;
1701
1702         /*
1703          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1704          * Only copy the set of online CPUs whose features have been chacked
1705          * against the finalized system capabilities. The hypervisor will not
1706          * allow any other CPUs from the `possible` set to boot.
1707          */
1708         for_each_online_cpu(cpu)
1709                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1710 }
1711
1712 #define init_psci_0_1_impl_state(config, what)  \
1713         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1714
1715 static bool init_psci_relay(void)
1716 {
1717         /*
1718          * If PSCI has not been initialized, protected KVM cannot install
1719          * itself on newly booted CPUs.
1720          */
1721         if (!psci_ops.get_version) {
1722                 kvm_err("Cannot initialize protected mode without PSCI\n");
1723                 return false;
1724         }
1725
1726         kvm_host_psci_config.version = psci_ops.get_version();
1727
1728         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1729                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1730                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1731                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1732                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1733                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1734         }
1735         return true;
1736 }
1737
1738 static int init_subsystems(void)
1739 {
1740         int err = 0;
1741
1742         /*
1743          * Enable hardware so that subsystem initialisation can access EL2.
1744          */
1745         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1746
1747         /*
1748          * Register CPU lower-power notifier
1749          */
1750         hyp_cpu_pm_init();
1751
1752         /*
1753          * Init HYP view of VGIC
1754          */
1755         err = kvm_vgic_hyp_init();
1756         switch (err) {
1757         case 0:
1758                 vgic_present = true;
1759                 break;
1760         case -ENODEV:
1761         case -ENXIO:
1762                 vgic_present = false;
1763                 err = 0;
1764                 break;
1765         default:
1766                 goto out;
1767         }
1768
1769         /*
1770          * Init HYP architected timer support
1771          */
1772         err = kvm_timer_hyp_init(vgic_present);
1773         if (err)
1774                 goto out;
1775
1776         kvm_perf_init();
1777         kvm_sys_reg_table_init();
1778
1779 out:
1780         if (err || !is_protected_kvm_enabled())
1781                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1782
1783         return err;
1784 }
1785
1786 static void teardown_hyp_mode(void)
1787 {
1788         int cpu;
1789
1790         free_hyp_pgds();
1791         for_each_possible_cpu(cpu) {
1792                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1793                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1794         }
1795 }
1796
1797 static int do_pkvm_init(u32 hyp_va_bits)
1798 {
1799         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1800         int ret;
1801
1802         preempt_disable();
1803         hyp_install_host_vector();
1804         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1805                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1806                                 hyp_va_bits);
1807         preempt_enable();
1808
1809         return ret;
1810 }
1811
1812 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1813 {
1814         void *addr = phys_to_virt(hyp_mem_base);
1815         int ret;
1816
1817         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1818         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1819
1820         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1821         if (ret)
1822                 return ret;
1823
1824         ret = do_pkvm_init(hyp_va_bits);
1825         if (ret)
1826                 return ret;
1827
1828         free_hyp_pgds();
1829
1830         return 0;
1831 }
1832
1833 /**
1834  * Inits Hyp-mode on all online CPUs
1835  */
1836 static int init_hyp_mode(void)
1837 {
1838         u32 hyp_va_bits;
1839         int cpu;
1840         int err = -ENOMEM;
1841
1842         /*
1843          * The protected Hyp-mode cannot be initialized if the memory pool
1844          * allocation has failed.
1845          */
1846         if (is_protected_kvm_enabled() && !hyp_mem_base)
1847                 goto out_err;
1848
1849         /*
1850          * Allocate Hyp PGD and setup Hyp identity mapping
1851          */
1852         err = kvm_mmu_init(&hyp_va_bits);
1853         if (err)
1854                 goto out_err;
1855
1856         /*
1857          * Allocate stack pages for Hypervisor-mode
1858          */
1859         for_each_possible_cpu(cpu) {
1860                 unsigned long stack_page;
1861
1862                 stack_page = __get_free_page(GFP_KERNEL);
1863                 if (!stack_page) {
1864                         err = -ENOMEM;
1865                         goto out_err;
1866                 }
1867
1868                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1869         }
1870
1871         /*
1872          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1873          */
1874         for_each_possible_cpu(cpu) {
1875                 struct page *page;
1876                 void *page_addr;
1877
1878                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1879                 if (!page) {
1880                         err = -ENOMEM;
1881                         goto out_err;
1882                 }
1883
1884                 page_addr = page_address(page);
1885                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1886                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1887         }
1888
1889         /*
1890          * Map the Hyp-code called directly from the host
1891          */
1892         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1893                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1894         if (err) {
1895                 kvm_err("Cannot map world-switch code\n");
1896                 goto out_err;
1897         }
1898
1899         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1900                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1901         if (err) {
1902                 kvm_err("Cannot map .hyp.rodata section\n");
1903                 goto out_err;
1904         }
1905
1906         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1907                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1908         if (err) {
1909                 kvm_err("Cannot map rodata section\n");
1910                 goto out_err;
1911         }
1912
1913         /*
1914          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1915          * section thanks to an assertion in the linker script. Map it RW and
1916          * the rest of .bss RO.
1917          */
1918         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1919                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1920         if (err) {
1921                 kvm_err("Cannot map hyp bss section: %d\n", err);
1922                 goto out_err;
1923         }
1924
1925         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1926                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1927         if (err) {
1928                 kvm_err("Cannot map bss section\n");
1929                 goto out_err;
1930         }
1931
1932         /*
1933          * Map the Hyp stack pages
1934          */
1935         for_each_possible_cpu(cpu) {
1936                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1937                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1938                                           PAGE_HYP);
1939
1940                 if (err) {
1941                         kvm_err("Cannot map hyp stack\n");
1942                         goto out_err;
1943                 }
1944         }
1945
1946         for_each_possible_cpu(cpu) {
1947                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1948                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1949
1950                 /* Map Hyp percpu pages */
1951                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1952                 if (err) {
1953                         kvm_err("Cannot map hyp percpu region\n");
1954                         goto out_err;
1955                 }
1956
1957                 /* Prepare the CPU initialization parameters */
1958                 cpu_prepare_hyp_mode(cpu);
1959         }
1960
1961         if (is_protected_kvm_enabled()) {
1962                 init_cpu_logical_map();
1963
1964                 if (!init_psci_relay()) {
1965                         err = -ENODEV;
1966                         goto out_err;
1967                 }
1968         }
1969
1970         if (is_protected_kvm_enabled()) {
1971                 err = kvm_hyp_init_protection(hyp_va_bits);
1972                 if (err) {
1973                         kvm_err("Failed to init hyp memory protection\n");
1974                         goto out_err;
1975                 }
1976         }
1977
1978         return 0;
1979
1980 out_err:
1981         teardown_hyp_mode();
1982         kvm_err("error initializing Hyp mode: %d\n", err);
1983         return err;
1984 }
1985
1986 static void _kvm_host_prot_finalize(void *arg)
1987 {
1988         int *err = arg;
1989
1990         if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
1991                 WRITE_ONCE(*err, -EINVAL);
1992 }
1993
1994 static int pkvm_drop_host_privileges(void)
1995 {
1996         int ret = 0;
1997
1998         /*
1999          * Flip the static key upfront as that may no longer be possible
2000          * once the host stage 2 is installed.
2001          */
2002         static_branch_enable(&kvm_protected_mode_initialized);
2003         on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2004         return ret;
2005 }
2006
2007 static int finalize_hyp_mode(void)
2008 {
2009         if (!is_protected_kvm_enabled())
2010                 return 0;
2011
2012         /*
2013          * Exclude HYP sections from kmemleak so that they don't get peeked
2014          * at, which would end badly once inaccessible.
2015          */
2016         kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2017         kmemleak_free_part(__va(hyp_mem_base), hyp_mem_size);
2018         return pkvm_drop_host_privileges();
2019 }
2020
2021 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2022 {
2023         struct kvm_vcpu *vcpu;
2024         int i;
2025
2026         mpidr &= MPIDR_HWID_BITMASK;
2027         kvm_for_each_vcpu(i, vcpu, kvm) {
2028                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2029                         return vcpu;
2030         }
2031         return NULL;
2032 }
2033
2034 bool kvm_arch_has_irq_bypass(void)
2035 {
2036         return true;
2037 }
2038
2039 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2040                                       struct irq_bypass_producer *prod)
2041 {
2042         struct kvm_kernel_irqfd *irqfd =
2043                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2044
2045         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2046                                           &irqfd->irq_entry);
2047 }
2048 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2049                                       struct irq_bypass_producer *prod)
2050 {
2051         struct kvm_kernel_irqfd *irqfd =
2052                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2053
2054         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2055                                      &irqfd->irq_entry);
2056 }
2057
2058 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2059 {
2060         struct kvm_kernel_irqfd *irqfd =
2061                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2062
2063         kvm_arm_halt_guest(irqfd->kvm);
2064 }
2065
2066 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2067 {
2068         struct kvm_kernel_irqfd *irqfd =
2069                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2070
2071         kvm_arm_resume_guest(irqfd->kvm);
2072 }
2073
2074 /**
2075  * Initialize Hyp-mode and memory mappings on all CPUs.
2076  */
2077 int kvm_arch_init(void *opaque)
2078 {
2079         int err;
2080         bool in_hyp_mode;
2081
2082         if (!is_hyp_mode_available()) {
2083                 kvm_info("HYP mode not available\n");
2084                 return -ENODEV;
2085         }
2086
2087         in_hyp_mode = is_kernel_in_hyp_mode();
2088
2089         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2090             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2091                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2092                          "Only trusted guests should be used on this system.\n");
2093
2094         err = kvm_set_ipa_limit();
2095         if (err)
2096                 return err;
2097
2098         err = kvm_arm_init_sve();
2099         if (err)
2100                 return err;
2101
2102         if (!in_hyp_mode) {
2103                 err = init_hyp_mode();
2104                 if (err)
2105                         goto out_err;
2106         }
2107
2108         err = kvm_init_vector_slots();
2109         if (err) {
2110                 kvm_err("Cannot initialise vector slots\n");
2111                 goto out_err;
2112         }
2113
2114         err = init_subsystems();
2115         if (err)
2116                 goto out_hyp;
2117
2118         if (!in_hyp_mode) {
2119                 err = finalize_hyp_mode();
2120                 if (err) {
2121                         kvm_err("Failed to finalize Hyp protection\n");
2122                         goto out_hyp;
2123                 }
2124         }
2125
2126         if (is_protected_kvm_enabled()) {
2127                 kvm_info("Protected nVHE mode initialized successfully\n");
2128         } else if (in_hyp_mode) {
2129                 kvm_info("VHE mode initialized successfully\n");
2130         } else {
2131                 kvm_info("Hyp mode initialized successfully\n");
2132         }
2133
2134         return 0;
2135
2136 out_hyp:
2137         hyp_cpu_pm_exit();
2138         if (!in_hyp_mode)
2139                 teardown_hyp_mode();
2140 out_err:
2141         return err;
2142 }
2143
2144 /* NOP: Compiling as a module not supported */
2145 void kvm_arch_exit(void)
2146 {
2147         kvm_perf_teardown();
2148 }
2149
2150 static int __init early_kvm_mode_cfg(char *arg)
2151 {
2152         if (!arg)
2153                 return -EINVAL;
2154
2155         if (strcmp(arg, "protected") == 0) {
2156                 kvm_mode = KVM_MODE_PROTECTED;
2157                 return 0;
2158         }
2159
2160         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2161                 return 0;
2162
2163         return -EINVAL;
2164 }
2165 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2166
2167 enum kvm_mode kvm_get_mode(void)
2168 {
2169         return kvm_mode;
2170 }
2171
2172 static int arm_init(void)
2173 {
2174         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2175         return rc;
2176 }
2177
2178 module_init(arm_init);