GNU Linux-libre 6.9.1-gnu
[releases.git] / arch / arm64 / kernel / ptrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 #include <linux/rseq.h>
32
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 struct pt_regs_offset {
48         const char *name;
49         int offset;
50 };
51
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55         {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56
57 static const struct pt_regs_offset regoffset_table[] = {
58         GPR_OFFSET_NAME(0),
59         GPR_OFFSET_NAME(1),
60         GPR_OFFSET_NAME(2),
61         GPR_OFFSET_NAME(3),
62         GPR_OFFSET_NAME(4),
63         GPR_OFFSET_NAME(5),
64         GPR_OFFSET_NAME(6),
65         GPR_OFFSET_NAME(7),
66         GPR_OFFSET_NAME(8),
67         GPR_OFFSET_NAME(9),
68         GPR_OFFSET_NAME(10),
69         GPR_OFFSET_NAME(11),
70         GPR_OFFSET_NAME(12),
71         GPR_OFFSET_NAME(13),
72         GPR_OFFSET_NAME(14),
73         GPR_OFFSET_NAME(15),
74         GPR_OFFSET_NAME(16),
75         GPR_OFFSET_NAME(17),
76         GPR_OFFSET_NAME(18),
77         GPR_OFFSET_NAME(19),
78         GPR_OFFSET_NAME(20),
79         GPR_OFFSET_NAME(21),
80         GPR_OFFSET_NAME(22),
81         GPR_OFFSET_NAME(23),
82         GPR_OFFSET_NAME(24),
83         GPR_OFFSET_NAME(25),
84         GPR_OFFSET_NAME(26),
85         GPR_OFFSET_NAME(27),
86         GPR_OFFSET_NAME(28),
87         GPR_OFFSET_NAME(29),
88         GPR_OFFSET_NAME(30),
89         {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90         REG_OFFSET_NAME(sp),
91         REG_OFFSET_NAME(pc),
92         REG_OFFSET_NAME(pstate),
93         REG_OFFSET_END,
94 };
95
96 /**
97  * regs_query_register_offset() - query register offset from its name
98  * @name:       the name of a register
99  *
100  * regs_query_register_offset() returns the offset of a register in struct
101  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102  */
103 int regs_query_register_offset(const char *name)
104 {
105         const struct pt_regs_offset *roff;
106
107         for (roff = regoffset_table; roff->name != NULL; roff++)
108                 if (!strcmp(roff->name, name))
109                         return roff->offset;
110         return -EINVAL;
111 }
112
113 /**
114  * regs_within_kernel_stack() - check the address in the stack
115  * @regs:      pt_regs which contains kernel stack pointer.
116  * @addr:      address which is checked.
117  *
118  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119  * If @addr is within the kernel stack, it returns true. If not, returns false.
120  */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123         return ((addr & ~(THREAD_SIZE - 1))  ==
124                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125                 on_irq_stack(addr, sizeof(unsigned long));
126 }
127
128 /**
129  * regs_get_kernel_stack_nth() - get Nth entry of the stack
130  * @regs:       pt_regs which contains kernel stack pointer.
131  * @n:          stack entry number.
132  *
133  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135  * this returns 0.
136  */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140
141         addr += n;
142         if (regs_within_kernel_stack(regs, (unsigned long)addr))
143                 return *addr;
144         else
145                 return 0;
146 }
147
148 /*
149  * TODO: does not yet catch signals sent when the child dies.
150  * in exit.c or in signal.c.
151  */
152
153 /*
154  * Called by kernel/ptrace.c when detaching..
155  */
156 void ptrace_disable(struct task_struct *child)
157 {
158         /*
159          * This would be better off in core code, but PTRACE_DETACH has
160          * grown its fair share of arch-specific worts and changing it
161          * is likely to cause regressions on obscure architectures.
162          */
163         user_disable_single_step(child);
164 }
165
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168  * Handle hitting a HW-breakpoint.
169  */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171                                 struct perf_sample_data *data,
172                                 struct pt_regs *regs)
173 {
174         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175         const char *desc = "Hardware breakpoint trap (ptrace)";
176
177         if (is_compat_task()) {
178                 int si_errno = 0;
179                 int i;
180
181                 for (i = 0; i < ARM_MAX_BRP; ++i) {
182                         if (current->thread.debug.hbp_break[i] == bp) {
183                                 si_errno = (i << 1) + 1;
184                                 break;
185                         }
186                 }
187
188                 for (i = 0; i < ARM_MAX_WRP; ++i) {
189                         if (current->thread.debug.hbp_watch[i] == bp) {
190                                 si_errno = -((i << 1) + 1);
191                                 break;
192                         }
193                 }
194                 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195                                                   desc);
196                 return;
197         }
198
199         arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208         int i;
209         struct thread_struct *t = &tsk->thread;
210
211         for (i = 0; i < ARM_MAX_BRP; i++) {
212                 if (t->debug.hbp_break[i]) {
213                         unregister_hw_breakpoint(t->debug.hbp_break[i]);
214                         t->debug.hbp_break[i] = NULL;
215                 }
216         }
217
218         for (i = 0; i < ARM_MAX_WRP; i++) {
219                 if (t->debug.hbp_watch[i]) {
220                         unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221                         t->debug.hbp_watch[i] = NULL;
222                 }
223         }
224 }
225
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228         memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232                                                struct task_struct *tsk,
233                                                unsigned long idx)
234 {
235         struct perf_event *bp = ERR_PTR(-EINVAL);
236
237         switch (note_type) {
238         case NT_ARM_HW_BREAK:
239                 if (idx >= ARM_MAX_BRP)
240                         goto out;
241                 idx = array_index_nospec(idx, ARM_MAX_BRP);
242                 bp = tsk->thread.debug.hbp_break[idx];
243                 break;
244         case NT_ARM_HW_WATCH:
245                 if (idx >= ARM_MAX_WRP)
246                         goto out;
247                 idx = array_index_nospec(idx, ARM_MAX_WRP);
248                 bp = tsk->thread.debug.hbp_watch[idx];
249                 break;
250         }
251
252 out:
253         return bp;
254 }
255
256 static int ptrace_hbp_set_event(unsigned int note_type,
257                                 struct task_struct *tsk,
258                                 unsigned long idx,
259                                 struct perf_event *bp)
260 {
261         int err = -EINVAL;
262
263         switch (note_type) {
264         case NT_ARM_HW_BREAK:
265                 if (idx >= ARM_MAX_BRP)
266                         goto out;
267                 idx = array_index_nospec(idx, ARM_MAX_BRP);
268                 tsk->thread.debug.hbp_break[idx] = bp;
269                 err = 0;
270                 break;
271         case NT_ARM_HW_WATCH:
272                 if (idx >= ARM_MAX_WRP)
273                         goto out;
274                 idx = array_index_nospec(idx, ARM_MAX_WRP);
275                 tsk->thread.debug.hbp_watch[idx] = bp;
276                 err = 0;
277                 break;
278         }
279
280 out:
281         return err;
282 }
283
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285                                             struct task_struct *tsk,
286                                             unsigned long idx)
287 {
288         struct perf_event *bp;
289         struct perf_event_attr attr;
290         int err, type;
291
292         switch (note_type) {
293         case NT_ARM_HW_BREAK:
294                 type = HW_BREAKPOINT_X;
295                 break;
296         case NT_ARM_HW_WATCH:
297                 type = HW_BREAKPOINT_RW;
298                 break;
299         default:
300                 return ERR_PTR(-EINVAL);
301         }
302
303         ptrace_breakpoint_init(&attr);
304
305         /*
306          * Initialise fields to sane defaults
307          * (i.e. values that will pass validation).
308          */
309         attr.bp_addr    = 0;
310         attr.bp_len     = HW_BREAKPOINT_LEN_4;
311         attr.bp_type    = type;
312         attr.disabled   = 1;
313
314         bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315         if (IS_ERR(bp))
316                 return bp;
317
318         err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319         if (err)
320                 return ERR_PTR(err);
321
322         return bp;
323 }
324
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326                                      struct arch_hw_breakpoint_ctrl ctrl,
327                                      struct perf_event_attr *attr)
328 {
329         int err, len, type, offset, disabled = !ctrl.enabled;
330
331         attr->disabled = disabled;
332         if (disabled)
333                 return 0;
334
335         err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336         if (err)
337                 return err;
338
339         switch (note_type) {
340         case NT_ARM_HW_BREAK:
341                 if ((type & HW_BREAKPOINT_X) != type)
342                         return -EINVAL;
343                 break;
344         case NT_ARM_HW_WATCH:
345                 if ((type & HW_BREAKPOINT_RW) != type)
346                         return -EINVAL;
347                 break;
348         default:
349                 return -EINVAL;
350         }
351
352         attr->bp_len    = len;
353         attr->bp_type   = type;
354         attr->bp_addr   += offset;
355
356         return 0;
357 }
358
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361         u8 num;
362         u32 reg = 0;
363
364         switch (note_type) {
365         case NT_ARM_HW_BREAK:
366                 num = hw_breakpoint_slots(TYPE_INST);
367                 break;
368         case NT_ARM_HW_WATCH:
369                 num = hw_breakpoint_slots(TYPE_DATA);
370                 break;
371         default:
372                 return -EINVAL;
373         }
374
375         reg |= debug_monitors_arch();
376         reg <<= 8;
377         reg |= num;
378
379         *info = reg;
380         return 0;
381 }
382
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384                                struct task_struct *tsk,
385                                unsigned long idx,
386                                u32 *ctrl)
387 {
388         struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389
390         if (IS_ERR(bp))
391                 return PTR_ERR(bp);
392
393         *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394         return 0;
395 }
396
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398                                struct task_struct *tsk,
399                                unsigned long idx,
400                                u64 *addr)
401 {
402         struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403
404         if (IS_ERR(bp))
405                 return PTR_ERR(bp);
406
407         *addr = bp ? counter_arch_bp(bp)->address : 0;
408         return 0;
409 }
410
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412                                                         struct task_struct *tsk,
413                                                         unsigned long idx)
414 {
415         struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416
417         if (!bp)
418                 bp = ptrace_hbp_create(note_type, tsk, idx);
419
420         return bp;
421 }
422
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424                                struct task_struct *tsk,
425                                unsigned long idx,
426                                u32 uctrl)
427 {
428         int err;
429         struct perf_event *bp;
430         struct perf_event_attr attr;
431         struct arch_hw_breakpoint_ctrl ctrl;
432
433         bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434         if (IS_ERR(bp)) {
435                 err = PTR_ERR(bp);
436                 return err;
437         }
438
439         attr = bp->attr;
440         decode_ctrl_reg(uctrl, &ctrl);
441         err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442         if (err)
443                 return err;
444
445         return modify_user_hw_breakpoint(bp, &attr);
446 }
447
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449                                struct task_struct *tsk,
450                                unsigned long idx,
451                                u64 addr)
452 {
453         int err;
454         struct perf_event *bp;
455         struct perf_event_attr attr;
456
457         bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458         if (IS_ERR(bp)) {
459                 err = PTR_ERR(bp);
460                 return err;
461         }
462
463         attr = bp->attr;
464         attr.bp_addr = addr;
465         err = modify_user_hw_breakpoint(bp, &attr);
466         return err;
467 }
468
469 #define PTRACE_HBP_ADDR_SZ      sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ      sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ       sizeof(u32)
472
473 static int hw_break_get(struct task_struct *target,
474                         const struct user_regset *regset,
475                         struct membuf to)
476 {
477         unsigned int note_type = regset->core_note_type;
478         int ret, idx = 0;
479         u32 info, ctrl;
480         u64 addr;
481
482         /* Resource info */
483         ret = ptrace_hbp_get_resource_info(note_type, &info);
484         if (ret)
485                 return ret;
486
487         membuf_write(&to, &info, sizeof(info));
488         membuf_zero(&to, sizeof(u32));
489         /* (address, ctrl) registers */
490         while (to.left) {
491                 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492                 if (ret)
493                         return ret;
494                 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495                 if (ret)
496                         return ret;
497                 membuf_store(&to, addr);
498                 membuf_store(&to, ctrl);
499                 membuf_zero(&to, sizeof(u32));
500                 idx++;
501         }
502         return 0;
503 }
504
505 static int hw_break_set(struct task_struct *target,
506                         const struct user_regset *regset,
507                         unsigned int pos, unsigned int count,
508                         const void *kbuf, const void __user *ubuf)
509 {
510         unsigned int note_type = regset->core_note_type;
511         int ret, idx = 0, offset, limit;
512         u32 ctrl;
513         u64 addr;
514
515         /* Resource info and pad */
516         offset = offsetof(struct user_hwdebug_state, dbg_regs);
517         user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518
519         /* (address, ctrl) registers */
520         limit = regset->n * regset->size;
521         while (count && offset < limit) {
522                 if (count < PTRACE_HBP_ADDR_SZ)
523                         return -EINVAL;
524                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525                                          offset, offset + PTRACE_HBP_ADDR_SZ);
526                 if (ret)
527                         return ret;
528                 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529                 if (ret)
530                         return ret;
531                 offset += PTRACE_HBP_ADDR_SZ;
532
533                 if (!count)
534                         break;
535                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536                                          offset, offset + PTRACE_HBP_CTRL_SZ);
537                 if (ret)
538                         return ret;
539                 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540                 if (ret)
541                         return ret;
542                 offset += PTRACE_HBP_CTRL_SZ;
543
544                 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545                                           offset, offset + PTRACE_HBP_PAD_SZ);
546                 offset += PTRACE_HBP_PAD_SZ;
547                 idx++;
548         }
549
550         return 0;
551 }
552 #endif  /* CONFIG_HAVE_HW_BREAKPOINT */
553
554 static int gpr_get(struct task_struct *target,
555                    const struct user_regset *regset,
556                    struct membuf to)
557 {
558         struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559         return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561
562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563                    unsigned int pos, unsigned int count,
564                    const void *kbuf, const void __user *ubuf)
565 {
566         int ret;
567         struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568
569         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570         if (ret)
571                 return ret;
572
573         if (!valid_user_regs(&newregs, target))
574                 return -EINVAL;
575
576         task_pt_regs(target)->user_regs = newregs;
577         return 0;
578 }
579
580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582         if (!system_supports_fpsimd())
583                 return -ENODEV;
584         return regset->n;
585 }
586
587 /*
588  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589  */
590 static int __fpr_get(struct task_struct *target,
591                      const struct user_regset *regset,
592                      struct membuf to)
593 {
594         struct user_fpsimd_state *uregs;
595
596         sve_sync_to_fpsimd(target);
597
598         uregs = &target->thread.uw.fpsimd_state;
599
600         return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602
603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604                    struct membuf to)
605 {
606         if (!system_supports_fpsimd())
607                 return -EINVAL;
608
609         if (target == current)
610                 fpsimd_preserve_current_state();
611
612         return __fpr_get(target, regset, to);
613 }
614
615 static int __fpr_set(struct task_struct *target,
616                      const struct user_regset *regset,
617                      unsigned int pos, unsigned int count,
618                      const void *kbuf, const void __user *ubuf,
619                      unsigned int start_pos)
620 {
621         int ret;
622         struct user_fpsimd_state newstate;
623
624         /*
625          * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626          * short copyin can't resurrect stale data.
627          */
628         sve_sync_to_fpsimd(target);
629
630         newstate = target->thread.uw.fpsimd_state;
631
632         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633                                  start_pos, start_pos + sizeof(newstate));
634         if (ret)
635                 return ret;
636
637         target->thread.uw.fpsimd_state = newstate;
638
639         return ret;
640 }
641
642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643                    unsigned int pos, unsigned int count,
644                    const void *kbuf, const void __user *ubuf)
645 {
646         int ret;
647
648         if (!system_supports_fpsimd())
649                 return -EINVAL;
650
651         ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652         if (ret)
653                 return ret;
654
655         sve_sync_from_fpsimd_zeropad(target);
656         fpsimd_flush_task_state(target);
657
658         return ret;
659 }
660
661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662                    struct membuf to)
663 {
664         int ret;
665
666         if (target == current)
667                 tls_preserve_current_state();
668
669         ret = membuf_store(&to, target->thread.uw.tp_value);
670         if (system_supports_tpidr2())
671                 ret = membuf_store(&to, target->thread.tpidr2_el0);
672         else
673                 ret = membuf_zero(&to, sizeof(u64));
674
675         return ret;
676 }
677
678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679                    unsigned int pos, unsigned int count,
680                    const void *kbuf, const void __user *ubuf)
681 {
682         int ret;
683         unsigned long tls[2];
684
685         tls[0] = target->thread.uw.tp_value;
686         if (system_supports_tpidr2())
687                 tls[1] = target->thread.tpidr2_el0;
688
689         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690         if (ret)
691                 return ret;
692
693         target->thread.uw.tp_value = tls[0];
694         if (system_supports_tpidr2())
695                 target->thread.tpidr2_el0 = tls[1];
696
697         return ret;
698 }
699
700 static int fpmr_get(struct task_struct *target, const struct user_regset *regset,
701                    struct membuf to)
702 {
703         if (!system_supports_fpmr())
704                 return -EINVAL;
705
706         if (target == current)
707                 fpsimd_preserve_current_state();
708
709         return membuf_store(&to, target->thread.uw.fpmr);
710 }
711
712 static int fpmr_set(struct task_struct *target, const struct user_regset *regset,
713                    unsigned int pos, unsigned int count,
714                    const void *kbuf, const void __user *ubuf)
715 {
716         int ret;
717         unsigned long fpmr;
718
719         if (!system_supports_fpmr())
720                 return -EINVAL;
721
722         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpmr, 0, count);
723         if (ret)
724                 return ret;
725
726         target->thread.uw.fpmr = fpmr;
727
728         fpsimd_flush_task_state(target);
729
730         return 0;
731 }
732
733 static int system_call_get(struct task_struct *target,
734                            const struct user_regset *regset,
735                            struct membuf to)
736 {
737         return membuf_store(&to, task_pt_regs(target)->syscallno);
738 }
739
740 static int system_call_set(struct task_struct *target,
741                            const struct user_regset *regset,
742                            unsigned int pos, unsigned int count,
743                            const void *kbuf, const void __user *ubuf)
744 {
745         int syscallno = task_pt_regs(target)->syscallno;
746         int ret;
747
748         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
749         if (ret)
750                 return ret;
751
752         task_pt_regs(target)->syscallno = syscallno;
753         return ret;
754 }
755
756 #ifdef CONFIG_ARM64_SVE
757
758 static void sve_init_header_from_task(struct user_sve_header *header,
759                                       struct task_struct *target,
760                                       enum vec_type type)
761 {
762         unsigned int vq;
763         bool active;
764         enum vec_type task_type;
765
766         memset(header, 0, sizeof(*header));
767
768         /* Check if the requested registers are active for the task */
769         if (thread_sm_enabled(&target->thread))
770                 task_type = ARM64_VEC_SME;
771         else
772                 task_type = ARM64_VEC_SVE;
773         active = (task_type == type);
774
775         switch (type) {
776         case ARM64_VEC_SVE:
777                 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
778                         header->flags |= SVE_PT_VL_INHERIT;
779                 break;
780         case ARM64_VEC_SME:
781                 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
782                         header->flags |= SVE_PT_VL_INHERIT;
783                 break;
784         default:
785                 WARN_ON_ONCE(1);
786                 return;
787         }
788
789         if (active) {
790                 if (target->thread.fp_type == FP_STATE_FPSIMD) {
791                         header->flags |= SVE_PT_REGS_FPSIMD;
792                 } else {
793                         header->flags |= SVE_PT_REGS_SVE;
794                 }
795         }
796
797         header->vl = task_get_vl(target, type);
798         vq = sve_vq_from_vl(header->vl);
799
800         header->max_vl = vec_max_vl(type);
801         header->size = SVE_PT_SIZE(vq, header->flags);
802         header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
803                                       SVE_PT_REGS_SVE);
804 }
805
806 static unsigned int sve_size_from_header(struct user_sve_header const *header)
807 {
808         return ALIGN(header->size, SVE_VQ_BYTES);
809 }
810
811 static int sve_get_common(struct task_struct *target,
812                           const struct user_regset *regset,
813                           struct membuf to,
814                           enum vec_type type)
815 {
816         struct user_sve_header header;
817         unsigned int vq;
818         unsigned long start, end;
819
820         /* Header */
821         sve_init_header_from_task(&header, target, type);
822         vq = sve_vq_from_vl(header.vl);
823
824         membuf_write(&to, &header, sizeof(header));
825
826         if (target == current)
827                 fpsimd_preserve_current_state();
828
829         BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
830         BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
831
832         switch ((header.flags & SVE_PT_REGS_MASK)) {
833         case SVE_PT_REGS_FPSIMD:
834                 return __fpr_get(target, regset, to);
835
836         case SVE_PT_REGS_SVE:
837                 start = SVE_PT_SVE_OFFSET;
838                 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
839                 membuf_write(&to, target->thread.sve_state, end - start);
840
841                 start = end;
842                 end = SVE_PT_SVE_FPSR_OFFSET(vq);
843                 membuf_zero(&to, end - start);
844
845                 /*
846                  * Copy fpsr, and fpcr which must follow contiguously in
847                  * struct fpsimd_state:
848                  */
849                 start = end;
850                 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
851                 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
852                              end - start);
853
854                 start = end;
855                 end = sve_size_from_header(&header);
856                 return membuf_zero(&to, end - start);
857
858         default:
859                 return 0;
860         }
861 }
862
863 static int sve_get(struct task_struct *target,
864                    const struct user_regset *regset,
865                    struct membuf to)
866 {
867         if (!system_supports_sve())
868                 return -EINVAL;
869
870         return sve_get_common(target, regset, to, ARM64_VEC_SVE);
871 }
872
873 static int sve_set_common(struct task_struct *target,
874                           const struct user_regset *regset,
875                           unsigned int pos, unsigned int count,
876                           const void *kbuf, const void __user *ubuf,
877                           enum vec_type type)
878 {
879         int ret;
880         struct user_sve_header header;
881         unsigned int vq;
882         unsigned long start, end;
883
884         /* Header */
885         if (count < sizeof(header))
886                 return -EINVAL;
887         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
888                                  0, sizeof(header));
889         if (ret)
890                 goto out;
891
892         /*
893          * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
894          * vec_set_vector_length(), which will also validate them for us:
895          */
896         ret = vec_set_vector_length(target, type, header.vl,
897                 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
898         if (ret)
899                 goto out;
900
901         /* Actual VL set may be less than the user asked for: */
902         vq = sve_vq_from_vl(task_get_vl(target, type));
903
904         /* Enter/exit streaming mode */
905         if (system_supports_sme()) {
906                 u64 old_svcr = target->thread.svcr;
907
908                 switch (type) {
909                 case ARM64_VEC_SVE:
910                         target->thread.svcr &= ~SVCR_SM_MASK;
911                         break;
912                 case ARM64_VEC_SME:
913                         target->thread.svcr |= SVCR_SM_MASK;
914
915                         /*
916                          * Disable traps and ensure there is SME storage but
917                          * preserve any currently set values in ZA/ZT.
918                          */
919                         sme_alloc(target, false);
920                         set_tsk_thread_flag(target, TIF_SME);
921                         break;
922                 default:
923                         WARN_ON_ONCE(1);
924                         ret = -EINVAL;
925                         goto out;
926                 }
927
928                 /*
929                  * If we switched then invalidate any existing SVE
930                  * state and ensure there's storage.
931                  */
932                 if (target->thread.svcr != old_svcr)
933                         sve_alloc(target, true);
934         }
935
936         /* Registers: FPSIMD-only case */
937
938         BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
939         if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
940                 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
941                                 SVE_PT_FPSIMD_OFFSET);
942                 clear_tsk_thread_flag(target, TIF_SVE);
943                 target->thread.fp_type = FP_STATE_FPSIMD;
944                 goto out;
945         }
946
947         /*
948          * Otherwise: no registers or full SVE case.  For backwards
949          * compatibility reasons we treat empty flags as SVE registers.
950          */
951
952         /*
953          * If setting a different VL from the requested VL and there is
954          * register data, the data layout will be wrong: don't even
955          * try to set the registers in this case.
956          */
957         if (count && vq != sve_vq_from_vl(header.vl)) {
958                 ret = -EIO;
959                 goto out;
960         }
961
962         sve_alloc(target, true);
963         if (!target->thread.sve_state) {
964                 ret = -ENOMEM;
965                 clear_tsk_thread_flag(target, TIF_SVE);
966                 target->thread.fp_type = FP_STATE_FPSIMD;
967                 goto out;
968         }
969
970         /*
971          * Ensure target->thread.sve_state is up to date with target's
972          * FPSIMD regs, so that a short copyin leaves trailing
973          * registers unmodified.  Only enable SVE if we are
974          * configuring normal SVE, a system with streaming SVE may not
975          * have normal SVE.
976          */
977         fpsimd_sync_to_sve(target);
978         if (type == ARM64_VEC_SVE)
979                 set_tsk_thread_flag(target, TIF_SVE);
980         target->thread.fp_type = FP_STATE_SVE;
981
982         BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
983         start = SVE_PT_SVE_OFFSET;
984         end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
985         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
986                                  target->thread.sve_state,
987                                  start, end);
988         if (ret)
989                 goto out;
990
991         start = end;
992         end = SVE_PT_SVE_FPSR_OFFSET(vq);
993         user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
994
995         /*
996          * Copy fpsr, and fpcr which must follow contiguously in
997          * struct fpsimd_state:
998          */
999         start = end;
1000         end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
1001         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1002                                  &target->thread.uw.fpsimd_state.fpsr,
1003                                  start, end);
1004
1005 out:
1006         fpsimd_flush_task_state(target);
1007         return ret;
1008 }
1009
1010 static int sve_set(struct task_struct *target,
1011                    const struct user_regset *regset,
1012                    unsigned int pos, unsigned int count,
1013                    const void *kbuf, const void __user *ubuf)
1014 {
1015         if (!system_supports_sve())
1016                 return -EINVAL;
1017
1018         return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1019                               ARM64_VEC_SVE);
1020 }
1021
1022 #endif /* CONFIG_ARM64_SVE */
1023
1024 #ifdef CONFIG_ARM64_SME
1025
1026 static int ssve_get(struct task_struct *target,
1027                    const struct user_regset *regset,
1028                    struct membuf to)
1029 {
1030         if (!system_supports_sme())
1031                 return -EINVAL;
1032
1033         return sve_get_common(target, regset, to, ARM64_VEC_SME);
1034 }
1035
1036 static int ssve_set(struct task_struct *target,
1037                     const struct user_regset *regset,
1038                     unsigned int pos, unsigned int count,
1039                     const void *kbuf, const void __user *ubuf)
1040 {
1041         if (!system_supports_sme())
1042                 return -EINVAL;
1043
1044         return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1045                               ARM64_VEC_SME);
1046 }
1047
1048 static int za_get(struct task_struct *target,
1049                   const struct user_regset *regset,
1050                   struct membuf to)
1051 {
1052         struct user_za_header header;
1053         unsigned int vq;
1054         unsigned long start, end;
1055
1056         if (!system_supports_sme())
1057                 return -EINVAL;
1058
1059         /* Header */
1060         memset(&header, 0, sizeof(header));
1061
1062         if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1063                 header.flags |= ZA_PT_VL_INHERIT;
1064
1065         header.vl = task_get_sme_vl(target);
1066         vq = sve_vq_from_vl(header.vl);
1067         header.max_vl = sme_max_vl();
1068         header.max_size = ZA_PT_SIZE(vq);
1069
1070         /* If ZA is not active there is only the header */
1071         if (thread_za_enabled(&target->thread))
1072                 header.size = ZA_PT_SIZE(vq);
1073         else
1074                 header.size = ZA_PT_ZA_OFFSET;
1075
1076         membuf_write(&to, &header, sizeof(header));
1077
1078         BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1079         end = ZA_PT_ZA_OFFSET;
1080
1081         if (target == current)
1082                 fpsimd_preserve_current_state();
1083
1084         /* Any register data to include? */
1085         if (thread_za_enabled(&target->thread)) {
1086                 start = end;
1087                 end = ZA_PT_SIZE(vq);
1088                 membuf_write(&to, target->thread.sme_state, end - start);
1089         }
1090
1091         /* Zero any trailing padding */
1092         start = end;
1093         end = ALIGN(header.size, SVE_VQ_BYTES);
1094         return membuf_zero(&to, end - start);
1095 }
1096
1097 static int za_set(struct task_struct *target,
1098                   const struct user_regset *regset,
1099                   unsigned int pos, unsigned int count,
1100                   const void *kbuf, const void __user *ubuf)
1101 {
1102         int ret;
1103         struct user_za_header header;
1104         unsigned int vq;
1105         unsigned long start, end;
1106
1107         if (!system_supports_sme())
1108                 return -EINVAL;
1109
1110         /* Header */
1111         if (count < sizeof(header))
1112                 return -EINVAL;
1113         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1114                                  0, sizeof(header));
1115         if (ret)
1116                 goto out;
1117
1118         /*
1119          * All current ZA_PT_* flags are consumed by
1120          * vec_set_vector_length(), which will also validate them for
1121          * us:
1122          */
1123         ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1124                 ((unsigned long)header.flags) << 16);
1125         if (ret)
1126                 goto out;
1127
1128         /* Actual VL set may be less than the user asked for: */
1129         vq = sve_vq_from_vl(task_get_sme_vl(target));
1130
1131         /* Ensure there is some SVE storage for streaming mode */
1132         if (!target->thread.sve_state) {
1133                 sve_alloc(target, false);
1134                 if (!target->thread.sve_state) {
1135                         ret = -ENOMEM;
1136                         goto out;
1137                 }
1138         }
1139
1140         /*
1141          * Only flush the storage if PSTATE.ZA was not already set,
1142          * otherwise preserve any existing data.
1143          */
1144         sme_alloc(target, !thread_za_enabled(&target->thread));
1145         if (!target->thread.sme_state)
1146                 return -ENOMEM;
1147
1148         /* If there is no data then disable ZA */
1149         if (!count) {
1150                 target->thread.svcr &= ~SVCR_ZA_MASK;
1151                 goto out;
1152         }
1153
1154         /*
1155          * If setting a different VL from the requested VL and there is
1156          * register data, the data layout will be wrong: don't even
1157          * try to set the registers in this case.
1158          */
1159         if (vq != sve_vq_from_vl(header.vl)) {
1160                 ret = -EIO;
1161                 goto out;
1162         }
1163
1164         BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1165         start = ZA_PT_ZA_OFFSET;
1166         end = ZA_PT_SIZE(vq);
1167         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1168                                  target->thread.sme_state,
1169                                  start, end);
1170         if (ret)
1171                 goto out;
1172
1173         /* Mark ZA as active and let userspace use it */
1174         set_tsk_thread_flag(target, TIF_SME);
1175         target->thread.svcr |= SVCR_ZA_MASK;
1176
1177 out:
1178         fpsimd_flush_task_state(target);
1179         return ret;
1180 }
1181
1182 static int zt_get(struct task_struct *target,
1183                   const struct user_regset *regset,
1184                   struct membuf to)
1185 {
1186         if (!system_supports_sme2())
1187                 return -EINVAL;
1188
1189         /*
1190          * If PSTATE.ZA is not set then ZT will be zeroed when it is
1191          * enabled so report the current register value as zero.
1192          */
1193         if (thread_za_enabled(&target->thread))
1194                 membuf_write(&to, thread_zt_state(&target->thread),
1195                              ZT_SIG_REG_BYTES);
1196         else
1197                 membuf_zero(&to, ZT_SIG_REG_BYTES);
1198
1199         return 0;
1200 }
1201
1202 static int zt_set(struct task_struct *target,
1203                   const struct user_regset *regset,
1204                   unsigned int pos, unsigned int count,
1205                   const void *kbuf, const void __user *ubuf)
1206 {
1207         int ret;
1208
1209         if (!system_supports_sme2())
1210                 return -EINVAL;
1211
1212         /* Ensure SVE storage in case this is first use of SME */
1213         sve_alloc(target, false);
1214         if (!target->thread.sve_state)
1215                 return -ENOMEM;
1216
1217         if (!thread_za_enabled(&target->thread)) {
1218                 sme_alloc(target, true);
1219                 if (!target->thread.sme_state)
1220                         return -ENOMEM;
1221         }
1222
1223         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1224                                  thread_zt_state(&target->thread),
1225                                  0, ZT_SIG_REG_BYTES);
1226         if (ret == 0) {
1227                 target->thread.svcr |= SVCR_ZA_MASK;
1228                 set_tsk_thread_flag(target, TIF_SME);
1229         }
1230
1231         fpsimd_flush_task_state(target);
1232
1233         return ret;
1234 }
1235
1236 #endif /* CONFIG_ARM64_SME */
1237
1238 #ifdef CONFIG_ARM64_PTR_AUTH
1239 static int pac_mask_get(struct task_struct *target,
1240                         const struct user_regset *regset,
1241                         struct membuf to)
1242 {
1243         /*
1244          * The PAC bits can differ across data and instruction pointers
1245          * depending on TCR_EL1.TBID*, which we may make use of in future, so
1246          * we expose separate masks.
1247          */
1248         unsigned long mask = ptrauth_user_pac_mask();
1249         struct user_pac_mask uregs = {
1250                 .data_mask = mask,
1251                 .insn_mask = mask,
1252         };
1253
1254         if (!system_supports_address_auth())
1255                 return -EINVAL;
1256
1257         return membuf_write(&to, &uregs, sizeof(uregs));
1258 }
1259
1260 static int pac_enabled_keys_get(struct task_struct *target,
1261                                 const struct user_regset *regset,
1262                                 struct membuf to)
1263 {
1264         long enabled_keys = ptrauth_get_enabled_keys(target);
1265
1266         if (IS_ERR_VALUE(enabled_keys))
1267                 return enabled_keys;
1268
1269         return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1270 }
1271
1272 static int pac_enabled_keys_set(struct task_struct *target,
1273                                 const struct user_regset *regset,
1274                                 unsigned int pos, unsigned int count,
1275                                 const void *kbuf, const void __user *ubuf)
1276 {
1277         int ret;
1278         long enabled_keys = ptrauth_get_enabled_keys(target);
1279
1280         if (IS_ERR_VALUE(enabled_keys))
1281                 return enabled_keys;
1282
1283         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1284                                  sizeof(long));
1285         if (ret)
1286                 return ret;
1287
1288         return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1289                                         enabled_keys);
1290 }
1291
1292 #ifdef CONFIG_CHECKPOINT_RESTORE
1293 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1294 {
1295         return (__uint128_t)key->hi << 64 | key->lo;
1296 }
1297
1298 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1299 {
1300         struct ptrauth_key key = {
1301                 .lo = (unsigned long)ukey,
1302                 .hi = (unsigned long)(ukey >> 64),
1303         };
1304
1305         return key;
1306 }
1307
1308 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1309                                      const struct ptrauth_keys_user *keys)
1310 {
1311         ukeys->apiakey = pac_key_to_user(&keys->apia);
1312         ukeys->apibkey = pac_key_to_user(&keys->apib);
1313         ukeys->apdakey = pac_key_to_user(&keys->apda);
1314         ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1315 }
1316
1317 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1318                                        const struct user_pac_address_keys *ukeys)
1319 {
1320         keys->apia = pac_key_from_user(ukeys->apiakey);
1321         keys->apib = pac_key_from_user(ukeys->apibkey);
1322         keys->apda = pac_key_from_user(ukeys->apdakey);
1323         keys->apdb = pac_key_from_user(ukeys->apdbkey);
1324 }
1325
1326 static int pac_address_keys_get(struct task_struct *target,
1327                                 const struct user_regset *regset,
1328                                 struct membuf to)
1329 {
1330         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1331         struct user_pac_address_keys user_keys;
1332
1333         if (!system_supports_address_auth())
1334                 return -EINVAL;
1335
1336         pac_address_keys_to_user(&user_keys, keys);
1337
1338         return membuf_write(&to, &user_keys, sizeof(user_keys));
1339 }
1340
1341 static int pac_address_keys_set(struct task_struct *target,
1342                                 const struct user_regset *regset,
1343                                 unsigned int pos, unsigned int count,
1344                                 const void *kbuf, const void __user *ubuf)
1345 {
1346         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1347         struct user_pac_address_keys user_keys;
1348         int ret;
1349
1350         if (!system_supports_address_auth())
1351                 return -EINVAL;
1352
1353         pac_address_keys_to_user(&user_keys, keys);
1354         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1355                                  &user_keys, 0, -1);
1356         if (ret)
1357                 return ret;
1358         pac_address_keys_from_user(keys, &user_keys);
1359
1360         return 0;
1361 }
1362
1363 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1364                                      const struct ptrauth_keys_user *keys)
1365 {
1366         ukeys->apgakey = pac_key_to_user(&keys->apga);
1367 }
1368
1369 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1370                                        const struct user_pac_generic_keys *ukeys)
1371 {
1372         keys->apga = pac_key_from_user(ukeys->apgakey);
1373 }
1374
1375 static int pac_generic_keys_get(struct task_struct *target,
1376                                 const struct user_regset *regset,
1377                                 struct membuf to)
1378 {
1379         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1380         struct user_pac_generic_keys user_keys;
1381
1382         if (!system_supports_generic_auth())
1383                 return -EINVAL;
1384
1385         pac_generic_keys_to_user(&user_keys, keys);
1386
1387         return membuf_write(&to, &user_keys, sizeof(user_keys));
1388 }
1389
1390 static int pac_generic_keys_set(struct task_struct *target,
1391                                 const struct user_regset *regset,
1392                                 unsigned int pos, unsigned int count,
1393                                 const void *kbuf, const void __user *ubuf)
1394 {
1395         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1396         struct user_pac_generic_keys user_keys;
1397         int ret;
1398
1399         if (!system_supports_generic_auth())
1400                 return -EINVAL;
1401
1402         pac_generic_keys_to_user(&user_keys, keys);
1403         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1404                                  &user_keys, 0, -1);
1405         if (ret)
1406                 return ret;
1407         pac_generic_keys_from_user(keys, &user_keys);
1408
1409         return 0;
1410 }
1411 #endif /* CONFIG_CHECKPOINT_RESTORE */
1412 #endif /* CONFIG_ARM64_PTR_AUTH */
1413
1414 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1415 static int tagged_addr_ctrl_get(struct task_struct *target,
1416                                 const struct user_regset *regset,
1417                                 struct membuf to)
1418 {
1419         long ctrl = get_tagged_addr_ctrl(target);
1420
1421         if (IS_ERR_VALUE(ctrl))
1422                 return ctrl;
1423
1424         return membuf_write(&to, &ctrl, sizeof(ctrl));
1425 }
1426
1427 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1428                                 user_regset *regset, unsigned int pos,
1429                                 unsigned int count, const void *kbuf, const
1430                                 void __user *ubuf)
1431 {
1432         int ret;
1433         long ctrl;
1434
1435         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1436         if (ret)
1437                 return ret;
1438
1439         return set_tagged_addr_ctrl(target, ctrl);
1440 }
1441 #endif
1442
1443 enum aarch64_regset {
1444         REGSET_GPR,
1445         REGSET_FPR,
1446         REGSET_TLS,
1447 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1448         REGSET_HW_BREAK,
1449         REGSET_HW_WATCH,
1450 #endif
1451         REGSET_FPMR,
1452         REGSET_SYSTEM_CALL,
1453 #ifdef CONFIG_ARM64_SVE
1454         REGSET_SVE,
1455 #endif
1456 #ifdef CONFIG_ARM64_SME
1457         REGSET_SSVE,
1458         REGSET_ZA,
1459         REGSET_ZT,
1460 #endif
1461 #ifdef CONFIG_ARM64_PTR_AUTH
1462         REGSET_PAC_MASK,
1463         REGSET_PAC_ENABLED_KEYS,
1464 #ifdef CONFIG_CHECKPOINT_RESTORE
1465         REGSET_PACA_KEYS,
1466         REGSET_PACG_KEYS,
1467 #endif
1468 #endif
1469 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1470         REGSET_TAGGED_ADDR_CTRL,
1471 #endif
1472 };
1473
1474 static const struct user_regset aarch64_regsets[] = {
1475         [REGSET_GPR] = {
1476                 .core_note_type = NT_PRSTATUS,
1477                 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1478                 .size = sizeof(u64),
1479                 .align = sizeof(u64),
1480                 .regset_get = gpr_get,
1481                 .set = gpr_set
1482         },
1483         [REGSET_FPR] = {
1484                 .core_note_type = NT_PRFPREG,
1485                 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1486                 /*
1487                  * We pretend we have 32-bit registers because the fpsr and
1488                  * fpcr are 32-bits wide.
1489                  */
1490                 .size = sizeof(u32),
1491                 .align = sizeof(u32),
1492                 .active = fpr_active,
1493                 .regset_get = fpr_get,
1494                 .set = fpr_set
1495         },
1496         [REGSET_TLS] = {
1497                 .core_note_type = NT_ARM_TLS,
1498                 .n = 2,
1499                 .size = sizeof(void *),
1500                 .align = sizeof(void *),
1501                 .regset_get = tls_get,
1502                 .set = tls_set,
1503         },
1504 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1505         [REGSET_HW_BREAK] = {
1506                 .core_note_type = NT_ARM_HW_BREAK,
1507                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1508                 .size = sizeof(u32),
1509                 .align = sizeof(u32),
1510                 .regset_get = hw_break_get,
1511                 .set = hw_break_set,
1512         },
1513         [REGSET_HW_WATCH] = {
1514                 .core_note_type = NT_ARM_HW_WATCH,
1515                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1516                 .size = sizeof(u32),
1517                 .align = sizeof(u32),
1518                 .regset_get = hw_break_get,
1519                 .set = hw_break_set,
1520         },
1521 #endif
1522         [REGSET_SYSTEM_CALL] = {
1523                 .core_note_type = NT_ARM_SYSTEM_CALL,
1524                 .n = 1,
1525                 .size = sizeof(int),
1526                 .align = sizeof(int),
1527                 .regset_get = system_call_get,
1528                 .set = system_call_set,
1529         },
1530         [REGSET_FPMR] = {
1531                 .core_note_type = NT_ARM_FPMR,
1532                 .n = 1,
1533                 .size = sizeof(u64),
1534                 .align = sizeof(u64),
1535                 .regset_get = fpmr_get,
1536                 .set = fpmr_set,
1537         },
1538 #ifdef CONFIG_ARM64_SVE
1539         [REGSET_SVE] = { /* Scalable Vector Extension */
1540                 .core_note_type = NT_ARM_SVE,
1541                 .n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1542                                               SVE_PT_REGS_SVE),
1543                                   SVE_VQ_BYTES),
1544                 .size = SVE_VQ_BYTES,
1545                 .align = SVE_VQ_BYTES,
1546                 .regset_get = sve_get,
1547                 .set = sve_set,
1548         },
1549 #endif
1550 #ifdef CONFIG_ARM64_SME
1551         [REGSET_SSVE] = { /* Streaming mode SVE */
1552                 .core_note_type = NT_ARM_SSVE,
1553                 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1554                                   SVE_VQ_BYTES),
1555                 .size = SVE_VQ_BYTES,
1556                 .align = SVE_VQ_BYTES,
1557                 .regset_get = ssve_get,
1558                 .set = ssve_set,
1559         },
1560         [REGSET_ZA] = { /* SME ZA */
1561                 .core_note_type = NT_ARM_ZA,
1562                 /*
1563                  * ZA is a single register but it's variably sized and
1564                  * the ptrace core requires that the size of any data
1565                  * be an exact multiple of the configured register
1566                  * size so report as though we had SVE_VQ_BYTES
1567                  * registers. These values aren't exposed to
1568                  * userspace.
1569                  */
1570                 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1571                 .size = SVE_VQ_BYTES,
1572                 .align = SVE_VQ_BYTES,
1573                 .regset_get = za_get,
1574                 .set = za_set,
1575         },
1576         [REGSET_ZT] = { /* SME ZT */
1577                 .core_note_type = NT_ARM_ZT,
1578                 .n = 1,
1579                 .size = ZT_SIG_REG_BYTES,
1580                 .align = sizeof(u64),
1581                 .regset_get = zt_get,
1582                 .set = zt_set,
1583         },
1584 #endif
1585 #ifdef CONFIG_ARM64_PTR_AUTH
1586         [REGSET_PAC_MASK] = {
1587                 .core_note_type = NT_ARM_PAC_MASK,
1588                 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1589                 .size = sizeof(u64),
1590                 .align = sizeof(u64),
1591                 .regset_get = pac_mask_get,
1592                 /* this cannot be set dynamically */
1593         },
1594         [REGSET_PAC_ENABLED_KEYS] = {
1595                 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1596                 .n = 1,
1597                 .size = sizeof(long),
1598                 .align = sizeof(long),
1599                 .regset_get = pac_enabled_keys_get,
1600                 .set = pac_enabled_keys_set,
1601         },
1602 #ifdef CONFIG_CHECKPOINT_RESTORE
1603         [REGSET_PACA_KEYS] = {
1604                 .core_note_type = NT_ARM_PACA_KEYS,
1605                 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1606                 .size = sizeof(__uint128_t),
1607                 .align = sizeof(__uint128_t),
1608                 .regset_get = pac_address_keys_get,
1609                 .set = pac_address_keys_set,
1610         },
1611         [REGSET_PACG_KEYS] = {
1612                 .core_note_type = NT_ARM_PACG_KEYS,
1613                 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1614                 .size = sizeof(__uint128_t),
1615                 .align = sizeof(__uint128_t),
1616                 .regset_get = pac_generic_keys_get,
1617                 .set = pac_generic_keys_set,
1618         },
1619 #endif
1620 #endif
1621 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1622         [REGSET_TAGGED_ADDR_CTRL] = {
1623                 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1624                 .n = 1,
1625                 .size = sizeof(long),
1626                 .align = sizeof(long),
1627                 .regset_get = tagged_addr_ctrl_get,
1628                 .set = tagged_addr_ctrl_set,
1629         },
1630 #endif
1631 };
1632
1633 static const struct user_regset_view user_aarch64_view = {
1634         .name = "aarch64", .e_machine = EM_AARCH64,
1635         .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1636 };
1637
1638 enum compat_regset {
1639         REGSET_COMPAT_GPR,
1640         REGSET_COMPAT_VFP,
1641 };
1642
1643 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1644 {
1645         struct pt_regs *regs = task_pt_regs(task);
1646
1647         switch (idx) {
1648         case 15:
1649                 return regs->pc;
1650         case 16:
1651                 return pstate_to_compat_psr(regs->pstate);
1652         case 17:
1653                 return regs->orig_x0;
1654         default:
1655                 return regs->regs[idx];
1656         }
1657 }
1658
1659 static int compat_gpr_get(struct task_struct *target,
1660                           const struct user_regset *regset,
1661                           struct membuf to)
1662 {
1663         int i = 0;
1664
1665         while (to.left)
1666                 membuf_store(&to, compat_get_user_reg(target, i++));
1667         return 0;
1668 }
1669
1670 static int compat_gpr_set(struct task_struct *target,
1671                           const struct user_regset *regset,
1672                           unsigned int pos, unsigned int count,
1673                           const void *kbuf, const void __user *ubuf)
1674 {
1675         struct pt_regs newregs;
1676         int ret = 0;
1677         unsigned int i, start, num_regs;
1678
1679         /* Calculate the number of AArch32 registers contained in count */
1680         num_regs = count / regset->size;
1681
1682         /* Convert pos into an register number */
1683         start = pos / regset->size;
1684
1685         if (start + num_regs > regset->n)
1686                 return -EIO;
1687
1688         newregs = *task_pt_regs(target);
1689
1690         for (i = 0; i < num_regs; ++i) {
1691                 unsigned int idx = start + i;
1692                 compat_ulong_t reg;
1693
1694                 if (kbuf) {
1695                         memcpy(&reg, kbuf, sizeof(reg));
1696                         kbuf += sizeof(reg);
1697                 } else {
1698                         ret = copy_from_user(&reg, ubuf, sizeof(reg));
1699                         if (ret) {
1700                                 ret = -EFAULT;
1701                                 break;
1702                         }
1703
1704                         ubuf += sizeof(reg);
1705                 }
1706
1707                 switch (idx) {
1708                 case 15:
1709                         newregs.pc = reg;
1710                         break;
1711                 case 16:
1712                         reg = compat_psr_to_pstate(reg);
1713                         newregs.pstate = reg;
1714                         break;
1715                 case 17:
1716                         newregs.orig_x0 = reg;
1717                         break;
1718                 default:
1719                         newregs.regs[idx] = reg;
1720                 }
1721
1722         }
1723
1724         if (valid_user_regs(&newregs.user_regs, target))
1725                 *task_pt_regs(target) = newregs;
1726         else
1727                 ret = -EINVAL;
1728
1729         return ret;
1730 }
1731
1732 static int compat_vfp_get(struct task_struct *target,
1733                           const struct user_regset *regset,
1734                           struct membuf to)
1735 {
1736         struct user_fpsimd_state *uregs;
1737         compat_ulong_t fpscr;
1738
1739         if (!system_supports_fpsimd())
1740                 return -EINVAL;
1741
1742         uregs = &target->thread.uw.fpsimd_state;
1743
1744         if (target == current)
1745                 fpsimd_preserve_current_state();
1746
1747         /*
1748          * The VFP registers are packed into the fpsimd_state, so they all sit
1749          * nicely together for us. We just need to create the fpscr separately.
1750          */
1751         membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1752         fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1753                 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1754         return membuf_store(&to, fpscr);
1755 }
1756
1757 static int compat_vfp_set(struct task_struct *target,
1758                           const struct user_regset *regset,
1759                           unsigned int pos, unsigned int count,
1760                           const void *kbuf, const void __user *ubuf)
1761 {
1762         struct user_fpsimd_state *uregs;
1763         compat_ulong_t fpscr;
1764         int ret, vregs_end_pos;
1765
1766         if (!system_supports_fpsimd())
1767                 return -EINVAL;
1768
1769         uregs = &target->thread.uw.fpsimd_state;
1770
1771         vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1772         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1773                                  vregs_end_pos);
1774
1775         if (count && !ret) {
1776                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1777                                          vregs_end_pos, VFP_STATE_SIZE);
1778                 if (!ret) {
1779                         uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1780                         uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1781                 }
1782         }
1783
1784         fpsimd_flush_task_state(target);
1785         return ret;
1786 }
1787
1788 static int compat_tls_get(struct task_struct *target,
1789                           const struct user_regset *regset,
1790                           struct membuf to)
1791 {
1792         return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1793 }
1794
1795 static int compat_tls_set(struct task_struct *target,
1796                           const struct user_regset *regset, unsigned int pos,
1797                           unsigned int count, const void *kbuf,
1798                           const void __user *ubuf)
1799 {
1800         int ret;
1801         compat_ulong_t tls = target->thread.uw.tp_value;
1802
1803         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1804         if (ret)
1805                 return ret;
1806
1807         target->thread.uw.tp_value = tls;
1808         return ret;
1809 }
1810
1811 static const struct user_regset aarch32_regsets[] = {
1812         [REGSET_COMPAT_GPR] = {
1813                 .core_note_type = NT_PRSTATUS,
1814                 .n = COMPAT_ELF_NGREG,
1815                 .size = sizeof(compat_elf_greg_t),
1816                 .align = sizeof(compat_elf_greg_t),
1817                 .regset_get = compat_gpr_get,
1818                 .set = compat_gpr_set
1819         },
1820         [REGSET_COMPAT_VFP] = {
1821                 .core_note_type = NT_ARM_VFP,
1822                 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1823                 .size = sizeof(compat_ulong_t),
1824                 .align = sizeof(compat_ulong_t),
1825                 .active = fpr_active,
1826                 .regset_get = compat_vfp_get,
1827                 .set = compat_vfp_set
1828         },
1829 };
1830
1831 static const struct user_regset_view user_aarch32_view = {
1832         .name = "aarch32", .e_machine = EM_ARM,
1833         .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1834 };
1835
1836 static const struct user_regset aarch32_ptrace_regsets[] = {
1837         [REGSET_GPR] = {
1838                 .core_note_type = NT_PRSTATUS,
1839                 .n = COMPAT_ELF_NGREG,
1840                 .size = sizeof(compat_elf_greg_t),
1841                 .align = sizeof(compat_elf_greg_t),
1842                 .regset_get = compat_gpr_get,
1843                 .set = compat_gpr_set
1844         },
1845         [REGSET_FPR] = {
1846                 .core_note_type = NT_ARM_VFP,
1847                 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1848                 .size = sizeof(compat_ulong_t),
1849                 .align = sizeof(compat_ulong_t),
1850                 .regset_get = compat_vfp_get,
1851                 .set = compat_vfp_set
1852         },
1853         [REGSET_TLS] = {
1854                 .core_note_type = NT_ARM_TLS,
1855                 .n = 1,
1856                 .size = sizeof(compat_ulong_t),
1857                 .align = sizeof(compat_ulong_t),
1858                 .regset_get = compat_tls_get,
1859                 .set = compat_tls_set,
1860         },
1861 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1862         [REGSET_HW_BREAK] = {
1863                 .core_note_type = NT_ARM_HW_BREAK,
1864                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1865                 .size = sizeof(u32),
1866                 .align = sizeof(u32),
1867                 .regset_get = hw_break_get,
1868                 .set = hw_break_set,
1869         },
1870         [REGSET_HW_WATCH] = {
1871                 .core_note_type = NT_ARM_HW_WATCH,
1872                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1873                 .size = sizeof(u32),
1874                 .align = sizeof(u32),
1875                 .regset_get = hw_break_get,
1876                 .set = hw_break_set,
1877         },
1878 #endif
1879         [REGSET_SYSTEM_CALL] = {
1880                 .core_note_type = NT_ARM_SYSTEM_CALL,
1881                 .n = 1,
1882                 .size = sizeof(int),
1883                 .align = sizeof(int),
1884                 .regset_get = system_call_get,
1885                 .set = system_call_set,
1886         },
1887 };
1888
1889 static const struct user_regset_view user_aarch32_ptrace_view = {
1890         .name = "aarch32", .e_machine = EM_ARM,
1891         .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1892 };
1893
1894 #ifdef CONFIG_COMPAT
1895 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1896                                    compat_ulong_t __user *ret)
1897 {
1898         compat_ulong_t tmp;
1899
1900         if (off & 3)
1901                 return -EIO;
1902
1903         if (off == COMPAT_PT_TEXT_ADDR)
1904                 tmp = tsk->mm->start_code;
1905         else if (off == COMPAT_PT_DATA_ADDR)
1906                 tmp = tsk->mm->start_data;
1907         else if (off == COMPAT_PT_TEXT_END_ADDR)
1908                 tmp = tsk->mm->end_code;
1909         else if (off < sizeof(compat_elf_gregset_t))
1910                 tmp = compat_get_user_reg(tsk, off >> 2);
1911         else if (off >= COMPAT_USER_SZ)
1912                 return -EIO;
1913         else
1914                 tmp = 0;
1915
1916         return put_user(tmp, ret);
1917 }
1918
1919 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1920                                     compat_ulong_t val)
1921 {
1922         struct pt_regs newregs = *task_pt_regs(tsk);
1923         unsigned int idx = off / 4;
1924
1925         if (off & 3 || off >= COMPAT_USER_SZ)
1926                 return -EIO;
1927
1928         if (off >= sizeof(compat_elf_gregset_t))
1929                 return 0;
1930
1931         switch (idx) {
1932         case 15:
1933                 newregs.pc = val;
1934                 break;
1935         case 16:
1936                 newregs.pstate = compat_psr_to_pstate(val);
1937                 break;
1938         case 17:
1939                 newregs.orig_x0 = val;
1940                 break;
1941         default:
1942                 newregs.regs[idx] = val;
1943         }
1944
1945         if (!valid_user_regs(&newregs.user_regs, tsk))
1946                 return -EINVAL;
1947
1948         *task_pt_regs(tsk) = newregs;
1949         return 0;
1950 }
1951
1952 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1953
1954 /*
1955  * Convert a virtual register number into an index for a thread_info
1956  * breakpoint array. Breakpoints are identified using positive numbers
1957  * whilst watchpoints are negative. The registers are laid out as pairs
1958  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1959  * Register 0 is reserved for describing resource information.
1960  */
1961 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1962 {
1963         return (abs(num) - 1) >> 1;
1964 }
1965
1966 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1967 {
1968         u8 num_brps, num_wrps, debug_arch, wp_len;
1969         u32 reg = 0;
1970
1971         num_brps        = hw_breakpoint_slots(TYPE_INST);
1972         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
1973
1974         debug_arch      = debug_monitors_arch();
1975         wp_len          = 8;
1976         reg             |= debug_arch;
1977         reg             <<= 8;
1978         reg             |= wp_len;
1979         reg             <<= 8;
1980         reg             |= num_wrps;
1981         reg             <<= 8;
1982         reg             |= num_brps;
1983
1984         *kdata = reg;
1985         return 0;
1986 }
1987
1988 static int compat_ptrace_hbp_get(unsigned int note_type,
1989                                  struct task_struct *tsk,
1990                                  compat_long_t num,
1991                                  u32 *kdata)
1992 {
1993         u64 addr = 0;
1994         u32 ctrl = 0;
1995
1996         int err, idx = compat_ptrace_hbp_num_to_idx(num);
1997
1998         if (num & 1) {
1999                 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
2000                 *kdata = (u32)addr;
2001         } else {
2002                 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
2003                 *kdata = ctrl;
2004         }
2005
2006         return err;
2007 }
2008
2009 static int compat_ptrace_hbp_set(unsigned int note_type,
2010                                  struct task_struct *tsk,
2011                                  compat_long_t num,
2012                                  u32 *kdata)
2013 {
2014         u64 addr;
2015         u32 ctrl;
2016
2017         int err, idx = compat_ptrace_hbp_num_to_idx(num);
2018
2019         if (num & 1) {
2020                 addr = *kdata;
2021                 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
2022         } else {
2023                 ctrl = *kdata;
2024                 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
2025         }
2026
2027         return err;
2028 }
2029
2030 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
2031                                     compat_ulong_t __user *data)
2032 {
2033         int ret;
2034         u32 kdata;
2035
2036         /* Watchpoint */
2037         if (num < 0) {
2038                 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
2039         /* Resource info */
2040         } else if (num == 0) {
2041                 ret = compat_ptrace_hbp_get_resource_info(&kdata);
2042         /* Breakpoint */
2043         } else {
2044                 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2045         }
2046
2047         if (!ret)
2048                 ret = put_user(kdata, data);
2049
2050         return ret;
2051 }
2052
2053 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2054                                     compat_ulong_t __user *data)
2055 {
2056         int ret;
2057         u32 kdata = 0;
2058
2059         if (num == 0)
2060                 return 0;
2061
2062         ret = get_user(kdata, data);
2063         if (ret)
2064                 return ret;
2065
2066         if (num < 0)
2067                 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2068         else
2069                 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2070
2071         return ret;
2072 }
2073 #endif  /* CONFIG_HAVE_HW_BREAKPOINT */
2074
2075 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2076                         compat_ulong_t caddr, compat_ulong_t cdata)
2077 {
2078         unsigned long addr = caddr;
2079         unsigned long data = cdata;
2080         void __user *datap = compat_ptr(data);
2081         int ret;
2082
2083         switch (request) {
2084                 case PTRACE_PEEKUSR:
2085                         ret = compat_ptrace_read_user(child, addr, datap);
2086                         break;
2087
2088                 case PTRACE_POKEUSR:
2089                         ret = compat_ptrace_write_user(child, addr, data);
2090                         break;
2091
2092                 case COMPAT_PTRACE_GETREGS:
2093                         ret = copy_regset_to_user(child,
2094                                                   &user_aarch32_view,
2095                                                   REGSET_COMPAT_GPR,
2096                                                   0, sizeof(compat_elf_gregset_t),
2097                                                   datap);
2098                         break;
2099
2100                 case COMPAT_PTRACE_SETREGS:
2101                         ret = copy_regset_from_user(child,
2102                                                     &user_aarch32_view,
2103                                                     REGSET_COMPAT_GPR,
2104                                                     0, sizeof(compat_elf_gregset_t),
2105                                                     datap);
2106                         break;
2107
2108                 case COMPAT_PTRACE_GET_THREAD_AREA:
2109                         ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2110                                        (compat_ulong_t __user *)datap);
2111                         break;
2112
2113                 case COMPAT_PTRACE_SET_SYSCALL:
2114                         task_pt_regs(child)->syscallno = data;
2115                         ret = 0;
2116                         break;
2117
2118                 case COMPAT_PTRACE_GETVFPREGS:
2119                         ret = copy_regset_to_user(child,
2120                                                   &user_aarch32_view,
2121                                                   REGSET_COMPAT_VFP,
2122                                                   0, VFP_STATE_SIZE,
2123                                                   datap);
2124                         break;
2125
2126                 case COMPAT_PTRACE_SETVFPREGS:
2127                         ret = copy_regset_from_user(child,
2128                                                     &user_aarch32_view,
2129                                                     REGSET_COMPAT_VFP,
2130                                                     0, VFP_STATE_SIZE,
2131                                                     datap);
2132                         break;
2133
2134 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2135                 case COMPAT_PTRACE_GETHBPREGS:
2136                         ret = compat_ptrace_gethbpregs(child, addr, datap);
2137                         break;
2138
2139                 case COMPAT_PTRACE_SETHBPREGS:
2140                         ret = compat_ptrace_sethbpregs(child, addr, datap);
2141                         break;
2142 #endif
2143
2144                 default:
2145                         ret = compat_ptrace_request(child, request, addr,
2146                                                     data);
2147                         break;
2148         }
2149
2150         return ret;
2151 }
2152 #endif /* CONFIG_COMPAT */
2153
2154 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2155 {
2156         /*
2157          * Core dumping of 32-bit tasks or compat ptrace requests must use the
2158          * user_aarch32_view compatible with arm32. Native ptrace requests on
2159          * 32-bit children use an extended user_aarch32_ptrace_view to allow
2160          * access to the TLS register.
2161          */
2162         if (is_compat_task())
2163                 return &user_aarch32_view;
2164         else if (is_compat_thread(task_thread_info(task)))
2165                 return &user_aarch32_ptrace_view;
2166
2167         return &user_aarch64_view;
2168 }
2169
2170 long arch_ptrace(struct task_struct *child, long request,
2171                  unsigned long addr, unsigned long data)
2172 {
2173         switch (request) {
2174         case PTRACE_PEEKMTETAGS:
2175         case PTRACE_POKEMTETAGS:
2176                 return mte_ptrace_copy_tags(child, request, addr, data);
2177         }
2178
2179         return ptrace_request(child, request, addr, data);
2180 }
2181
2182 enum ptrace_syscall_dir {
2183         PTRACE_SYSCALL_ENTER = 0,
2184         PTRACE_SYSCALL_EXIT,
2185 };
2186
2187 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2188 {
2189         int regno;
2190         unsigned long saved_reg;
2191
2192         /*
2193          * We have some ABI weirdness here in the way that we handle syscall
2194          * exit stops because we indicate whether or not the stop has been
2195          * signalled from syscall entry or syscall exit by clobbering a general
2196          * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2197          * and restoring its old value after the stop. This means that:
2198          *
2199          * - Any writes by the tracer to this register during the stop are
2200          *   ignored/discarded.
2201          *
2202          * - The actual value of the register is not available during the stop,
2203          *   so the tracer cannot save it and restore it later.
2204          *
2205          * - Syscall stops behave differently to seccomp and pseudo-step traps
2206          *   (the latter do not nobble any registers).
2207          */
2208         regno = (is_compat_task() ? 12 : 7);
2209         saved_reg = regs->regs[regno];
2210         regs->regs[regno] = dir;
2211
2212         if (dir == PTRACE_SYSCALL_ENTER) {
2213                 if (ptrace_report_syscall_entry(regs))
2214                         forget_syscall(regs);
2215                 regs->regs[regno] = saved_reg;
2216         } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2217                 ptrace_report_syscall_exit(regs, 0);
2218                 regs->regs[regno] = saved_reg;
2219         } else {
2220                 regs->regs[regno] = saved_reg;
2221
2222                 /*
2223                  * Signal a pseudo-step exception since we are stepping but
2224                  * tracer modifications to the registers may have rewound the
2225                  * state machine.
2226                  */
2227                 ptrace_report_syscall_exit(regs, 1);
2228         }
2229 }
2230
2231 int syscall_trace_enter(struct pt_regs *regs)
2232 {
2233         unsigned long flags = read_thread_flags();
2234
2235         if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2236                 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2237                 if (flags & _TIF_SYSCALL_EMU)
2238                         return NO_SYSCALL;
2239         }
2240
2241         /* Do the secure computing after ptrace; failures should be fast. */
2242         if (secure_computing() == -1)
2243                 return NO_SYSCALL;
2244
2245         if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2246                 trace_sys_enter(regs, regs->syscallno);
2247
2248         audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2249                             regs->regs[2], regs->regs[3]);
2250
2251         return regs->syscallno;
2252 }
2253
2254 void syscall_trace_exit(struct pt_regs *regs)
2255 {
2256         unsigned long flags = read_thread_flags();
2257
2258         audit_syscall_exit(regs);
2259
2260         if (flags & _TIF_SYSCALL_TRACEPOINT)
2261                 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2262
2263         if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2264                 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2265
2266         rseq_syscall(regs);
2267 }
2268
2269 /*
2270  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2271  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2272  * not described in ARM DDI 0487D.a.
2273  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2274  * be allocated an EL0 meaning in future.
2275  * Userspace cannot use these until they have an architectural meaning.
2276  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2277  * We also reserve IL for the kernel; SS is handled dynamically.
2278  */
2279 #define SPSR_EL1_AARCH64_RES0_BITS \
2280         (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2281          GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2282 #define SPSR_EL1_AARCH32_RES0_BITS \
2283         (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2284
2285 static int valid_compat_regs(struct user_pt_regs *regs)
2286 {
2287         regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2288
2289         if (!system_supports_mixed_endian_el0()) {
2290                 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2291                         regs->pstate |= PSR_AA32_E_BIT;
2292                 else
2293                         regs->pstate &= ~PSR_AA32_E_BIT;
2294         }
2295
2296         if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2297             (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2298             (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2299             (regs->pstate & PSR_AA32_F_BIT) == 0) {
2300                 return 1;
2301         }
2302
2303         /*
2304          * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2305          * arch/arm.
2306          */
2307         regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2308                         PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2309                         PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2310                         PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2311                         PSR_AA32_T_BIT;
2312         regs->pstate |= PSR_MODE32_BIT;
2313
2314         return 0;
2315 }
2316
2317 static int valid_native_regs(struct user_pt_regs *regs)
2318 {
2319         regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2320
2321         if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2322             (regs->pstate & PSR_D_BIT) == 0 &&
2323             (regs->pstate & PSR_A_BIT) == 0 &&
2324             (regs->pstate & PSR_I_BIT) == 0 &&
2325             (regs->pstate & PSR_F_BIT) == 0) {
2326                 return 1;
2327         }
2328
2329         /* Force PSR to a valid 64-bit EL0t */
2330         regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2331
2332         return 0;
2333 }
2334
2335 /*
2336  * Are the current registers suitable for user mode? (used to maintain
2337  * security in signal handlers)
2338  */
2339 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2340 {
2341         /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2342         user_regs_reset_single_step(regs, task);
2343
2344         if (is_compat_thread(task_thread_info(task)))
2345                 return valid_compat_regs(regs);
2346         else
2347                 return valid_native_regs(regs);
2348 }