Linux 6.7-rc7
[linux-modified.git] / arch / arm64 / kvm / arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23
24 #include "trace.h"
25
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33
34 static const u8 default_ppi[] = {
35         [TIMER_PTIMER]  = 30,
36         [TIMER_VTIMER]  = 27,
37         [TIMER_HPTIMER] = 26,
38         [TIMER_HVTIMER] = 28,
39 };
40
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43                                  struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46                                 struct arch_timer_context *timer,
47                                 enum kvm_arch_timer_regs treg,
48                                 u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50                               struct arch_timer_context *timer,
51                               enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53
54 static struct irq_ops arch_timer_irq_ops = {
55         .get_input_level = kvm_arch_timer_get_input_level,
56 };
57
58 static int nr_timers(struct kvm_vcpu *vcpu)
59 {
60         if (!vcpu_has_nv(vcpu))
61                 return NR_KVM_EL0_TIMERS;
62
63         return NR_KVM_TIMERS;
64 }
65
66 u32 timer_get_ctl(struct arch_timer_context *ctxt)
67 {
68         struct kvm_vcpu *vcpu = ctxt->vcpu;
69
70         switch(arch_timer_ctx_index(ctxt)) {
71         case TIMER_VTIMER:
72                 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
73         case TIMER_PTIMER:
74                 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
75         case TIMER_HVTIMER:
76                 return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
77         case TIMER_HPTIMER:
78                 return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
79         default:
80                 WARN_ON(1);
81                 return 0;
82         }
83 }
84
85 u64 timer_get_cval(struct arch_timer_context *ctxt)
86 {
87         struct kvm_vcpu *vcpu = ctxt->vcpu;
88
89         switch(arch_timer_ctx_index(ctxt)) {
90         case TIMER_VTIMER:
91                 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
92         case TIMER_PTIMER:
93                 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
94         case TIMER_HVTIMER:
95                 return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
96         case TIMER_HPTIMER:
97                 return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
98         default:
99                 WARN_ON(1);
100                 return 0;
101         }
102 }
103
104 static u64 timer_get_offset(struct arch_timer_context *ctxt)
105 {
106         u64 offset = 0;
107
108         if (!ctxt)
109                 return 0;
110
111         if (ctxt->offset.vm_offset)
112                 offset += *ctxt->offset.vm_offset;
113         if (ctxt->offset.vcpu_offset)
114                 offset += *ctxt->offset.vcpu_offset;
115
116         return offset;
117 }
118
119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120 {
121         struct kvm_vcpu *vcpu = ctxt->vcpu;
122
123         switch(arch_timer_ctx_index(ctxt)) {
124         case TIMER_VTIMER:
125                 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126                 break;
127         case TIMER_PTIMER:
128                 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129                 break;
130         case TIMER_HVTIMER:
131                 __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132                 break;
133         case TIMER_HPTIMER:
134                 __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135                 break;
136         default:
137                 WARN_ON(1);
138         }
139 }
140
141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142 {
143         struct kvm_vcpu *vcpu = ctxt->vcpu;
144
145         switch(arch_timer_ctx_index(ctxt)) {
146         case TIMER_VTIMER:
147                 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148                 break;
149         case TIMER_PTIMER:
150                 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151                 break;
152         case TIMER_HVTIMER:
153                 __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154                 break;
155         case TIMER_HPTIMER:
156                 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157                 break;
158         default:
159                 WARN_ON(1);
160         }
161 }
162
163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164 {
165         if (!ctxt->offset.vm_offset) {
166                 WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
167                 return;
168         }
169
170         WRITE_ONCE(*ctxt->offset.vm_offset, offset);
171 }
172
173 u64 kvm_phys_timer_read(void)
174 {
175         return timecounter->cc->read(timecounter->cc);
176 }
177
178 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
179 {
180         if (vcpu_has_nv(vcpu)) {
181                 if (is_hyp_ctxt(vcpu)) {
182                         map->direct_vtimer = vcpu_hvtimer(vcpu);
183                         map->direct_ptimer = vcpu_hptimer(vcpu);
184                         map->emul_vtimer = vcpu_vtimer(vcpu);
185                         map->emul_ptimer = vcpu_ptimer(vcpu);
186                 } else {
187                         map->direct_vtimer = vcpu_vtimer(vcpu);
188                         map->direct_ptimer = vcpu_ptimer(vcpu);
189                         map->emul_vtimer = vcpu_hvtimer(vcpu);
190                         map->emul_ptimer = vcpu_hptimer(vcpu);
191                 }
192         } else if (has_vhe()) {
193                 map->direct_vtimer = vcpu_vtimer(vcpu);
194                 map->direct_ptimer = vcpu_ptimer(vcpu);
195                 map->emul_vtimer = NULL;
196                 map->emul_ptimer = NULL;
197         } else {
198                 map->direct_vtimer = vcpu_vtimer(vcpu);
199                 map->direct_ptimer = NULL;
200                 map->emul_vtimer = NULL;
201                 map->emul_ptimer = vcpu_ptimer(vcpu);
202         }
203
204         trace_kvm_get_timer_map(vcpu->vcpu_id, map);
205 }
206
207 static inline bool userspace_irqchip(struct kvm *kvm)
208 {
209         return static_branch_unlikely(&userspace_irqchip_in_use) &&
210                 unlikely(!irqchip_in_kernel(kvm));
211 }
212
213 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
214 {
215         hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
216                       HRTIMER_MODE_ABS_HARD);
217 }
218
219 static void soft_timer_cancel(struct hrtimer *hrt)
220 {
221         hrtimer_cancel(hrt);
222 }
223
224 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
225 {
226         struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
227         struct arch_timer_context *ctx;
228         struct timer_map map;
229
230         /*
231          * We may see a timer interrupt after vcpu_put() has been called which
232          * sets the CPU's vcpu pointer to NULL, because even though the timer
233          * has been disabled in timer_save_state(), the hardware interrupt
234          * signal may not have been retired from the interrupt controller yet.
235          */
236         if (!vcpu)
237                 return IRQ_HANDLED;
238
239         get_timer_map(vcpu, &map);
240
241         if (irq == host_vtimer_irq)
242                 ctx = map.direct_vtimer;
243         else
244                 ctx = map.direct_ptimer;
245
246         if (kvm_timer_should_fire(ctx))
247                 kvm_timer_update_irq(vcpu, true, ctx);
248
249         if (userspace_irqchip(vcpu->kvm) &&
250             !static_branch_unlikely(&has_gic_active_state))
251                 disable_percpu_irq(host_vtimer_irq);
252
253         return IRQ_HANDLED;
254 }
255
256 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
257                                      u64 val)
258 {
259         u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
260
261         if (now < val) {
262                 u64 ns;
263
264                 ns = cyclecounter_cyc2ns(timecounter->cc,
265                                          val - now,
266                                          timecounter->mask,
267                                          &timer_ctx->ns_frac);
268                 return ns;
269         }
270
271         return 0;
272 }
273
274 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
275 {
276         return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
277 }
278
279 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
280 {
281         WARN_ON(timer_ctx && timer_ctx->loaded);
282         return timer_ctx &&
283                 ((timer_get_ctl(timer_ctx) &
284                   (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
285 }
286
287 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
288 {
289         return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
290                 vcpu_get_flag(vcpu, IN_WFIT));
291 }
292
293 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
294 {
295         u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
296         struct arch_timer_context *ctx;
297
298         ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu)
299                                                        : vcpu_vtimer(vcpu);
300
301         return kvm_counter_compute_delta(ctx, val);
302 }
303
304 /*
305  * Returns the earliest expiration time in ns among guest timers.
306  * Note that it will return 0 if none of timers can fire.
307  */
308 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
309 {
310         u64 min_delta = ULLONG_MAX;
311         int i;
312
313         for (i = 0; i < nr_timers(vcpu); i++) {
314                 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
315
316                 WARN(ctx->loaded, "timer %d loaded\n", i);
317                 if (kvm_timer_irq_can_fire(ctx))
318                         min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
319         }
320
321         if (vcpu_has_wfit_active(vcpu))
322                 min_delta = min(min_delta, wfit_delay_ns(vcpu));
323
324         /* If none of timers can fire, then return 0 */
325         if (min_delta == ULLONG_MAX)
326                 return 0;
327
328         return min_delta;
329 }
330
331 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
332 {
333         struct arch_timer_cpu *timer;
334         struct kvm_vcpu *vcpu;
335         u64 ns;
336
337         timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
338         vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
339
340         /*
341          * Check that the timer has really expired from the guest's
342          * PoV (NTP on the host may have forced it to expire
343          * early). If we should have slept longer, restart it.
344          */
345         ns = kvm_timer_earliest_exp(vcpu);
346         if (unlikely(ns)) {
347                 hrtimer_forward_now(hrt, ns_to_ktime(ns));
348                 return HRTIMER_RESTART;
349         }
350
351         kvm_vcpu_wake_up(vcpu);
352         return HRTIMER_NORESTART;
353 }
354
355 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
356 {
357         struct arch_timer_context *ctx;
358         struct kvm_vcpu *vcpu;
359         u64 ns;
360
361         ctx = container_of(hrt, struct arch_timer_context, hrtimer);
362         vcpu = ctx->vcpu;
363
364         trace_kvm_timer_hrtimer_expire(ctx);
365
366         /*
367          * Check that the timer has really expired from the guest's
368          * PoV (NTP on the host may have forced it to expire
369          * early). If not ready, schedule for a later time.
370          */
371         ns = kvm_timer_compute_delta(ctx);
372         if (unlikely(ns)) {
373                 hrtimer_forward_now(hrt, ns_to_ktime(ns));
374                 return HRTIMER_RESTART;
375         }
376
377         kvm_timer_update_irq(vcpu, true, ctx);
378         return HRTIMER_NORESTART;
379 }
380
381 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
382 {
383         enum kvm_arch_timers index;
384         u64 cval, now;
385
386         if (!timer_ctx)
387                 return false;
388
389         index = arch_timer_ctx_index(timer_ctx);
390
391         if (timer_ctx->loaded) {
392                 u32 cnt_ctl = 0;
393
394                 switch (index) {
395                 case TIMER_VTIMER:
396                 case TIMER_HVTIMER:
397                         cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
398                         break;
399                 case TIMER_PTIMER:
400                 case TIMER_HPTIMER:
401                         cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
402                         break;
403                 case NR_KVM_TIMERS:
404                         /* GCC is braindead */
405                         cnt_ctl = 0;
406                         break;
407                 }
408
409                 return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
410                         (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
411                        !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
412         }
413
414         if (!kvm_timer_irq_can_fire(timer_ctx))
415                 return false;
416
417         cval = timer_get_cval(timer_ctx);
418         now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
419
420         return cval <= now;
421 }
422
423 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
424 {
425         return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
426 }
427
428 /*
429  * Reflect the timer output level into the kvm_run structure
430  */
431 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
432 {
433         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
434         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
435         struct kvm_sync_regs *regs = &vcpu->run->s.regs;
436
437         /* Populate the device bitmap with the timer states */
438         regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
439                                     KVM_ARM_DEV_EL1_PTIMER);
440         if (kvm_timer_should_fire(vtimer))
441                 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
442         if (kvm_timer_should_fire(ptimer))
443                 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
444 }
445
446 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
447                                  struct arch_timer_context *timer_ctx)
448 {
449         int ret;
450
451         timer_ctx->irq.level = new_level;
452         trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
453                                    timer_ctx->irq.level);
454
455         if (!userspace_irqchip(vcpu->kvm)) {
456                 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
457                                           timer_irq(timer_ctx),
458                                           timer_ctx->irq.level,
459                                           timer_ctx);
460                 WARN_ON(ret);
461         }
462 }
463
464 /* Only called for a fully emulated timer */
465 static void timer_emulate(struct arch_timer_context *ctx)
466 {
467         bool should_fire = kvm_timer_should_fire(ctx);
468
469         trace_kvm_timer_emulate(ctx, should_fire);
470
471         if (should_fire != ctx->irq.level) {
472                 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
473                 return;
474         }
475
476         /*
477          * If the timer can fire now, we don't need to have a soft timer
478          * scheduled for the future.  If the timer cannot fire at all,
479          * then we also don't need a soft timer.
480          */
481         if (should_fire || !kvm_timer_irq_can_fire(ctx))
482                 return;
483
484         soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
485 }
486
487 static void set_cntvoff(u64 cntvoff)
488 {
489         kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
490 }
491
492 static void set_cntpoff(u64 cntpoff)
493 {
494         if (has_cntpoff())
495                 write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
496 }
497
498 static void timer_save_state(struct arch_timer_context *ctx)
499 {
500         struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
501         enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
502         unsigned long flags;
503
504         if (!timer->enabled)
505                 return;
506
507         local_irq_save(flags);
508
509         if (!ctx->loaded)
510                 goto out;
511
512         switch (index) {
513                 u64 cval;
514
515         case TIMER_VTIMER:
516         case TIMER_HVTIMER:
517                 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
518                 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
519
520                 /* Disable the timer */
521                 write_sysreg_el0(0, SYS_CNTV_CTL);
522                 isb();
523
524                 /*
525                  * The kernel may decide to run userspace after
526                  * calling vcpu_put, so we reset cntvoff to 0 to
527                  * ensure a consistent read between user accesses to
528                  * the virtual counter and kernel access to the
529                  * physical counter of non-VHE case.
530                  *
531                  * For VHE, the virtual counter uses a fixed virtual
532                  * offset of zero, so no need to zero CNTVOFF_EL2
533                  * register, but this is actually useful when switching
534                  * between EL1/vEL2 with NV.
535                  *
536                  * Do it unconditionally, as this is either unavoidable
537                  * or dirt cheap.
538                  */
539                 set_cntvoff(0);
540                 break;
541         case TIMER_PTIMER:
542         case TIMER_HPTIMER:
543                 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
544                 cval = read_sysreg_el0(SYS_CNTP_CVAL);
545
546                 cval -= timer_get_offset(ctx);
547
548                 timer_set_cval(ctx, cval);
549
550                 /* Disable the timer */
551                 write_sysreg_el0(0, SYS_CNTP_CTL);
552                 isb();
553
554                 set_cntpoff(0);
555                 break;
556         case NR_KVM_TIMERS:
557                 BUG();
558         }
559
560         trace_kvm_timer_save_state(ctx);
561
562         ctx->loaded = false;
563 out:
564         local_irq_restore(flags);
565 }
566
567 /*
568  * Schedule the background timer before calling kvm_vcpu_halt, so that this
569  * thread is removed from its waitqueue and made runnable when there's a timer
570  * interrupt to handle.
571  */
572 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
573 {
574         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
575         struct timer_map map;
576
577         get_timer_map(vcpu, &map);
578
579         /*
580          * If no timers are capable of raising interrupts (disabled or
581          * masked), then there's no more work for us to do.
582          */
583         if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
584             !kvm_timer_irq_can_fire(map.direct_ptimer) &&
585             !kvm_timer_irq_can_fire(map.emul_vtimer) &&
586             !kvm_timer_irq_can_fire(map.emul_ptimer) &&
587             !vcpu_has_wfit_active(vcpu))
588                 return;
589
590         /*
591          * At least one guest time will expire. Schedule a background timer.
592          * Set the earliest expiration time among the guest timers.
593          */
594         soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
595 }
596
597 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
598 {
599         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
600
601         soft_timer_cancel(&timer->bg_timer);
602 }
603
604 static void timer_restore_state(struct arch_timer_context *ctx)
605 {
606         struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
607         enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
608         unsigned long flags;
609
610         if (!timer->enabled)
611                 return;
612
613         local_irq_save(flags);
614
615         if (ctx->loaded)
616                 goto out;
617
618         switch (index) {
619                 u64 cval, offset;
620
621         case TIMER_VTIMER:
622         case TIMER_HVTIMER:
623                 set_cntvoff(timer_get_offset(ctx));
624                 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
625                 isb();
626                 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
627                 break;
628         case TIMER_PTIMER:
629         case TIMER_HPTIMER:
630                 cval = timer_get_cval(ctx);
631                 offset = timer_get_offset(ctx);
632                 set_cntpoff(offset);
633                 cval += offset;
634                 write_sysreg_el0(cval, SYS_CNTP_CVAL);
635                 isb();
636                 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
637                 break;
638         case NR_KVM_TIMERS:
639                 BUG();
640         }
641
642         trace_kvm_timer_restore_state(ctx);
643
644         ctx->loaded = true;
645 out:
646         local_irq_restore(flags);
647 }
648
649 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
650 {
651         int r;
652         r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
653         WARN_ON(r);
654 }
655
656 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
657 {
658         struct kvm_vcpu *vcpu = ctx->vcpu;
659         bool phys_active = false;
660
661         /*
662          * Update the timer output so that it is likely to match the
663          * state we're about to restore. If the timer expires between
664          * this point and the register restoration, we'll take the
665          * interrupt anyway.
666          */
667         kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
668
669         if (irqchip_in_kernel(vcpu->kvm))
670                 phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
671
672         phys_active |= ctx->irq.level;
673
674         set_timer_irq_phys_active(ctx, phys_active);
675 }
676
677 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
678 {
679         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
680
681         /*
682          * Update the timer output so that it is likely to match the
683          * state we're about to restore. If the timer expires between
684          * this point and the register restoration, we'll take the
685          * interrupt anyway.
686          */
687         kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
688
689         /*
690          * When using a userspace irqchip with the architected timers and a
691          * host interrupt controller that doesn't support an active state, we
692          * must still prevent continuously exiting from the guest, and
693          * therefore mask the physical interrupt by disabling it on the host
694          * interrupt controller when the virtual level is high, such that the
695          * guest can make forward progress.  Once we detect the output level
696          * being de-asserted, we unmask the interrupt again so that we exit
697          * from the guest when the timer fires.
698          */
699         if (vtimer->irq.level)
700                 disable_percpu_irq(host_vtimer_irq);
701         else
702                 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
703 }
704
705 /* If _pred is true, set bit in _set, otherwise set it in _clr */
706 #define assign_clear_set_bit(_pred, _bit, _clr, _set)                   \
707         do {                                                            \
708                 if (_pred)                                              \
709                         (_set) |= (_bit);                               \
710                 else                                                    \
711                         (_clr) |= (_bit);                               \
712         } while (0)
713
714 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
715                                               struct timer_map *map)
716 {
717         int hw, ret;
718
719         if (!irqchip_in_kernel(vcpu->kvm))
720                 return;
721
722         /*
723          * We only ever unmap the vtimer irq on a VHE system that runs nested
724          * virtualization, in which case we have both a valid emul_vtimer,
725          * emul_ptimer, direct_vtimer, and direct_ptimer.
726          *
727          * Since this is called from kvm_timer_vcpu_load(), a change between
728          * vEL2 and vEL1/0 will have just happened, and the timer_map will
729          * represent this, and therefore we switch the emul/direct mappings
730          * below.
731          */
732         hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
733         if (hw < 0) {
734                 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
735                 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
736
737                 ret = kvm_vgic_map_phys_irq(vcpu,
738                                             map->direct_vtimer->host_timer_irq,
739                                             timer_irq(map->direct_vtimer),
740                                             &arch_timer_irq_ops);
741                 WARN_ON_ONCE(ret);
742                 ret = kvm_vgic_map_phys_irq(vcpu,
743                                             map->direct_ptimer->host_timer_irq,
744                                             timer_irq(map->direct_ptimer),
745                                             &arch_timer_irq_ops);
746                 WARN_ON_ONCE(ret);
747
748                 /*
749                  * The virtual offset behaviour is "interresting", as it
750                  * always applies when HCR_EL2.E2H==0, but only when
751                  * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
752                  * track E2H when putting the HV timer in "direct" mode.
753                  */
754                 if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
755                         struct arch_timer_offset *offs = &map->direct_vtimer->offset;
756
757                         if (vcpu_el2_e2h_is_set(vcpu))
758                                 offs->vcpu_offset = NULL;
759                         else
760                                 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
761                 }
762         }
763 }
764
765 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
766 {
767         bool tpt, tpc;
768         u64 clr, set;
769
770         /*
771          * No trapping gets configured here with nVHE. See
772          * __timer_enable_traps(), which is where the stuff happens.
773          */
774         if (!has_vhe())
775                 return;
776
777         /*
778          * Our default policy is not to trap anything. As we progress
779          * within this function, reality kicks in and we start adding
780          * traps based on emulation requirements.
781          */
782         tpt = tpc = false;
783
784         /*
785          * We have two possibility to deal with a physical offset:
786          *
787          * - Either we have CNTPOFF (yay!) or the offset is 0:
788          *   we let the guest freely access the HW
789          *
790          * - or neither of these condition apply:
791          *   we trap accesses to the HW, but still use it
792          *   after correcting the physical offset
793          */
794         if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
795                 tpt = tpc = true;
796
797         /*
798          * Apply the enable bits that the guest hypervisor has requested for
799          * its own guest. We can only add traps that wouldn't have been set
800          * above.
801          */
802         if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
803                 u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
804
805                 /* Use the VHE format for mental sanity */
806                 if (!vcpu_el2_e2h_is_set(vcpu))
807                         val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
808
809                 tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
810                 tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
811         }
812
813         /*
814          * Now that we have collected our requirements, compute the
815          * trap and enable bits.
816          */
817         set = 0;
818         clr = 0;
819
820         assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
821         assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
822
823         /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
824         sysreg_clear_set(cnthctl_el2, clr, set);
825 }
826
827 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
828 {
829         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
830         struct timer_map map;
831
832         if (unlikely(!timer->enabled))
833                 return;
834
835         get_timer_map(vcpu, &map);
836
837         if (static_branch_likely(&has_gic_active_state)) {
838                 if (vcpu_has_nv(vcpu))
839                         kvm_timer_vcpu_load_nested_switch(vcpu, &map);
840
841                 kvm_timer_vcpu_load_gic(map.direct_vtimer);
842                 if (map.direct_ptimer)
843                         kvm_timer_vcpu_load_gic(map.direct_ptimer);
844         } else {
845                 kvm_timer_vcpu_load_nogic(vcpu);
846         }
847
848         kvm_timer_unblocking(vcpu);
849
850         timer_restore_state(map.direct_vtimer);
851         if (map.direct_ptimer)
852                 timer_restore_state(map.direct_ptimer);
853         if (map.emul_vtimer)
854                 timer_emulate(map.emul_vtimer);
855         if (map.emul_ptimer)
856                 timer_emulate(map.emul_ptimer);
857
858         timer_set_traps(vcpu, &map);
859 }
860
861 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
862 {
863         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
864         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
865         struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
866         bool vlevel, plevel;
867
868         if (likely(irqchip_in_kernel(vcpu->kvm)))
869                 return false;
870
871         vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
872         plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
873
874         return kvm_timer_should_fire(vtimer) != vlevel ||
875                kvm_timer_should_fire(ptimer) != plevel;
876 }
877
878 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
879 {
880         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
881         struct timer_map map;
882
883         if (unlikely(!timer->enabled))
884                 return;
885
886         get_timer_map(vcpu, &map);
887
888         timer_save_state(map.direct_vtimer);
889         if (map.direct_ptimer)
890                 timer_save_state(map.direct_ptimer);
891
892         /*
893          * Cancel soft timer emulation, because the only case where we
894          * need it after a vcpu_put is in the context of a sleeping VCPU, and
895          * in that case we already factor in the deadline for the physical
896          * timer when scheduling the bg_timer.
897          *
898          * In any case, we re-schedule the hrtimer for the physical timer when
899          * coming back to the VCPU thread in kvm_timer_vcpu_load().
900          */
901         if (map.emul_vtimer)
902                 soft_timer_cancel(&map.emul_vtimer->hrtimer);
903         if (map.emul_ptimer)
904                 soft_timer_cancel(&map.emul_ptimer->hrtimer);
905
906         if (kvm_vcpu_is_blocking(vcpu))
907                 kvm_timer_blocking(vcpu);
908 }
909
910 /*
911  * With a userspace irqchip we have to check if the guest de-asserted the
912  * timer and if so, unmask the timer irq signal on the host interrupt
913  * controller to ensure that we see future timer signals.
914  */
915 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
916 {
917         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
918
919         if (!kvm_timer_should_fire(vtimer)) {
920                 kvm_timer_update_irq(vcpu, false, vtimer);
921                 if (static_branch_likely(&has_gic_active_state))
922                         set_timer_irq_phys_active(vtimer, false);
923                 else
924                         enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
925         }
926 }
927
928 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
929 {
930         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
931
932         if (unlikely(!timer->enabled))
933                 return;
934
935         if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
936                 unmask_vtimer_irq_user(vcpu);
937 }
938
939 void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
940 {
941         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
942         struct timer_map map;
943
944         get_timer_map(vcpu, &map);
945
946         /*
947          * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
948          * and to 0 for ARMv7.  We provide an implementation that always
949          * resets the timer to be disabled and unmasked and is compliant with
950          * the ARMv7 architecture.
951          */
952         for (int i = 0; i < nr_timers(vcpu); i++)
953                 timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
954
955         /*
956          * A vcpu running at EL2 is in charge of the offset applied to
957          * the virtual timer, so use the physical VM offset, and point
958          * the vcpu offset to CNTVOFF_EL2.
959          */
960         if (vcpu_has_nv(vcpu)) {
961                 struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
962
963                 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
964                 offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
965         }
966
967         if (timer->enabled) {
968                 for (int i = 0; i < nr_timers(vcpu); i++)
969                         kvm_timer_update_irq(vcpu, false,
970                                              vcpu_get_timer(vcpu, i));
971
972                 if (irqchip_in_kernel(vcpu->kvm)) {
973                         kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
974                         if (map.direct_ptimer)
975                                 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
976                 }
977         }
978
979         if (map.emul_vtimer)
980                 soft_timer_cancel(&map.emul_vtimer->hrtimer);
981         if (map.emul_ptimer)
982                 soft_timer_cancel(&map.emul_ptimer->hrtimer);
983 }
984
985 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
986 {
987         struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
988         struct kvm *kvm = vcpu->kvm;
989
990         ctxt->vcpu = vcpu;
991
992         if (timerid == TIMER_VTIMER)
993                 ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
994         else
995                 ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
996
997         hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
998         ctxt->hrtimer.function = kvm_hrtimer_expire;
999
1000         switch (timerid) {
1001         case TIMER_PTIMER:
1002         case TIMER_HPTIMER:
1003                 ctxt->host_timer_irq = host_ptimer_irq;
1004                 break;
1005         case TIMER_VTIMER:
1006         case TIMER_HVTIMER:
1007                 ctxt->host_timer_irq = host_vtimer_irq;
1008                 break;
1009         }
1010 }
1011
1012 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1013 {
1014         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1015
1016         for (int i = 0; i < NR_KVM_TIMERS; i++)
1017                 timer_context_init(vcpu, i);
1018
1019         /* Synchronize offsets across timers of a VM if not already provided */
1020         if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1021                 timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1022                 timer_set_offset(vcpu_ptimer(vcpu), 0);
1023         }
1024
1025         hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1026         timer->bg_timer.function = kvm_bg_timer_expire;
1027 }
1028
1029 void kvm_timer_init_vm(struct kvm *kvm)
1030 {
1031         for (int i = 0; i < NR_KVM_TIMERS; i++)
1032                 kvm->arch.timer_data.ppi[i] = default_ppi[i];
1033 }
1034
1035 void kvm_timer_cpu_up(void)
1036 {
1037         enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1038         if (host_ptimer_irq)
1039                 enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1040 }
1041
1042 void kvm_timer_cpu_down(void)
1043 {
1044         disable_percpu_irq(host_vtimer_irq);
1045         if (host_ptimer_irq)
1046                 disable_percpu_irq(host_ptimer_irq);
1047 }
1048
1049 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1050 {
1051         struct arch_timer_context *timer;
1052
1053         switch (regid) {
1054         case KVM_REG_ARM_TIMER_CTL:
1055                 timer = vcpu_vtimer(vcpu);
1056                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1057                 break;
1058         case KVM_REG_ARM_TIMER_CNT:
1059                 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1060                               &vcpu->kvm->arch.flags)) {
1061                         timer = vcpu_vtimer(vcpu);
1062                         timer_set_offset(timer, kvm_phys_timer_read() - value);
1063                 }
1064                 break;
1065         case KVM_REG_ARM_TIMER_CVAL:
1066                 timer = vcpu_vtimer(vcpu);
1067                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1068                 break;
1069         case KVM_REG_ARM_PTIMER_CTL:
1070                 timer = vcpu_ptimer(vcpu);
1071                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1072                 break;
1073         case KVM_REG_ARM_PTIMER_CNT:
1074                 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1075                               &vcpu->kvm->arch.flags)) {
1076                         timer = vcpu_ptimer(vcpu);
1077                         timer_set_offset(timer, kvm_phys_timer_read() - value);
1078                 }
1079                 break;
1080         case KVM_REG_ARM_PTIMER_CVAL:
1081                 timer = vcpu_ptimer(vcpu);
1082                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1083                 break;
1084
1085         default:
1086                 return -1;
1087         }
1088
1089         return 0;
1090 }
1091
1092 static u64 read_timer_ctl(struct arch_timer_context *timer)
1093 {
1094         /*
1095          * Set ISTATUS bit if it's expired.
1096          * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1097          * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1098          * regardless of ENABLE bit for our implementation convenience.
1099          */
1100         u32 ctl = timer_get_ctl(timer);
1101
1102         if (!kvm_timer_compute_delta(timer))
1103                 ctl |= ARCH_TIMER_CTRL_IT_STAT;
1104
1105         return ctl;
1106 }
1107
1108 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1109 {
1110         switch (regid) {
1111         case KVM_REG_ARM_TIMER_CTL:
1112                 return kvm_arm_timer_read(vcpu,
1113                                           vcpu_vtimer(vcpu), TIMER_REG_CTL);
1114         case KVM_REG_ARM_TIMER_CNT:
1115                 return kvm_arm_timer_read(vcpu,
1116                                           vcpu_vtimer(vcpu), TIMER_REG_CNT);
1117         case KVM_REG_ARM_TIMER_CVAL:
1118                 return kvm_arm_timer_read(vcpu,
1119                                           vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1120         case KVM_REG_ARM_PTIMER_CTL:
1121                 return kvm_arm_timer_read(vcpu,
1122                                           vcpu_ptimer(vcpu), TIMER_REG_CTL);
1123         case KVM_REG_ARM_PTIMER_CNT:
1124                 return kvm_arm_timer_read(vcpu,
1125                                           vcpu_ptimer(vcpu), TIMER_REG_CNT);
1126         case KVM_REG_ARM_PTIMER_CVAL:
1127                 return kvm_arm_timer_read(vcpu,
1128                                           vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1129         }
1130         return (u64)-1;
1131 }
1132
1133 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1134                               struct arch_timer_context *timer,
1135                               enum kvm_arch_timer_regs treg)
1136 {
1137         u64 val;
1138
1139         switch (treg) {
1140         case TIMER_REG_TVAL:
1141                 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1142                 val = lower_32_bits(val);
1143                 break;
1144
1145         case TIMER_REG_CTL:
1146                 val = read_timer_ctl(timer);
1147                 break;
1148
1149         case TIMER_REG_CVAL:
1150                 val = timer_get_cval(timer);
1151                 break;
1152
1153         case TIMER_REG_CNT:
1154                 val = kvm_phys_timer_read() - timer_get_offset(timer);
1155                 break;
1156
1157         case TIMER_REG_VOFF:
1158                 val = *timer->offset.vcpu_offset;
1159                 break;
1160
1161         default:
1162                 BUG();
1163         }
1164
1165         return val;
1166 }
1167
1168 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1169                               enum kvm_arch_timers tmr,
1170                               enum kvm_arch_timer_regs treg)
1171 {
1172         struct arch_timer_context *timer;
1173         struct timer_map map;
1174         u64 val;
1175
1176         get_timer_map(vcpu, &map);
1177         timer = vcpu_get_timer(vcpu, tmr);
1178
1179         if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1180                 return kvm_arm_timer_read(vcpu, timer, treg);
1181
1182         preempt_disable();
1183         timer_save_state(timer);
1184
1185         val = kvm_arm_timer_read(vcpu, timer, treg);
1186
1187         timer_restore_state(timer);
1188         preempt_enable();
1189
1190         return val;
1191 }
1192
1193 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1194                                 struct arch_timer_context *timer,
1195                                 enum kvm_arch_timer_regs treg,
1196                                 u64 val)
1197 {
1198         switch (treg) {
1199         case TIMER_REG_TVAL:
1200                 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1201                 break;
1202
1203         case TIMER_REG_CTL:
1204                 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1205                 break;
1206
1207         case TIMER_REG_CVAL:
1208                 timer_set_cval(timer, val);
1209                 break;
1210
1211         case TIMER_REG_VOFF:
1212                 *timer->offset.vcpu_offset = val;
1213                 break;
1214
1215         default:
1216                 BUG();
1217         }
1218 }
1219
1220 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1221                                 enum kvm_arch_timers tmr,
1222                                 enum kvm_arch_timer_regs treg,
1223                                 u64 val)
1224 {
1225         struct arch_timer_context *timer;
1226         struct timer_map map;
1227
1228         get_timer_map(vcpu, &map);
1229         timer = vcpu_get_timer(vcpu, tmr);
1230         if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1231                 soft_timer_cancel(&timer->hrtimer);
1232                 kvm_arm_timer_write(vcpu, timer, treg, val);
1233                 timer_emulate(timer);
1234         } else {
1235                 preempt_disable();
1236                 timer_save_state(timer);
1237                 kvm_arm_timer_write(vcpu, timer, treg, val);
1238                 timer_restore_state(timer);
1239                 preempt_enable();
1240         }
1241 }
1242
1243 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1244 {
1245         if (vcpu)
1246                 irqd_set_forwarded_to_vcpu(d);
1247         else
1248                 irqd_clr_forwarded_to_vcpu(d);
1249
1250         return 0;
1251 }
1252
1253 static int timer_irq_set_irqchip_state(struct irq_data *d,
1254                                        enum irqchip_irq_state which, bool val)
1255 {
1256         if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1257                 return irq_chip_set_parent_state(d, which, val);
1258
1259         if (val)
1260                 irq_chip_mask_parent(d);
1261         else
1262                 irq_chip_unmask_parent(d);
1263
1264         return 0;
1265 }
1266
1267 static void timer_irq_eoi(struct irq_data *d)
1268 {
1269         if (!irqd_is_forwarded_to_vcpu(d))
1270                 irq_chip_eoi_parent(d);
1271 }
1272
1273 static void timer_irq_ack(struct irq_data *d)
1274 {
1275         d = d->parent_data;
1276         if (d->chip->irq_ack)
1277                 d->chip->irq_ack(d);
1278 }
1279
1280 static struct irq_chip timer_chip = {
1281         .name                   = "KVM",
1282         .irq_ack                = timer_irq_ack,
1283         .irq_mask               = irq_chip_mask_parent,
1284         .irq_unmask             = irq_chip_unmask_parent,
1285         .irq_eoi                = timer_irq_eoi,
1286         .irq_set_type           = irq_chip_set_type_parent,
1287         .irq_set_vcpu_affinity  = timer_irq_set_vcpu_affinity,
1288         .irq_set_irqchip_state  = timer_irq_set_irqchip_state,
1289 };
1290
1291 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1292                                   unsigned int nr_irqs, void *arg)
1293 {
1294         irq_hw_number_t hwirq = (uintptr_t)arg;
1295
1296         return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1297                                              &timer_chip, NULL);
1298 }
1299
1300 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1301                                   unsigned int nr_irqs)
1302 {
1303 }
1304
1305 static const struct irq_domain_ops timer_domain_ops = {
1306         .alloc  = timer_irq_domain_alloc,
1307         .free   = timer_irq_domain_free,
1308 };
1309
1310 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1311 {
1312         *flags = irq_get_trigger_type(virq);
1313         if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1314                 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1315                         virq);
1316                 *flags = IRQF_TRIGGER_LOW;
1317         }
1318 }
1319
1320 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1321 {
1322         struct irq_domain *domain = NULL;
1323
1324         if (info->virtual_irq <= 0) {
1325                 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1326                         info->virtual_irq);
1327                 return -ENODEV;
1328         }
1329
1330         host_vtimer_irq = info->virtual_irq;
1331         kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1332
1333         if (kvm_vgic_global_state.no_hw_deactivation) {
1334                 struct fwnode_handle *fwnode;
1335                 struct irq_data *data;
1336
1337                 fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1338                 if (!fwnode)
1339                         return -ENOMEM;
1340
1341                 /* Assume both vtimer and ptimer in the same parent */
1342                 data = irq_get_irq_data(host_vtimer_irq);
1343                 domain = irq_domain_create_hierarchy(data->domain, 0,
1344                                                      NR_KVM_TIMERS, fwnode,
1345                                                      &timer_domain_ops, NULL);
1346                 if (!domain) {
1347                         irq_domain_free_fwnode(fwnode);
1348                         return -ENOMEM;
1349                 }
1350
1351                 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1352                 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1353                                             (void *)TIMER_VTIMER));
1354         }
1355
1356         if (info->physical_irq > 0) {
1357                 host_ptimer_irq = info->physical_irq;
1358                 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1359
1360                 if (domain)
1361                         WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1362                                                     (void *)TIMER_PTIMER));
1363         }
1364
1365         return 0;
1366 }
1367
1368 int __init kvm_timer_hyp_init(bool has_gic)
1369 {
1370         struct arch_timer_kvm_info *info;
1371         int err;
1372
1373         info = arch_timer_get_kvm_info();
1374         timecounter = &info->timecounter;
1375
1376         if (!timecounter->cc) {
1377                 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1378                 return -ENODEV;
1379         }
1380
1381         err = kvm_irq_init(info);
1382         if (err)
1383                 return err;
1384
1385         /* First, do the virtual EL1 timer irq */
1386
1387         err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1388                                  "kvm guest vtimer", kvm_get_running_vcpus());
1389         if (err) {
1390                 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1391                         host_vtimer_irq, err);
1392                 return err;
1393         }
1394
1395         if (has_gic) {
1396                 err = irq_set_vcpu_affinity(host_vtimer_irq,
1397                                             kvm_get_running_vcpus());
1398                 if (err) {
1399                         kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1400                         goto out_free_vtimer_irq;
1401                 }
1402
1403                 static_branch_enable(&has_gic_active_state);
1404         }
1405
1406         kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1407
1408         /* Now let's do the physical EL1 timer irq */
1409
1410         if (info->physical_irq > 0) {
1411                 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1412                                          "kvm guest ptimer", kvm_get_running_vcpus());
1413                 if (err) {
1414                         kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1415                                 host_ptimer_irq, err);
1416                         goto out_free_vtimer_irq;
1417                 }
1418
1419                 if (has_gic) {
1420                         err = irq_set_vcpu_affinity(host_ptimer_irq,
1421                                                     kvm_get_running_vcpus());
1422                         if (err) {
1423                                 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1424                                 goto out_free_ptimer_irq;
1425                         }
1426                 }
1427
1428                 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1429         } else if (has_vhe()) {
1430                 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1431                         info->physical_irq);
1432                 err = -ENODEV;
1433                 goto out_free_vtimer_irq;
1434         }
1435
1436         return 0;
1437
1438 out_free_ptimer_irq:
1439         if (info->physical_irq > 0)
1440                 free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1441 out_free_vtimer_irq:
1442         free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1443         return err;
1444 }
1445
1446 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1447 {
1448         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1449
1450         soft_timer_cancel(&timer->bg_timer);
1451 }
1452
1453 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1454 {
1455         u32 ppis = 0;
1456         bool valid;
1457
1458         mutex_lock(&vcpu->kvm->arch.config_lock);
1459
1460         for (int i = 0; i < nr_timers(vcpu); i++) {
1461                 struct arch_timer_context *ctx;
1462                 int irq;
1463
1464                 ctx = vcpu_get_timer(vcpu, i);
1465                 irq = timer_irq(ctx);
1466                 if (kvm_vgic_set_owner(vcpu, irq, ctx))
1467                         break;
1468
1469                 /*
1470                  * We know by construction that we only have PPIs, so
1471                  * all values are less than 32.
1472                  */
1473                 ppis |= BIT(irq);
1474         }
1475
1476         valid = hweight32(ppis) == nr_timers(vcpu);
1477
1478         if (valid)
1479                 set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1480
1481         mutex_unlock(&vcpu->kvm->arch.config_lock);
1482
1483         return valid;
1484 }
1485
1486 static bool kvm_arch_timer_get_input_level(int vintid)
1487 {
1488         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1489
1490         if (WARN(!vcpu, "No vcpu context!\n"))
1491                 return false;
1492
1493         for (int i = 0; i < nr_timers(vcpu); i++) {
1494                 struct arch_timer_context *ctx;
1495
1496                 ctx = vcpu_get_timer(vcpu, i);
1497                 if (timer_irq(ctx) == vintid)
1498                         return kvm_timer_should_fire(ctx);
1499         }
1500
1501         /* A timer IRQ has fired, but no matching timer was found? */
1502         WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1503
1504         return false;
1505 }
1506
1507 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1508 {
1509         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1510         struct timer_map map;
1511         int ret;
1512
1513         if (timer->enabled)
1514                 return 0;
1515
1516         /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1517         if (!irqchip_in_kernel(vcpu->kvm))
1518                 goto no_vgic;
1519
1520         /*
1521          * At this stage, we have the guarantee that the vgic is both
1522          * available and initialized.
1523          */
1524         if (!timer_irqs_are_valid(vcpu)) {
1525                 kvm_debug("incorrectly configured timer irqs\n");
1526                 return -EINVAL;
1527         }
1528
1529         get_timer_map(vcpu, &map);
1530
1531         ret = kvm_vgic_map_phys_irq(vcpu,
1532                                     map.direct_vtimer->host_timer_irq,
1533                                     timer_irq(map.direct_vtimer),
1534                                     &arch_timer_irq_ops);
1535         if (ret)
1536                 return ret;
1537
1538         if (map.direct_ptimer) {
1539                 ret = kvm_vgic_map_phys_irq(vcpu,
1540                                             map.direct_ptimer->host_timer_irq,
1541                                             timer_irq(map.direct_ptimer),
1542                                             &arch_timer_irq_ops);
1543         }
1544
1545         if (ret)
1546                 return ret;
1547
1548 no_vgic:
1549         timer->enabled = 1;
1550         return 0;
1551 }
1552
1553 /* If we have CNTPOFF, permanently set ECV to enable it */
1554 void kvm_timer_init_vhe(void)
1555 {
1556         if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1557                 sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1558 }
1559
1560 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1561 {
1562         int __user *uaddr = (int __user *)(long)attr->addr;
1563         int irq, idx, ret = 0;
1564
1565         if (!irqchip_in_kernel(vcpu->kvm))
1566                 return -EINVAL;
1567
1568         if (get_user(irq, uaddr))
1569                 return -EFAULT;
1570
1571         if (!(irq_is_ppi(irq)))
1572                 return -EINVAL;
1573
1574         mutex_lock(&vcpu->kvm->arch.config_lock);
1575
1576         if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1577                      &vcpu->kvm->arch.flags)) {
1578                 ret = -EBUSY;
1579                 goto out;
1580         }
1581
1582         switch (attr->attr) {
1583         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1584                 idx = TIMER_VTIMER;
1585                 break;
1586         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1587                 idx = TIMER_PTIMER;
1588                 break;
1589         case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1590                 idx = TIMER_HVTIMER;
1591                 break;
1592         case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1593                 idx = TIMER_HPTIMER;
1594                 break;
1595         default:
1596                 ret = -ENXIO;
1597                 goto out;
1598         }
1599
1600         /*
1601          * We cannot validate the IRQ unicity before we run, so take it at
1602          * face value. The verdict will be given on first vcpu run, for each
1603          * vcpu. Yes this is late. Blame it on the stupid API.
1604          */
1605         vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1606
1607 out:
1608         mutex_unlock(&vcpu->kvm->arch.config_lock);
1609         return ret;
1610 }
1611
1612 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1613 {
1614         int __user *uaddr = (int __user *)(long)attr->addr;
1615         struct arch_timer_context *timer;
1616         int irq;
1617
1618         switch (attr->attr) {
1619         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1620                 timer = vcpu_vtimer(vcpu);
1621                 break;
1622         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1623                 timer = vcpu_ptimer(vcpu);
1624                 break;
1625         case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1626                 timer = vcpu_hvtimer(vcpu);
1627                 break;
1628         case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1629                 timer = vcpu_hptimer(vcpu);
1630                 break;
1631         default:
1632                 return -ENXIO;
1633         }
1634
1635         irq = timer_irq(timer);
1636         return put_user(irq, uaddr);
1637 }
1638
1639 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1640 {
1641         switch (attr->attr) {
1642         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1643         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1644         case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1645         case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1646                 return 0;
1647         }
1648
1649         return -ENXIO;
1650 }
1651
1652 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1653                                     struct kvm_arm_counter_offset *offset)
1654 {
1655         int ret = 0;
1656
1657         if (offset->reserved)
1658                 return -EINVAL;
1659
1660         mutex_lock(&kvm->lock);
1661
1662         if (lock_all_vcpus(kvm)) {
1663                 set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1664
1665                 /*
1666                  * If userspace decides to set the offset using this
1667                  * API rather than merely restoring the counter
1668                  * values, the offset applies to both the virtual and
1669                  * physical views.
1670                  */
1671                 kvm->arch.timer_data.voffset = offset->counter_offset;
1672                 kvm->arch.timer_data.poffset = offset->counter_offset;
1673
1674                 unlock_all_vcpus(kvm);
1675         } else {
1676                 ret = -EBUSY;
1677         }
1678
1679         mutex_unlock(&kvm->lock);
1680
1681         return ret;
1682 }