Linux 6.7-rc7
[linux-modified.git] / arch / arm64 / kernel / machine_kexec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec for arm64
4  *
5  * Copyright (C) Linaro.
6  * Copyright (C) Huawei Futurewei Technologies.
7  */
8
9 #include <linux/interrupt.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/kexec.h>
13 #include <linux/page-flags.h>
14 #include <linux/reboot.h>
15 #include <linux/set_memory.h>
16 #include <linux/smp.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cpu_ops.h>
20 #include <asm/daifflags.h>
21 #include <asm/memory.h>
22 #include <asm/mmu.h>
23 #include <asm/mmu_context.h>
24 #include <asm/page.h>
25 #include <asm/sections.h>
26 #include <asm/trans_pgd.h>
27
28 /**
29  * kexec_image_info - For debugging output.
30  */
31 #define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
32 static void _kexec_image_info(const char *func, int line,
33         const struct kimage *kimage)
34 {
35         unsigned long i;
36
37         pr_debug("%s:%d:\n", func, line);
38         pr_debug("  kexec kimage info:\n");
39         pr_debug("    type:        %d\n", kimage->type);
40         pr_debug("    start:       %lx\n", kimage->start);
41         pr_debug("    head:        %lx\n", kimage->head);
42         pr_debug("    nr_segments: %lu\n", kimage->nr_segments);
43         pr_debug("    dtb_mem: %pa\n", &kimage->arch.dtb_mem);
44         pr_debug("    kern_reloc: %pa\n", &kimage->arch.kern_reloc);
45         pr_debug("    el2_vectors: %pa\n", &kimage->arch.el2_vectors);
46
47         for (i = 0; i < kimage->nr_segments; i++) {
48                 pr_debug("      segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
49                         i,
50                         kimage->segment[i].mem,
51                         kimage->segment[i].mem + kimage->segment[i].memsz,
52                         kimage->segment[i].memsz,
53                         kimage->segment[i].memsz /  PAGE_SIZE);
54         }
55 }
56
57 void machine_kexec_cleanup(struct kimage *kimage)
58 {
59         /* Empty routine needed to avoid build errors. */
60 }
61
62 /**
63  * machine_kexec_prepare - Prepare for a kexec reboot.
64  *
65  * Called from the core kexec code when a kernel image is loaded.
66  * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
67  * are stuck in the kernel. This avoids a panic once we hit machine_kexec().
68  */
69 int machine_kexec_prepare(struct kimage *kimage)
70 {
71         if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
72                 pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
73                 return -EBUSY;
74         }
75
76         return 0;
77 }
78
79 /**
80  * kexec_segment_flush - Helper to flush the kimage segments to PoC.
81  */
82 static void kexec_segment_flush(const struct kimage *kimage)
83 {
84         unsigned long i;
85
86         pr_debug("%s:\n", __func__);
87
88         for (i = 0; i < kimage->nr_segments; i++) {
89                 pr_debug("  segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
90                         i,
91                         kimage->segment[i].mem,
92                         kimage->segment[i].mem + kimage->segment[i].memsz,
93                         kimage->segment[i].memsz,
94                         kimage->segment[i].memsz /  PAGE_SIZE);
95
96                 dcache_clean_inval_poc(
97                         (unsigned long)phys_to_virt(kimage->segment[i].mem),
98                         (unsigned long)phys_to_virt(kimage->segment[i].mem) +
99                                 kimage->segment[i].memsz);
100         }
101 }
102
103 /* Allocates pages for kexec page table */
104 static void *kexec_page_alloc(void *arg)
105 {
106         struct kimage *kimage = arg;
107         struct page *page = kimage_alloc_control_pages(kimage, 0);
108         void *vaddr = NULL;
109
110         if (!page)
111                 return NULL;
112
113         vaddr = page_address(page);
114         memset(vaddr, 0, PAGE_SIZE);
115
116         return vaddr;
117 }
118
119 int machine_kexec_post_load(struct kimage *kimage)
120 {
121         int rc;
122         pgd_t *trans_pgd;
123         void *reloc_code = page_to_virt(kimage->control_code_page);
124         long reloc_size;
125         struct trans_pgd_info info = {
126                 .trans_alloc_page       = kexec_page_alloc,
127                 .trans_alloc_arg        = kimage,
128         };
129
130         /* If in place, relocation is not used, only flush next kernel */
131         if (kimage->head & IND_DONE) {
132                 kexec_segment_flush(kimage);
133                 kexec_image_info(kimage);
134                 return 0;
135         }
136
137         kimage->arch.el2_vectors = 0;
138         if (is_hyp_nvhe()) {
139                 rc = trans_pgd_copy_el2_vectors(&info,
140                                                 &kimage->arch.el2_vectors);
141                 if (rc)
142                         return rc;
143         }
144
145         /* Create a copy of the linear map */
146         trans_pgd = kexec_page_alloc(kimage);
147         if (!trans_pgd)
148                 return -ENOMEM;
149         rc = trans_pgd_create_copy(&info, &trans_pgd, PAGE_OFFSET, PAGE_END);
150         if (rc)
151                 return rc;
152         kimage->arch.ttbr1 = __pa(trans_pgd);
153         kimage->arch.zero_page = __pa_symbol(empty_zero_page);
154
155         reloc_size = __relocate_new_kernel_end - __relocate_new_kernel_start;
156         memcpy(reloc_code, __relocate_new_kernel_start, reloc_size);
157         kimage->arch.kern_reloc = __pa(reloc_code);
158         rc = trans_pgd_idmap_page(&info, &kimage->arch.ttbr0,
159                                   &kimage->arch.t0sz, reloc_code);
160         if (rc)
161                 return rc;
162         kimage->arch.phys_offset = virt_to_phys(kimage) - (long)kimage;
163
164         /* Flush the reloc_code in preparation for its execution. */
165         dcache_clean_inval_poc((unsigned long)reloc_code,
166                                (unsigned long)reloc_code + reloc_size);
167         icache_inval_pou((uintptr_t)reloc_code,
168                          (uintptr_t)reloc_code + reloc_size);
169         kexec_image_info(kimage);
170
171         return 0;
172 }
173
174 /**
175  * machine_kexec - Do the kexec reboot.
176  *
177  * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
178  */
179 void machine_kexec(struct kimage *kimage)
180 {
181         bool in_kexec_crash = (kimage == kexec_crash_image);
182         bool stuck_cpus = cpus_are_stuck_in_kernel();
183
184         /*
185          * New cpus may have become stuck_in_kernel after we loaded the image.
186          */
187         BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
188         WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
189                 "Some CPUs may be stale, kdump will be unreliable.\n");
190
191         pr_info("Bye!\n");
192
193         local_daif_mask();
194
195         /*
196          * Both restart and kernel_reloc will shutdown the MMU, disable data
197          * caches. However, restart will start new kernel or purgatory directly,
198          * kernel_reloc contains the body of arm64_relocate_new_kernel
199          * In kexec case, kimage->start points to purgatory assuming that
200          * kernel entry and dtb address are embedded in purgatory by
201          * userspace (kexec-tools).
202          * In kexec_file case, the kernel starts directly without purgatory.
203          */
204         if (kimage->head & IND_DONE) {
205                 typeof(cpu_soft_restart) *restart;
206
207                 cpu_install_idmap();
208                 restart = (void *)__pa_symbol(cpu_soft_restart);
209                 restart(is_hyp_nvhe(), kimage->start, kimage->arch.dtb_mem,
210                         0, 0);
211         } else {
212                 void (*kernel_reloc)(struct kimage *kimage);
213
214                 if (is_hyp_nvhe())
215                         __hyp_set_vectors(kimage->arch.el2_vectors);
216                 cpu_install_ttbr0(kimage->arch.ttbr0, kimage->arch.t0sz);
217                 kernel_reloc = (void *)kimage->arch.kern_reloc;
218                 kernel_reloc(kimage);
219         }
220
221         BUG(); /* Should never get here. */
222 }
223
224 static void machine_kexec_mask_interrupts(void)
225 {
226         unsigned int i;
227         struct irq_desc *desc;
228
229         for_each_irq_desc(i, desc) {
230                 struct irq_chip *chip;
231                 int ret;
232
233                 chip = irq_desc_get_chip(desc);
234                 if (!chip)
235                         continue;
236
237                 /*
238                  * First try to remove the active state. If this
239                  * fails, try to EOI the interrupt.
240                  */
241                 ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
242
243                 if (ret && irqd_irq_inprogress(&desc->irq_data) &&
244                     chip->irq_eoi)
245                         chip->irq_eoi(&desc->irq_data);
246
247                 if (chip->irq_mask)
248                         chip->irq_mask(&desc->irq_data);
249
250                 if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
251                         chip->irq_disable(&desc->irq_data);
252         }
253 }
254
255 /**
256  * machine_crash_shutdown - shutdown non-crashing cpus and save registers
257  */
258 void machine_crash_shutdown(struct pt_regs *regs)
259 {
260         local_irq_disable();
261
262         /* shutdown non-crashing cpus */
263         crash_smp_send_stop();
264
265         /* for crashing cpu */
266         crash_save_cpu(regs, smp_processor_id());
267         machine_kexec_mask_interrupts();
268
269         pr_info("Starting crashdump kernel...\n");
270 }
271
272 #ifdef CONFIG_HIBERNATION
273 /*
274  * To preserve the crash dump kernel image, the relevant memory segments
275  * should be mapped again around the hibernation.
276  */
277 void crash_prepare_suspend(void)
278 {
279         if (kexec_crash_image)
280                 arch_kexec_unprotect_crashkres();
281 }
282
283 void crash_post_resume(void)
284 {
285         if (kexec_crash_image)
286                 arch_kexec_protect_crashkres();
287 }
288
289 /*
290  * crash_is_nosave
291  *
292  * Return true only if a page is part of reserved memory for crash dump kernel,
293  * but does not hold any data of loaded kernel image.
294  *
295  * Note that all the pages in crash dump kernel memory have been initially
296  * marked as Reserved as memory was allocated via memblock_reserve().
297  *
298  * In hibernation, the pages which are Reserved and yet "nosave" are excluded
299  * from the hibernation iamge. crash_is_nosave() does thich check for crash
300  * dump kernel and will reduce the total size of hibernation image.
301  */
302
303 bool crash_is_nosave(unsigned long pfn)
304 {
305         int i;
306         phys_addr_t addr;
307
308         if (!crashk_res.end)
309                 return false;
310
311         /* in reserved memory? */
312         addr = __pfn_to_phys(pfn);
313         if ((addr < crashk_res.start) || (crashk_res.end < addr)) {
314                 if (!crashk_low_res.end)
315                         return false;
316
317                 if ((addr < crashk_low_res.start) || (crashk_low_res.end < addr))
318                         return false;
319         }
320
321         if (!kexec_crash_image)
322                 return true;
323
324         /* not part of loaded kernel image? */
325         for (i = 0; i < kexec_crash_image->nr_segments; i++)
326                 if (addr >= kexec_crash_image->segment[i].mem &&
327                                 addr < (kexec_crash_image->segment[i].mem +
328                                         kexec_crash_image->segment[i].memsz))
329                         return false;
330
331         return true;
332 }
333
334 void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
335 {
336         unsigned long addr;
337         struct page *page;
338
339         for (addr = begin; addr < end; addr += PAGE_SIZE) {
340                 page = phys_to_page(addr);
341                 free_reserved_page(page);
342         }
343 }
344 #endif /* CONFIG_HIBERNATION */