Linux 6.7-rc7
[linux-modified.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT        \
100                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103                                  COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136
137 void dump_cpu_features(void)
138 {
139         /* file-wide pr_fmt adds "CPU features: " prefix */
140         pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142
143 #define ARM64_CPUID_FIELDS(reg, field, min_value)                       \
144                 .sys_reg = SYS_##reg,                                                   \
145                 .field_pos = reg##_##field##_SHIFT,                                             \
146                 .field_width = reg##_##field##_WIDTH,                                           \
147                 .sign = reg##_##field##_SIGNED,                                                 \
148                 .min_field_value = reg##_##field##_##min_value,
149
150 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
151         {                                               \
152                 .sign = SIGNED,                         \
153                 .visible = VISIBLE,                     \
154                 .strict = STRICT,                       \
155                 .type = TYPE,                           \
156                 .shift = SHIFT,                         \
157                 .width = WIDTH,                         \
158                 .safe_val = SAFE_VAL,                   \
159         }
160
161 /* Define a feature with unsigned values */
162 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
164
165 /* Define a feature with a signed value */
166 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
167         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
168
169 #define ARM64_FTR_END                                   \
170         {                                               \
171                 .width = 0,                             \
172         }
173
174 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
175
176 static bool __system_matches_cap(unsigned int n);
177
178 /*
179  * NOTE: Any changes to the visibility of features should be kept in
180  * sync with the documentation of the CPU feature register ABI.
181  */
182 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
183         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
197         ARM64_FTR_END,
198 };
199
200 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
201         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
204         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
205         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
206         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
208                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
210                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
215                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
217                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
219         ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
223         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
224         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
226         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
227         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
228         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
229                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
230         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
231                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
232         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
233         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
234         ARM64_FTR_END,
235 };
236
237 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
244         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
245                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
248         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
249         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
250         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
254         ARM64_FTR_END,
255 };
256
257 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
258         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
259                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
262         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
263                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
264         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
265         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
266                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
267         ARM64_FTR_END,
268 };
269
270 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
271         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
272                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
273         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
274                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
275         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
277         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
278                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
279         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
281         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
283         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
285         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
287         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
288                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
289         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
290                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
291         ARM64_FTR_END,
292 };
293
294 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
295         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
296                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
297         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
298                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
299         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
300                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
301         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
302                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
303         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
304                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
305         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
306                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
307         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
308                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
309         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
311         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
313         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
315         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
316                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
317         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
318                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
319         ARM64_FTR_END,
320 };
321
322 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
323         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
324         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
326         /*
327          * Page size not being supported at Stage-2 is not fatal. You
328          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
329          * your favourite nesting hypervisor.
330          *
331          * There is a small corner case where the hypervisor explicitly
332          * advertises a given granule size at Stage-2 (value 2) on some
333          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
334          * vCPUs. Although this is not forbidden by the architecture, it
335          * indicates that the hypervisor is being silly (or buggy).
336          *
337          * We make no effort to cope with this and pretend that if these
338          * fields are inconsistent across vCPUs, then it isn't worth
339          * trying to bring KVM up.
340          */
341         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
342         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
343         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
344         /*
345          * We already refuse to boot CPUs that don't support our configured
346          * page size, so we can only detect mismatches for a page size other
347          * than the one we're currently using. Unfortunately, SoCs like this
348          * exist in the wild so, even though we don't like it, we'll have to go
349          * along with it and treat them as non-strict.
350          */
351         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
352         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
353         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
354
355         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
356         /* Linux shouldn't care about secure memory */
357         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
358         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
359         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
360         /*
361          * Differing PARange is fine as long as all peripherals and memory are mapped
362          * within the minimum PARange of all CPUs
363          */
364         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
365         ARM64_FTR_END,
366 };
367
368 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
369         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
370         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
371         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
372         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
373         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
374         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
375         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
376         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
377         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
378         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
379         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
380         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
381         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
382         ARM64_FTR_END,
383 };
384
385 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
386         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
387         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
388         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
389         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
390         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
391         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
392         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
393         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
394         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
395         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
396         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
397         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
398         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
399         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
400         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
401         ARM64_FTR_END,
402 };
403
404 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
405         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
406         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
407         ARM64_FTR_END,
408 };
409
410 static const struct arm64_ftr_bits ftr_ctr[] = {
411         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
412         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
413         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
414         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
415         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
416         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
417         /*
418          * Linux can handle differing I-cache policies. Userspace JITs will
419          * make use of *minLine.
420          * If we have differing I-cache policies, report it as the weakest - VIPT.
421          */
422         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),        /* L1Ip */
423         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
424         ARM64_FTR_END,
425 };
426
427 static struct arm64_ftr_override __ro_after_init no_override = { };
428
429 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
430         .name           = "SYS_CTR_EL0",
431         .ftr_bits       = ftr_ctr,
432         .override       = &no_override,
433 };
434
435 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
436         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
437         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
438         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
439         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
440         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
441         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
442         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
443         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
444         ARM64_FTR_END,
445 };
446
447 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
448         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
449         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
450         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
451         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
452         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
453         /*
454          * We can instantiate multiple PMU instances with different levels
455          * of support.
456          */
457         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
458         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
459         ARM64_FTR_END,
460 };
461
462 static const struct arm64_ftr_bits ftr_mvfr0[] = {
463         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
464         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
465         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
466         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
467         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
468         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
469         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
470         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
471         ARM64_FTR_END,
472 };
473
474 static const struct arm64_ftr_bits ftr_mvfr1[] = {
475         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
476         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
477         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
478         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
479         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
480         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
481         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
482         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
483         ARM64_FTR_END,
484 };
485
486 static const struct arm64_ftr_bits ftr_mvfr2[] = {
487         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
488         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
489         ARM64_FTR_END,
490 };
491
492 static const struct arm64_ftr_bits ftr_dczid[] = {
493         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
494         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
495         ARM64_FTR_END,
496 };
497
498 static const struct arm64_ftr_bits ftr_gmid[] = {
499         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
500         ARM64_FTR_END,
501 };
502
503 static const struct arm64_ftr_bits ftr_id_isar0[] = {
504         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
505         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
506         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
507         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
508         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
509         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
510         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
511         ARM64_FTR_END,
512 };
513
514 static const struct arm64_ftr_bits ftr_id_isar5[] = {
515         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
516         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
517         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
518         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
519         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
520         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
521         ARM64_FTR_END,
522 };
523
524 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
525         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
526         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
527         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
528         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
529         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
530         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
531         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
532
533         /*
534          * SpecSEI = 1 indicates that the PE might generate an SError on an
535          * external abort on speculative read. It is safe to assume that an
536          * SError might be generated than it will not be. Hence it has been
537          * classified as FTR_HIGHER_SAFE.
538          */
539         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
540         ARM64_FTR_END,
541 };
542
543 static const struct arm64_ftr_bits ftr_id_isar4[] = {
544         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
545         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
546         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
547         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
548         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
549         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
550         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
551         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
552         ARM64_FTR_END,
553 };
554
555 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
556         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
557         ARM64_FTR_END,
558 };
559
560 static const struct arm64_ftr_bits ftr_id_isar6[] = {
561         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
562         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
563         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
564         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
565         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
566         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
567         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
568         ARM64_FTR_END,
569 };
570
571 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
572         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
573         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
574         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
575         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
576         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
577         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
578         ARM64_FTR_END,
579 };
580
581 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
582         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
583         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
584         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
585         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
586         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
587         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
588         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
589         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
590         ARM64_FTR_END,
591 };
592
593 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
594         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
595         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
596         ARM64_FTR_END,
597 };
598
599 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
600         /* [31:28] TraceFilt */
601         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
602         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
603         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
604         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
605         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
606         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
607         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
608         ARM64_FTR_END,
609 };
610
611 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
612         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
613         ARM64_FTR_END,
614 };
615
616 /*
617  * Common ftr bits for a 32bit register with all hidden, strict
618  * attributes, with 4bit feature fields and a default safe value of
619  * 0. Covers the following 32bit registers:
620  * id_isar[1-3], id_mmfr[1-3]
621  */
622 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
623         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
624         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
625         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
626         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
627         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
628         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
629         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
630         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
631         ARM64_FTR_END,
632 };
633
634 /* Table for a single 32bit feature value */
635 static const struct arm64_ftr_bits ftr_single32[] = {
636         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
637         ARM64_FTR_END,
638 };
639
640 static const struct arm64_ftr_bits ftr_raz[] = {
641         ARM64_FTR_END,
642 };
643
644 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {      \
645                 .sys_id = id,                                   \
646                 .reg =  &(struct arm64_ftr_reg){                \
647                         .name = id_str,                         \
648                         .override = (ovr),                      \
649                         .ftr_bits = &((table)[0]),              \
650         }}
651
652 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)  \
653         __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
654
655 #define ARM64_FTR_REG(id, table)                \
656         __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
657
658 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
659 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
660 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
661 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
662 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
663 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
664 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
665
666 struct arm64_ftr_override arm64_sw_feature_override;
667
668 static const struct __ftr_reg_entry {
669         u32                     sys_id;
670         struct arm64_ftr_reg    *reg;
671 } arm64_ftr_regs[] = {
672
673         /* Op1 = 0, CRn = 0, CRm = 1 */
674         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
675         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
676         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
677         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
678         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
679         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
680         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
681
682         /* Op1 = 0, CRn = 0, CRm = 2 */
683         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
684         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
685         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
686         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
687         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
688         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
689         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
690         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
691
692         /* Op1 = 0, CRn = 0, CRm = 3 */
693         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
694         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
695         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
696         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
697         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
698         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
699
700         /* Op1 = 0, CRn = 0, CRm = 4 */
701         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
702                                &id_aa64pfr0_override),
703         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
704                                &id_aa64pfr1_override),
705         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
706                                &id_aa64zfr0_override),
707         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
708                                &id_aa64smfr0_override),
709
710         /* Op1 = 0, CRn = 0, CRm = 5 */
711         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
712         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
713
714         /* Op1 = 0, CRn = 0, CRm = 6 */
715         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
716         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
717                                &id_aa64isar1_override),
718         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
719                                &id_aa64isar2_override),
720
721         /* Op1 = 0, CRn = 0, CRm = 7 */
722         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
723         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
724                                &id_aa64mmfr1_override),
725         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
726         ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
727
728         /* Op1 = 1, CRn = 0, CRm = 0 */
729         ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
730
731         /* Op1 = 3, CRn = 0, CRm = 0 */
732         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
733         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
734
735         /* Op1 = 3, CRn = 14, CRm = 0 */
736         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
737 };
738
739 static int search_cmp_ftr_reg(const void *id, const void *regp)
740 {
741         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
742 }
743
744 /*
745  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
746  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
747  * ascending order of sys_id, we use binary search to find a matching
748  * entry.
749  *
750  * returns - Upon success,  matching ftr_reg entry for id.
751  *         - NULL on failure. It is upto the caller to decide
752  *           the impact of a failure.
753  */
754 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
755 {
756         const struct __ftr_reg_entry *ret;
757
758         ret = bsearch((const void *)(unsigned long)sys_id,
759                         arm64_ftr_regs,
760                         ARRAY_SIZE(arm64_ftr_regs),
761                         sizeof(arm64_ftr_regs[0]),
762                         search_cmp_ftr_reg);
763         if (ret)
764                 return ret->reg;
765         return NULL;
766 }
767
768 /*
769  * get_arm64_ftr_reg - Looks up a feature register entry using
770  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
771  *
772  * returns - Upon success,  matching ftr_reg entry for id.
773  *         - NULL on failure but with an WARN_ON().
774  */
775 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
776 {
777         struct arm64_ftr_reg *reg;
778
779         reg = get_arm64_ftr_reg_nowarn(sys_id);
780
781         /*
782          * Requesting a non-existent register search is an error. Warn
783          * and let the caller handle it.
784          */
785         WARN_ON(!reg);
786         return reg;
787 }
788
789 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
790                                s64 ftr_val)
791 {
792         u64 mask = arm64_ftr_mask(ftrp);
793
794         reg &= ~mask;
795         reg |= (ftr_val << ftrp->shift) & mask;
796         return reg;
797 }
798
799 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
800                                 s64 cur)
801 {
802         s64 ret = 0;
803
804         switch (ftrp->type) {
805         case FTR_EXACT:
806                 ret = ftrp->safe_val;
807                 break;
808         case FTR_LOWER_SAFE:
809                 ret = min(new, cur);
810                 break;
811         case FTR_HIGHER_OR_ZERO_SAFE:
812                 if (!cur || !new)
813                         break;
814                 fallthrough;
815         case FTR_HIGHER_SAFE:
816                 ret = max(new, cur);
817                 break;
818         default:
819                 BUG();
820         }
821
822         return ret;
823 }
824
825 static void __init sort_ftr_regs(void)
826 {
827         unsigned int i;
828
829         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
830                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
831                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
832                 unsigned int j = 0;
833
834                 /*
835                  * Features here must be sorted in descending order with respect
836                  * to their shift values and should not overlap with each other.
837                  */
838                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
839                         unsigned int width = ftr_reg->ftr_bits[j].width;
840                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
841                         unsigned int prev_shift;
842
843                         WARN((shift  + width) > 64,
844                                 "%s has invalid feature at shift %d\n",
845                                 ftr_reg->name, shift);
846
847                         /*
848                          * Skip the first feature. There is nothing to
849                          * compare against for now.
850                          */
851                         if (j == 0)
852                                 continue;
853
854                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
855                         WARN((shift + width) > prev_shift,
856                                 "%s has feature overlap at shift %d\n",
857                                 ftr_reg->name, shift);
858                 }
859
860                 /*
861                  * Skip the first register. There is nothing to
862                  * compare against for now.
863                  */
864                 if (i == 0)
865                         continue;
866                 /*
867                  * Registers here must be sorted in ascending order with respect
868                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
869                  * to work correctly.
870                  */
871                 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
872         }
873 }
874
875 /*
876  * Initialise the CPU feature register from Boot CPU values.
877  * Also initiliases the strict_mask for the register.
878  * Any bits that are not covered by an arm64_ftr_bits entry are considered
879  * RES0 for the system-wide value, and must strictly match.
880  */
881 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
882 {
883         u64 val = 0;
884         u64 strict_mask = ~0x0ULL;
885         u64 user_mask = 0;
886         u64 valid_mask = 0;
887
888         const struct arm64_ftr_bits *ftrp;
889         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
890
891         if (!reg)
892                 return;
893
894         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
895                 u64 ftr_mask = arm64_ftr_mask(ftrp);
896                 s64 ftr_new = arm64_ftr_value(ftrp, new);
897                 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
898
899                 if ((ftr_mask & reg->override->mask) == ftr_mask) {
900                         s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
901                         char *str = NULL;
902
903                         if (ftr_ovr != tmp) {
904                                 /* Unsafe, remove the override */
905                                 reg->override->mask &= ~ftr_mask;
906                                 reg->override->val &= ~ftr_mask;
907                                 tmp = ftr_ovr;
908                                 str = "ignoring override";
909                         } else if (ftr_new != tmp) {
910                                 /* Override was valid */
911                                 ftr_new = tmp;
912                                 str = "forced";
913                         } else if (ftr_ovr == tmp) {
914                                 /* Override was the safe value */
915                                 str = "already set";
916                         }
917
918                         if (str)
919                                 pr_warn("%s[%d:%d]: %s to %llx\n",
920                                         reg->name,
921                                         ftrp->shift + ftrp->width - 1,
922                                         ftrp->shift, str, tmp);
923                 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
924                         reg->override->val &= ~ftr_mask;
925                         pr_warn("%s[%d:%d]: impossible override, ignored\n",
926                                 reg->name,
927                                 ftrp->shift + ftrp->width - 1,
928                                 ftrp->shift);
929                 }
930
931                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
932
933                 valid_mask |= ftr_mask;
934                 if (!ftrp->strict)
935                         strict_mask &= ~ftr_mask;
936                 if (ftrp->visible)
937                         user_mask |= ftr_mask;
938                 else
939                         reg->user_val = arm64_ftr_set_value(ftrp,
940                                                             reg->user_val,
941                                                             ftrp->safe_val);
942         }
943
944         val &= valid_mask;
945
946         reg->sys_val = val;
947         reg->strict_mask = strict_mask;
948         reg->user_mask = user_mask;
949 }
950
951 extern const struct arm64_cpu_capabilities arm64_errata[];
952 static const struct arm64_cpu_capabilities arm64_features[];
953
954 static void __init
955 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
956 {
957         for (; caps->matches; caps++) {
958                 if (WARN(caps->capability >= ARM64_NCAPS,
959                         "Invalid capability %d\n", caps->capability))
960                         continue;
961                 if (WARN(cpucap_ptrs[caps->capability],
962                         "Duplicate entry for capability %d\n",
963                         caps->capability))
964                         continue;
965                 cpucap_ptrs[caps->capability] = caps;
966         }
967 }
968
969 static void __init init_cpucap_indirect_list(void)
970 {
971         init_cpucap_indirect_list_from_array(arm64_features);
972         init_cpucap_indirect_list_from_array(arm64_errata);
973 }
974
975 static void __init setup_boot_cpu_capabilities(void);
976
977 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
978 {
979         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
980         init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
981         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
982         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
983         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
984         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
985         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
986         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
987         init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
988         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
989         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
990         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
991         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
992         init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
993         init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
994         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
995         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
996         init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
997         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
998         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
999         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1000 }
1001
1002 #ifdef CONFIG_ARM64_PSEUDO_NMI
1003 static bool enable_pseudo_nmi;
1004
1005 static int __init early_enable_pseudo_nmi(char *p)
1006 {
1007         return kstrtobool(p, &enable_pseudo_nmi);
1008 }
1009 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1010
1011 static __init void detect_system_supports_pseudo_nmi(void)
1012 {
1013         struct device_node *np;
1014
1015         if (!enable_pseudo_nmi)
1016                 return;
1017
1018         /*
1019          * Detect broken MediaTek firmware that doesn't properly save and
1020          * restore GIC priorities.
1021          */
1022         np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1023         if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1024                 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1025                 enable_pseudo_nmi = false;
1026         }
1027         of_node_put(np);
1028 }
1029 #else /* CONFIG_ARM64_PSEUDO_NMI */
1030 static inline void detect_system_supports_pseudo_nmi(void) { }
1031 #endif
1032
1033 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1034 {
1035         /* Before we start using the tables, make sure it is sorted */
1036         sort_ftr_regs();
1037
1038         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1039         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1040         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1041         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1042         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1043         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1044         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1045         init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1046         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1047         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1048         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1049         init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1050         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1051         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1052         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1053         init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1054
1055         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1056                 init_32bit_cpu_features(&info->aarch32);
1057
1058         if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1059             id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1060                 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1061
1062                 vec_init_vq_map(ARM64_VEC_SVE);
1063
1064                 cpacr_restore(cpacr);
1065         }
1066
1067         if (IS_ENABLED(CONFIG_ARM64_SME) &&
1068             id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1069                 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1070
1071                 /*
1072                  * We mask out SMPS since even if the hardware
1073                  * supports priorities the kernel does not at present
1074                  * and we block access to them.
1075                  */
1076                 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1077                 vec_init_vq_map(ARM64_VEC_SME);
1078
1079                 cpacr_restore(cpacr);
1080         }
1081
1082         if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1083                 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1084
1085         /*
1086          * Initialize the indirect array of CPU capabilities pointers before we
1087          * handle the boot CPU below.
1088          */
1089         init_cpucap_indirect_list();
1090
1091         /*
1092          * Detect broken pseudo-NMI. Must be called _before_ the call to
1093          * setup_boot_cpu_capabilities() since it interacts with
1094          * can_use_gic_priorities().
1095          */
1096         detect_system_supports_pseudo_nmi();
1097
1098         /*
1099          * Detect and enable early CPU capabilities based on the boot CPU,
1100          * after we have initialised the CPU feature infrastructure.
1101          */
1102         setup_boot_cpu_capabilities();
1103 }
1104
1105 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1106 {
1107         const struct arm64_ftr_bits *ftrp;
1108
1109         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1110                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1111                 s64 ftr_new = arm64_ftr_value(ftrp, new);
1112
1113                 if (ftr_cur == ftr_new)
1114                         continue;
1115                 /* Find a safe value */
1116                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1117                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1118         }
1119
1120 }
1121
1122 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1123 {
1124         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1125
1126         if (!regp)
1127                 return 0;
1128
1129         update_cpu_ftr_reg(regp, val);
1130         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1131                 return 0;
1132         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1133                         regp->name, boot, cpu, val);
1134         return 1;
1135 }
1136
1137 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1138 {
1139         const struct arm64_ftr_bits *ftrp;
1140         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1141
1142         if (!regp)
1143                 return;
1144
1145         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1146                 if (ftrp->shift == field) {
1147                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1148                         break;
1149                 }
1150         }
1151
1152         /* Bogus field? */
1153         WARN_ON(!ftrp->width);
1154 }
1155
1156 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1157                                          struct cpuinfo_arm64 *boot)
1158 {
1159         static bool boot_cpu_32bit_regs_overridden = false;
1160
1161         if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1162                 return;
1163
1164         if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1165                 return;
1166
1167         boot->aarch32 = info->aarch32;
1168         init_32bit_cpu_features(&boot->aarch32);
1169         boot_cpu_32bit_regs_overridden = true;
1170 }
1171
1172 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1173                                      struct cpuinfo_32bit *boot)
1174 {
1175         int taint = 0;
1176         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1177
1178         /*
1179          * If we don't have AArch32 at EL1, then relax the strictness of
1180          * EL1-dependent register fields to avoid spurious sanity check fails.
1181          */
1182         if (!id_aa64pfr0_32bit_el1(pfr0)) {
1183                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1184                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1185                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1186                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1187                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1188                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1189         }
1190
1191         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1192                                       info->reg_id_dfr0, boot->reg_id_dfr0);
1193         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1194                                       info->reg_id_dfr1, boot->reg_id_dfr1);
1195         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1196                                       info->reg_id_isar0, boot->reg_id_isar0);
1197         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1198                                       info->reg_id_isar1, boot->reg_id_isar1);
1199         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1200                                       info->reg_id_isar2, boot->reg_id_isar2);
1201         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1202                                       info->reg_id_isar3, boot->reg_id_isar3);
1203         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1204                                       info->reg_id_isar4, boot->reg_id_isar4);
1205         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1206                                       info->reg_id_isar5, boot->reg_id_isar5);
1207         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1208                                       info->reg_id_isar6, boot->reg_id_isar6);
1209
1210         /*
1211          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1212          * ACTLR formats could differ across CPUs and therefore would have to
1213          * be trapped for virtualization anyway.
1214          */
1215         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1216                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1217         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1218                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1219         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1220                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1221         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1222                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1223         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1224                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1225         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1226                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1227         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1228                                       info->reg_id_pfr0, boot->reg_id_pfr0);
1229         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1230                                       info->reg_id_pfr1, boot->reg_id_pfr1);
1231         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1232                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1233         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1234                                       info->reg_mvfr0, boot->reg_mvfr0);
1235         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1236                                       info->reg_mvfr1, boot->reg_mvfr1);
1237         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1238                                       info->reg_mvfr2, boot->reg_mvfr2);
1239
1240         return taint;
1241 }
1242
1243 /*
1244  * Update system wide CPU feature registers with the values from a
1245  * non-boot CPU. Also performs SANITY checks to make sure that there
1246  * aren't any insane variations from that of the boot CPU.
1247  */
1248 void update_cpu_features(int cpu,
1249                          struct cpuinfo_arm64 *info,
1250                          struct cpuinfo_arm64 *boot)
1251 {
1252         int taint = 0;
1253
1254         /*
1255          * The kernel can handle differing I-cache policies, but otherwise
1256          * caches should look identical. Userspace JITs will make use of
1257          * *minLine.
1258          */
1259         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1260                                       info->reg_ctr, boot->reg_ctr);
1261
1262         /*
1263          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1264          * could result in too much or too little memory being zeroed if a
1265          * process is preempted and migrated between CPUs.
1266          */
1267         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1268                                       info->reg_dczid, boot->reg_dczid);
1269
1270         /* If different, timekeeping will be broken (especially with KVM) */
1271         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1272                                       info->reg_cntfrq, boot->reg_cntfrq);
1273
1274         /*
1275          * The kernel uses self-hosted debug features and expects CPUs to
1276          * support identical debug features. We presently need CTX_CMPs, WRPs,
1277          * and BRPs to be identical.
1278          * ID_AA64DFR1 is currently RES0.
1279          */
1280         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1281                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1282         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1283                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1284         /*
1285          * Even in big.LITTLE, processors should be identical instruction-set
1286          * wise.
1287          */
1288         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1289                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1290         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1291                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1292         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1293                                       info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1294
1295         /*
1296          * Differing PARange support is fine as long as all peripherals and
1297          * memory are mapped within the minimum PARange of all CPUs.
1298          * Linux should not care about secure memory.
1299          */
1300         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1301                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1302         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1303                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1304         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1305                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1306         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1307                                       info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1308
1309         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1310                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1311         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1312                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1313
1314         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1315                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1316
1317         taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1318                                       info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1319
1320         /* Probe vector lengths */
1321         if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1322             id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1323                 if (!system_capabilities_finalized()) {
1324                         unsigned long cpacr = cpacr_save_enable_kernel_sve();
1325
1326                         vec_update_vq_map(ARM64_VEC_SVE);
1327
1328                         cpacr_restore(cpacr);
1329                 }
1330         }
1331
1332         if (IS_ENABLED(CONFIG_ARM64_SME) &&
1333             id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1334                 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1335
1336                 /*
1337                  * We mask out SMPS since even if the hardware
1338                  * supports priorities the kernel does not at present
1339                  * and we block access to them.
1340                  */
1341                 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1342
1343                 /* Probe vector lengths */
1344                 if (!system_capabilities_finalized())
1345                         vec_update_vq_map(ARM64_VEC_SME);
1346
1347                 cpacr_restore(cpacr);
1348         }
1349
1350         /*
1351          * The kernel uses the LDGM/STGM instructions and the number of tags
1352          * they read/write depends on the GMID_EL1.BS field. Check that the
1353          * value is the same on all CPUs.
1354          */
1355         if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1356             id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1357                 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1358                                               info->reg_gmid, boot->reg_gmid);
1359         }
1360
1361         /*
1362          * If we don't have AArch32 at all then skip the checks entirely
1363          * as the register values may be UNKNOWN and we're not going to be
1364          * using them for anything.
1365          *
1366          * This relies on a sanitised view of the AArch64 ID registers
1367          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1368          */
1369         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1370                 lazy_init_32bit_cpu_features(info, boot);
1371                 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1372                                                    &boot->aarch32);
1373         }
1374
1375         /*
1376          * Mismatched CPU features are a recipe for disaster. Don't even
1377          * pretend to support them.
1378          */
1379         if (taint) {
1380                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1381                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1382         }
1383 }
1384
1385 u64 read_sanitised_ftr_reg(u32 id)
1386 {
1387         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1388
1389         if (!regp)
1390                 return 0;
1391         return regp->sys_val;
1392 }
1393 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1394
1395 #define read_sysreg_case(r)     \
1396         case r:         val = read_sysreg_s(r); break;
1397
1398 /*
1399  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1400  * Read the system register on the current CPU
1401  */
1402 u64 __read_sysreg_by_encoding(u32 sys_id)
1403 {
1404         struct arm64_ftr_reg *regp;
1405         u64 val;
1406
1407         switch (sys_id) {
1408         read_sysreg_case(SYS_ID_PFR0_EL1);
1409         read_sysreg_case(SYS_ID_PFR1_EL1);
1410         read_sysreg_case(SYS_ID_PFR2_EL1);
1411         read_sysreg_case(SYS_ID_DFR0_EL1);
1412         read_sysreg_case(SYS_ID_DFR1_EL1);
1413         read_sysreg_case(SYS_ID_MMFR0_EL1);
1414         read_sysreg_case(SYS_ID_MMFR1_EL1);
1415         read_sysreg_case(SYS_ID_MMFR2_EL1);
1416         read_sysreg_case(SYS_ID_MMFR3_EL1);
1417         read_sysreg_case(SYS_ID_MMFR4_EL1);
1418         read_sysreg_case(SYS_ID_MMFR5_EL1);
1419         read_sysreg_case(SYS_ID_ISAR0_EL1);
1420         read_sysreg_case(SYS_ID_ISAR1_EL1);
1421         read_sysreg_case(SYS_ID_ISAR2_EL1);
1422         read_sysreg_case(SYS_ID_ISAR3_EL1);
1423         read_sysreg_case(SYS_ID_ISAR4_EL1);
1424         read_sysreg_case(SYS_ID_ISAR5_EL1);
1425         read_sysreg_case(SYS_ID_ISAR6_EL1);
1426         read_sysreg_case(SYS_MVFR0_EL1);
1427         read_sysreg_case(SYS_MVFR1_EL1);
1428         read_sysreg_case(SYS_MVFR2_EL1);
1429
1430         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1431         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1432         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1433         read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1434         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1435         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1436         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1437         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1438         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1439         read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1440         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1441         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1442         read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1443
1444         read_sysreg_case(SYS_CNTFRQ_EL0);
1445         read_sysreg_case(SYS_CTR_EL0);
1446         read_sysreg_case(SYS_DCZID_EL0);
1447
1448         default:
1449                 BUG();
1450                 return 0;
1451         }
1452
1453         regp  = get_arm64_ftr_reg(sys_id);
1454         if (regp) {
1455                 val &= ~regp->override->mask;
1456                 val |= (regp->override->val & regp->override->mask);
1457         }
1458
1459         return val;
1460 }
1461
1462 #include <linux/irqchip/arm-gic-v3.h>
1463
1464 static bool
1465 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1466 {
1467         return true;
1468 }
1469
1470 static bool
1471 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1472 {
1473         int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1474                                                     entry->field_width,
1475                                                     entry->sign);
1476
1477         return val >= entry->min_field_value;
1478 }
1479
1480 static u64
1481 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1482 {
1483         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1484         if (scope == SCOPE_SYSTEM)
1485                 return read_sanitised_ftr_reg(entry->sys_reg);
1486         else
1487                 return __read_sysreg_by_encoding(entry->sys_reg);
1488 }
1489
1490 static bool
1491 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1492 {
1493         int mask;
1494         struct arm64_ftr_reg *regp;
1495         u64 val = read_scoped_sysreg(entry, scope);
1496
1497         regp = get_arm64_ftr_reg(entry->sys_reg);
1498         if (!regp)
1499                 return false;
1500
1501         mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1502                                                           entry->field_pos,
1503                                                           entry->field_width);
1504         if (!mask)
1505                 return false;
1506
1507         return feature_matches(val, entry);
1508 }
1509
1510 static bool
1511 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1512 {
1513         u64 val = read_scoped_sysreg(entry, scope);
1514         return feature_matches(val, entry);
1515 }
1516
1517 const struct cpumask *system_32bit_el0_cpumask(void)
1518 {
1519         if (!system_supports_32bit_el0())
1520                 return cpu_none_mask;
1521
1522         if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1523                 return cpu_32bit_el0_mask;
1524
1525         return cpu_possible_mask;
1526 }
1527
1528 static int __init parse_32bit_el0_param(char *str)
1529 {
1530         allow_mismatched_32bit_el0 = true;
1531         return 0;
1532 }
1533 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1534
1535 static ssize_t aarch32_el0_show(struct device *dev,
1536                                 struct device_attribute *attr, char *buf)
1537 {
1538         const struct cpumask *mask = system_32bit_el0_cpumask();
1539
1540         return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1541 }
1542 static const DEVICE_ATTR_RO(aarch32_el0);
1543
1544 static int __init aarch32_el0_sysfs_init(void)
1545 {
1546         struct device *dev_root;
1547         int ret = 0;
1548
1549         if (!allow_mismatched_32bit_el0)
1550                 return 0;
1551
1552         dev_root = bus_get_dev_root(&cpu_subsys);
1553         if (dev_root) {
1554                 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1555                 put_device(dev_root);
1556         }
1557         return ret;
1558 }
1559 device_initcall(aarch32_el0_sysfs_init);
1560
1561 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1562 {
1563         if (!has_cpuid_feature(entry, scope))
1564                 return allow_mismatched_32bit_el0;
1565
1566         if (scope == SCOPE_SYSTEM)
1567                 pr_info("detected: 32-bit EL0 Support\n");
1568
1569         return true;
1570 }
1571
1572 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1573 {
1574         bool has_sre;
1575
1576         if (!has_cpuid_feature(entry, scope))
1577                 return false;
1578
1579         has_sre = gic_enable_sre();
1580         if (!has_sre)
1581                 pr_warn_once("%s present but disabled by higher exception level\n",
1582                              entry->desc);
1583
1584         return has_sre;
1585 }
1586
1587 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1588 {
1589         u32 midr = read_cpuid_id();
1590
1591         /* Cavium ThunderX pass 1.x and 2.x */
1592         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1593                 MIDR_CPU_VAR_REV(0, 0),
1594                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1595 }
1596
1597 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1598                           int scope)
1599 {
1600         u64 ctr;
1601
1602         if (scope == SCOPE_SYSTEM)
1603                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1604         else
1605                 ctr = read_cpuid_effective_cachetype();
1606
1607         return ctr & BIT(CTR_EL0_IDC_SHIFT);
1608 }
1609
1610 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1611 {
1612         /*
1613          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1614          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1615          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1616          * value.
1617          */
1618         if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1619                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1620 }
1621
1622 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1623                           int scope)
1624 {
1625         u64 ctr;
1626
1627         if (scope == SCOPE_SYSTEM)
1628                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1629         else
1630                 ctr = read_cpuid_cachetype();
1631
1632         return ctr & BIT(CTR_EL0_DIC_SHIFT);
1633 }
1634
1635 static bool __maybe_unused
1636 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1637 {
1638         /*
1639          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1640          * may share TLB entries with a CPU stuck in the crashed
1641          * kernel.
1642          */
1643         if (is_kdump_kernel())
1644                 return false;
1645
1646         if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1647                 return false;
1648
1649         return has_cpuid_feature(entry, scope);
1650 }
1651
1652 /*
1653  * This check is triggered during the early boot before the cpufeature
1654  * is initialised. Checking the status on the local CPU allows the boot
1655  * CPU to detect the need for non-global mappings and thus avoiding a
1656  * pagetable re-write after all the CPUs are booted. This check will be
1657  * anyway run on individual CPUs, allowing us to get the consistent
1658  * state once the SMP CPUs are up and thus make the switch to non-global
1659  * mappings if required.
1660  */
1661 bool kaslr_requires_kpti(void)
1662 {
1663         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1664                 return false;
1665
1666         /*
1667          * E0PD does a similar job to KPTI so can be used instead
1668          * where available.
1669          */
1670         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1671                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1672                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1673                                                 ID_AA64MMFR2_EL1_E0PD_SHIFT))
1674                         return false;
1675         }
1676
1677         /*
1678          * Systems affected by Cavium erratum 24756 are incompatible
1679          * with KPTI.
1680          */
1681         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1682                 extern const struct midr_range cavium_erratum_27456_cpus[];
1683
1684                 if (is_midr_in_range_list(read_cpuid_id(),
1685                                           cavium_erratum_27456_cpus))
1686                         return false;
1687         }
1688
1689         return kaslr_enabled();
1690 }
1691
1692 static bool __meltdown_safe = true;
1693 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1694
1695 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1696                                 int scope)
1697 {
1698         /* List of CPUs that are not vulnerable and don't need KPTI */
1699         static const struct midr_range kpti_safe_list[] = {
1700                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1701                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1702                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1703                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1704                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1705                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1706                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1707                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1708                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1709                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1710                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1711                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1712                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1713                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1714                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1715                 { /* sentinel */ }
1716         };
1717         char const *str = "kpti command line option";
1718         bool meltdown_safe;
1719
1720         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1721
1722         /* Defer to CPU feature registers */
1723         if (has_cpuid_feature(entry, scope))
1724                 meltdown_safe = true;
1725
1726         if (!meltdown_safe)
1727                 __meltdown_safe = false;
1728
1729         /*
1730          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1731          * ThunderX leads to apparent I-cache corruption of kernel text, which
1732          * ends as well as you might imagine. Don't even try. We cannot rely
1733          * on the cpus_have_*cap() helpers here to detect the CPU erratum
1734          * because cpucap detection order may change. However, since we know
1735          * affected CPUs are always in a homogeneous configuration, it is
1736          * safe to rely on this_cpu_has_cap() here.
1737          */
1738         if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1739                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1740                 __kpti_forced = -1;
1741         }
1742
1743         /* Useful for KASLR robustness */
1744         if (kaslr_requires_kpti()) {
1745                 if (!__kpti_forced) {
1746                         str = "KASLR";
1747                         __kpti_forced = 1;
1748                 }
1749         }
1750
1751         if (cpu_mitigations_off() && !__kpti_forced) {
1752                 str = "mitigations=off";
1753                 __kpti_forced = -1;
1754         }
1755
1756         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1757                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1758                 return false;
1759         }
1760
1761         /* Forced? */
1762         if (__kpti_forced) {
1763                 pr_info_once("kernel page table isolation forced %s by %s\n",
1764                              __kpti_forced > 0 ? "ON" : "OFF", str);
1765                 return __kpti_forced > 0;
1766         }
1767
1768         return !meltdown_safe;
1769 }
1770
1771 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1772 #define KPTI_NG_TEMP_VA         (-(1UL << PMD_SHIFT))
1773
1774 extern
1775 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1776                              phys_addr_t size, pgprot_t prot,
1777                              phys_addr_t (*pgtable_alloc)(int), int flags);
1778
1779 static phys_addr_t __initdata kpti_ng_temp_alloc;
1780
1781 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1782 {
1783         kpti_ng_temp_alloc -= PAGE_SIZE;
1784         return kpti_ng_temp_alloc;
1785 }
1786
1787 static int __init __kpti_install_ng_mappings(void *__unused)
1788 {
1789         typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1790         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1791         kpti_remap_fn *remap_fn;
1792
1793         int cpu = smp_processor_id();
1794         int levels = CONFIG_PGTABLE_LEVELS;
1795         int order = order_base_2(levels);
1796         u64 kpti_ng_temp_pgd_pa = 0;
1797         pgd_t *kpti_ng_temp_pgd;
1798         u64 alloc = 0;
1799
1800         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1801
1802         if (!cpu) {
1803                 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1804                 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1805                 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1806
1807                 //
1808                 // Create a minimal page table hierarchy that permits us to map
1809                 // the swapper page tables temporarily as we traverse them.
1810                 //
1811                 // The physical pages are laid out as follows:
1812                 //
1813                 // +--------+-/-------+-/------ +-\\--------+
1814                 // :  PTE[] : | PMD[] : | PUD[] : || PGD[]  :
1815                 // +--------+-\-------+-\------ +-//--------+
1816                 //      ^
1817                 // The first page is mapped into this hierarchy at a PMD_SHIFT
1818                 // aligned virtual address, so that we can manipulate the PTE
1819                 // level entries while the mapping is active. The first entry
1820                 // covers the PTE[] page itself, the remaining entries are free
1821                 // to be used as a ad-hoc fixmap.
1822                 //
1823                 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1824                                         KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1825                                         kpti_ng_pgd_alloc, 0);
1826         }
1827
1828         cpu_install_idmap();
1829         remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1830         cpu_uninstall_idmap();
1831
1832         if (!cpu) {
1833                 free_pages(alloc, order);
1834                 arm64_use_ng_mappings = true;
1835         }
1836
1837         return 0;
1838 }
1839
1840 static void __init kpti_install_ng_mappings(void)
1841 {
1842         /* Check whether KPTI is going to be used */
1843         if (!cpus_have_cap(ARM64_UNMAP_KERNEL_AT_EL0))
1844                 return;
1845
1846         /*
1847          * We don't need to rewrite the page-tables if either we've done
1848          * it already or we have KASLR enabled and therefore have not
1849          * created any global mappings at all.
1850          */
1851         if (arm64_use_ng_mappings)
1852                 return;
1853
1854         stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1855 }
1856
1857 #else
1858 static inline void kpti_install_ng_mappings(void)
1859 {
1860 }
1861 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1862
1863 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1864 {
1865         if (__this_cpu_read(this_cpu_vector) == vectors) {
1866                 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1867
1868                 __this_cpu_write(this_cpu_vector, v);
1869         }
1870
1871 }
1872
1873 static int __init parse_kpti(char *str)
1874 {
1875         bool enabled;
1876         int ret = kstrtobool(str, &enabled);
1877
1878         if (ret)
1879                 return ret;
1880
1881         __kpti_forced = enabled ? 1 : -1;
1882         return 0;
1883 }
1884 early_param("kpti", parse_kpti);
1885
1886 #ifdef CONFIG_ARM64_HW_AFDBM
1887 static struct cpumask dbm_cpus __read_mostly;
1888
1889 static inline void __cpu_enable_hw_dbm(void)
1890 {
1891         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1892
1893         write_sysreg(tcr, tcr_el1);
1894         isb();
1895         local_flush_tlb_all();
1896 }
1897
1898 static bool cpu_has_broken_dbm(void)
1899 {
1900         /* List of CPUs which have broken DBM support. */
1901         static const struct midr_range cpus[] = {
1902 #ifdef CONFIG_ARM64_ERRATUM_1024718
1903                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1904                 /* Kryo4xx Silver (rdpe => r1p0) */
1905                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1906 #endif
1907 #ifdef CONFIG_ARM64_ERRATUM_2051678
1908                 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1909 #endif
1910                 {},
1911         };
1912
1913         return is_midr_in_range_list(read_cpuid_id(), cpus);
1914 }
1915
1916 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1917 {
1918         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1919                !cpu_has_broken_dbm();
1920 }
1921
1922 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1923 {
1924         if (cpu_can_use_dbm(cap)) {
1925                 __cpu_enable_hw_dbm();
1926                 cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
1927         }
1928 }
1929
1930 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1931                        int __unused)
1932 {
1933         /*
1934          * DBM is a non-conflicting feature. i.e, the kernel can safely
1935          * run a mix of CPUs with and without the feature. So, we
1936          * unconditionally enable the capability to allow any late CPU
1937          * to use the feature. We only enable the control bits on the
1938          * CPU, if it is supported.
1939          */
1940
1941         return true;
1942 }
1943
1944 #endif
1945
1946 #ifdef CONFIG_ARM64_AMU_EXTN
1947
1948 /*
1949  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1950  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1951  * information regarding all the events that it supports. When a CPU bit is
1952  * set in the cpumask, the user of this feature can only rely on the presence
1953  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1954  * counters are enabled or access to these counters is enabled by code
1955  * executed at higher exception levels (firmware).
1956  */
1957 static struct cpumask amu_cpus __read_mostly;
1958
1959 bool cpu_has_amu_feat(int cpu)
1960 {
1961         return cpumask_test_cpu(cpu, &amu_cpus);
1962 }
1963
1964 int get_cpu_with_amu_feat(void)
1965 {
1966         return cpumask_any(&amu_cpus);
1967 }
1968
1969 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1970 {
1971         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1972                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1973
1974                 /* 0 reference values signal broken/disabled counters */
1975                 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1976                         update_freq_counters_refs();
1977         }
1978 }
1979
1980 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1981                     int __unused)
1982 {
1983         /*
1984          * The AMU extension is a non-conflicting feature: the kernel can
1985          * safely run a mix of CPUs with and without support for the
1986          * activity monitors extension. Therefore, unconditionally enable
1987          * the capability to allow any late CPU to use the feature.
1988          *
1989          * With this feature unconditionally enabled, the cpu_enable
1990          * function will be called for all CPUs that match the criteria,
1991          * including secondary and hotplugged, marking this feature as
1992          * present on that respective CPU. The enable function will also
1993          * print a detection message.
1994          */
1995
1996         return true;
1997 }
1998 #else
1999 int get_cpu_with_amu_feat(void)
2000 {
2001         return nr_cpu_ids;
2002 }
2003 #endif
2004
2005 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2006 {
2007         return is_kernel_in_hyp_mode();
2008 }
2009
2010 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2011 {
2012         /*
2013          * Copy register values that aren't redirected by hardware.
2014          *
2015          * Before code patching, we only set tpidr_el1, all CPUs need to copy
2016          * this value to tpidr_el2 before we patch the code. Once we've done
2017          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2018          * do anything here.
2019          */
2020         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2021                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2022 }
2023
2024 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2025                                     int scope)
2026 {
2027         if (kvm_get_mode() != KVM_MODE_NV)
2028                 return false;
2029
2030         if (!has_cpuid_feature(cap, scope)) {
2031                 pr_warn("unavailable: %s\n", cap->desc);
2032                 return false;
2033         }
2034
2035         return true;
2036 }
2037
2038 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2039                           int __unused)
2040 {
2041         u64 val;
2042
2043         val = read_sysreg(id_aa64mmfr1_el1);
2044         if (!cpuid_feature_extract_unsigned_field(val, ID_AA64MMFR1_EL1_VH_SHIFT))
2045                 return false;
2046
2047         val = arm64_sw_feature_override.val & arm64_sw_feature_override.mask;
2048         return cpuid_feature_extract_unsigned_field(val, ARM64_SW_FEATURE_OVERRIDE_HVHE);
2049 }
2050
2051 #ifdef CONFIG_ARM64_PAN
2052 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2053 {
2054         /*
2055          * We modify PSTATE. This won't work from irq context as the PSTATE
2056          * is discarded once we return from the exception.
2057          */
2058         WARN_ON_ONCE(in_interrupt());
2059
2060         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2061         set_pstate_pan(1);
2062 }
2063 #endif /* CONFIG_ARM64_PAN */
2064
2065 #ifdef CONFIG_ARM64_RAS_EXTN
2066 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2067 {
2068         /* Firmware may have left a deferred SError in this register. */
2069         write_sysreg_s(0, SYS_DISR_EL1);
2070 }
2071 #endif /* CONFIG_ARM64_RAS_EXTN */
2072
2073 #ifdef CONFIG_ARM64_PTR_AUTH
2074 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2075 {
2076         int boot_val, sec_val;
2077
2078         /* We don't expect to be called with SCOPE_SYSTEM */
2079         WARN_ON(scope == SCOPE_SYSTEM);
2080         /*
2081          * The ptr-auth feature levels are not intercompatible with lower
2082          * levels. Hence we must match ptr-auth feature level of the secondary
2083          * CPUs with that of the boot CPU. The level of boot cpu is fetched
2084          * from the sanitised register whereas direct register read is done for
2085          * the secondary CPUs.
2086          * The sanitised feature state is guaranteed to match that of the
2087          * boot CPU as a mismatched secondary CPU is parked before it gets
2088          * a chance to update the state, with the capability.
2089          */
2090         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2091                                                entry->field_pos, entry->sign);
2092         if (scope & SCOPE_BOOT_CPU)
2093                 return boot_val >= entry->min_field_value;
2094         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2095         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2096                                               entry->field_pos, entry->sign);
2097         return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2098 }
2099
2100 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2101                                      int scope)
2102 {
2103         bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2104         bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2105         bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2106
2107         return apa || apa3 || api;
2108 }
2109
2110 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2111                              int __unused)
2112 {
2113         bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2114         bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2115         bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2116
2117         return gpa || gpa3 || gpi;
2118 }
2119 #endif /* CONFIG_ARM64_PTR_AUTH */
2120
2121 #ifdef CONFIG_ARM64_E0PD
2122 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2123 {
2124         if (this_cpu_has_cap(ARM64_HAS_E0PD))
2125                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2126 }
2127 #endif /* CONFIG_ARM64_E0PD */
2128
2129 #ifdef CONFIG_ARM64_PSEUDO_NMI
2130 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2131                                    int scope)
2132 {
2133         /*
2134          * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2135          * feature, so will be detected earlier.
2136          */
2137         BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2138         if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2139                 return false;
2140
2141         return enable_pseudo_nmi;
2142 }
2143
2144 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2145                                       int scope)
2146 {
2147         /*
2148          * If we're not using priority masking then we won't be poking PMR_EL1,
2149          * and there's no need to relax synchronization of writes to it, and
2150          * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2151          * that.
2152          *
2153          * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2154          * feature, so will be detected earlier.
2155          */
2156         BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2157         if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2158                 return false;
2159
2160         /*
2161          * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2162          * hint for interrupt distribution, a DSB is not necessary when
2163          * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2164          *
2165          * Linux itself doesn't use 1:N distribution, so has no need to
2166          * set PMHE. The only reason to have it set is if EL3 requires it
2167          * (and we can't change it).
2168          */
2169         return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2170 }
2171 #endif
2172
2173 #ifdef CONFIG_ARM64_BTI
2174 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2175 {
2176         /*
2177          * Use of X16/X17 for tail-calls and trampolines that jump to
2178          * function entry points using BR is a requirement for
2179          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2180          * So, be strict and forbid other BRs using other registers to
2181          * jump onto a PACIxSP instruction:
2182          */
2183         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2184         isb();
2185 }
2186 #endif /* CONFIG_ARM64_BTI */
2187
2188 #ifdef CONFIG_ARM64_MTE
2189 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2190 {
2191         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2192
2193         mte_cpu_setup();
2194
2195         /*
2196          * Clear the tags in the zero page. This needs to be done via the
2197          * linear map which has the Tagged attribute.
2198          */
2199         if (try_page_mte_tagging(ZERO_PAGE(0))) {
2200                 mte_clear_page_tags(lm_alias(empty_zero_page));
2201                 set_page_mte_tagged(ZERO_PAGE(0));
2202         }
2203
2204         kasan_init_hw_tags_cpu();
2205 }
2206 #endif /* CONFIG_ARM64_MTE */
2207
2208 static void user_feature_fixup(void)
2209 {
2210         if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2211                 struct arm64_ftr_reg *regp;
2212
2213                 regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2214                 if (regp)
2215                         regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2216         }
2217 }
2218
2219 static void elf_hwcap_fixup(void)
2220 {
2221 #ifdef CONFIG_COMPAT
2222         if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2223                 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2224 #endif /* CONFIG_COMPAT */
2225 }
2226
2227 #ifdef CONFIG_KVM
2228 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2229 {
2230         return kvm_get_mode() == KVM_MODE_PROTECTED;
2231 }
2232 #endif /* CONFIG_KVM */
2233
2234 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2235 {
2236         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2237 }
2238
2239 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2240 {
2241         set_pstate_dit(1);
2242 }
2243
2244 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2245 {
2246         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2247 }
2248
2249 /* Internal helper functions to match cpu capability type */
2250 static bool
2251 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2252 {
2253         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2254 }
2255
2256 static bool
2257 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2258 {
2259         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2260 }
2261
2262 static bool
2263 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2264 {
2265         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2266 }
2267
2268 static const struct arm64_cpu_capabilities arm64_features[] = {
2269         {
2270                 .capability = ARM64_ALWAYS_BOOT,
2271                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2272                 .matches = has_always,
2273         },
2274         {
2275                 .capability = ARM64_ALWAYS_SYSTEM,
2276                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2277                 .matches = has_always,
2278         },
2279         {
2280                 .desc = "GIC system register CPU interface",
2281                 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2282                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2283                 .matches = has_useable_gicv3_cpuif,
2284                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2285         },
2286         {
2287                 .desc = "Enhanced Counter Virtualization",
2288                 .capability = ARM64_HAS_ECV,
2289                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2290                 .matches = has_cpuid_feature,
2291                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2292         },
2293         {
2294                 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2295                 .capability = ARM64_HAS_ECV_CNTPOFF,
2296                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2297                 .matches = has_cpuid_feature,
2298                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2299         },
2300 #ifdef CONFIG_ARM64_PAN
2301         {
2302                 .desc = "Privileged Access Never",
2303                 .capability = ARM64_HAS_PAN,
2304                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2305                 .matches = has_cpuid_feature,
2306                 .cpu_enable = cpu_enable_pan,
2307                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2308         },
2309 #endif /* CONFIG_ARM64_PAN */
2310 #ifdef CONFIG_ARM64_EPAN
2311         {
2312                 .desc = "Enhanced Privileged Access Never",
2313                 .capability = ARM64_HAS_EPAN,
2314                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2315                 .matches = has_cpuid_feature,
2316                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2317         },
2318 #endif /* CONFIG_ARM64_EPAN */
2319 #ifdef CONFIG_ARM64_LSE_ATOMICS
2320         {
2321                 .desc = "LSE atomic instructions",
2322                 .capability = ARM64_HAS_LSE_ATOMICS,
2323                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2324                 .matches = has_cpuid_feature,
2325                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2326         },
2327 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2328         {
2329                 .desc = "Software prefetching using PRFM",
2330                 .capability = ARM64_HAS_NO_HW_PREFETCH,
2331                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2332                 .matches = has_no_hw_prefetch,
2333         },
2334         {
2335                 .desc = "Virtualization Host Extensions",
2336                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2337                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2338                 .matches = runs_at_el2,
2339                 .cpu_enable = cpu_copy_el2regs,
2340         },
2341         {
2342                 .desc = "Nested Virtualization Support",
2343                 .capability = ARM64_HAS_NESTED_VIRT,
2344                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2345                 .matches = has_nested_virt_support,
2346                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, IMP)
2347         },
2348         {
2349                 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2350                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2351                 .matches = has_32bit_el0,
2352                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2353         },
2354 #ifdef CONFIG_KVM
2355         {
2356                 .desc = "32-bit EL1 Support",
2357                 .capability = ARM64_HAS_32BIT_EL1,
2358                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2359                 .matches = has_cpuid_feature,
2360                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2361         },
2362         {
2363                 .desc = "Protected KVM",
2364                 .capability = ARM64_KVM_PROTECTED_MODE,
2365                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2366                 .matches = is_kvm_protected_mode,
2367         },
2368         {
2369                 .desc = "HCRX_EL2 register",
2370                 .capability = ARM64_HAS_HCX,
2371                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2372                 .matches = has_cpuid_feature,
2373                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2374         },
2375 #endif
2376         {
2377                 .desc = "Kernel page table isolation (KPTI)",
2378                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2379                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2380                 .cpu_enable = cpu_enable_kpti,
2381                 .matches = unmap_kernel_at_el0,
2382                 /*
2383                  * The ID feature fields below are used to indicate that
2384                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2385                  * more details.
2386                  */
2387                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2388         },
2389         {
2390                 .capability = ARM64_HAS_FPSIMD,
2391                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2392                 .matches = has_cpuid_feature,
2393                 .cpu_enable = cpu_enable_fpsimd,
2394                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2395         },
2396 #ifdef CONFIG_ARM64_PMEM
2397         {
2398                 .desc = "Data cache clean to Point of Persistence",
2399                 .capability = ARM64_HAS_DCPOP,
2400                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2401                 .matches = has_cpuid_feature,
2402                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2403         },
2404         {
2405                 .desc = "Data cache clean to Point of Deep Persistence",
2406                 .capability = ARM64_HAS_DCPODP,
2407                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2408                 .matches = has_cpuid_feature,
2409                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2410         },
2411 #endif
2412 #ifdef CONFIG_ARM64_SVE
2413         {
2414                 .desc = "Scalable Vector Extension",
2415                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2416                 .capability = ARM64_SVE,
2417                 .cpu_enable = cpu_enable_sve,
2418                 .matches = has_cpuid_feature,
2419                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2420         },
2421 #endif /* CONFIG_ARM64_SVE */
2422 #ifdef CONFIG_ARM64_RAS_EXTN
2423         {
2424                 .desc = "RAS Extension Support",
2425                 .capability = ARM64_HAS_RAS_EXTN,
2426                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2427                 .matches = has_cpuid_feature,
2428                 .cpu_enable = cpu_clear_disr,
2429                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2430         },
2431 #endif /* CONFIG_ARM64_RAS_EXTN */
2432 #ifdef CONFIG_ARM64_AMU_EXTN
2433         {
2434                 .desc = "Activity Monitors Unit (AMU)",
2435                 .capability = ARM64_HAS_AMU_EXTN,
2436                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2437                 .matches = has_amu,
2438                 .cpu_enable = cpu_amu_enable,
2439                 .cpus = &amu_cpus,
2440                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2441         },
2442 #endif /* CONFIG_ARM64_AMU_EXTN */
2443         {
2444                 .desc = "Data cache clean to the PoU not required for I/D coherence",
2445                 .capability = ARM64_HAS_CACHE_IDC,
2446                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2447                 .matches = has_cache_idc,
2448                 .cpu_enable = cpu_emulate_effective_ctr,
2449         },
2450         {
2451                 .desc = "Instruction cache invalidation not required for I/D coherence",
2452                 .capability = ARM64_HAS_CACHE_DIC,
2453                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2454                 .matches = has_cache_dic,
2455         },
2456         {
2457                 .desc = "Stage-2 Force Write-Back",
2458                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2459                 .capability = ARM64_HAS_STAGE2_FWB,
2460                 .matches = has_cpuid_feature,
2461                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2462         },
2463         {
2464                 .desc = "ARMv8.4 Translation Table Level",
2465                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2466                 .capability = ARM64_HAS_ARMv8_4_TTL,
2467                 .matches = has_cpuid_feature,
2468                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2469         },
2470         {
2471                 .desc = "TLB range maintenance instructions",
2472                 .capability = ARM64_HAS_TLB_RANGE,
2473                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2474                 .matches = has_cpuid_feature,
2475                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2476         },
2477 #ifdef CONFIG_ARM64_HW_AFDBM
2478         {
2479                 .desc = "Hardware dirty bit management",
2480                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2481                 .capability = ARM64_HW_DBM,
2482                 .matches = has_hw_dbm,
2483                 .cpu_enable = cpu_enable_hw_dbm,
2484                 .cpus = &dbm_cpus,
2485                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2486         },
2487 #endif
2488         {
2489                 .desc = "CRC32 instructions",
2490                 .capability = ARM64_HAS_CRC32,
2491                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2492                 .matches = has_cpuid_feature,
2493                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2494         },
2495         {
2496                 .desc = "Speculative Store Bypassing Safe (SSBS)",
2497                 .capability = ARM64_SSBS,
2498                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2499                 .matches = has_cpuid_feature,
2500                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2501         },
2502 #ifdef CONFIG_ARM64_CNP
2503         {
2504                 .desc = "Common not Private translations",
2505                 .capability = ARM64_HAS_CNP,
2506                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2507                 .matches = has_useable_cnp,
2508                 .cpu_enable = cpu_enable_cnp,
2509                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2510         },
2511 #endif
2512         {
2513                 .desc = "Speculation barrier (SB)",
2514                 .capability = ARM64_HAS_SB,
2515                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2516                 .matches = has_cpuid_feature,
2517                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2518         },
2519 #ifdef CONFIG_ARM64_PTR_AUTH
2520         {
2521                 .desc = "Address authentication (architected QARMA5 algorithm)",
2522                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2523                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2524                 .matches = has_address_auth_cpucap,
2525                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2526         },
2527         {
2528                 .desc = "Address authentication (architected QARMA3 algorithm)",
2529                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2530                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2531                 .matches = has_address_auth_cpucap,
2532                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2533         },
2534         {
2535                 .desc = "Address authentication (IMP DEF algorithm)",
2536                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2537                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2538                 .matches = has_address_auth_cpucap,
2539                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2540         },
2541         {
2542                 .capability = ARM64_HAS_ADDRESS_AUTH,
2543                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2544                 .matches = has_address_auth_metacap,
2545         },
2546         {
2547                 .desc = "Generic authentication (architected QARMA5 algorithm)",
2548                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2549                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2550                 .matches = has_cpuid_feature,
2551                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2552         },
2553         {
2554                 .desc = "Generic authentication (architected QARMA3 algorithm)",
2555                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2556                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2557                 .matches = has_cpuid_feature,
2558                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2559         },
2560         {
2561                 .desc = "Generic authentication (IMP DEF algorithm)",
2562                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2563                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2564                 .matches = has_cpuid_feature,
2565                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2566         },
2567         {
2568                 .capability = ARM64_HAS_GENERIC_AUTH,
2569                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2570                 .matches = has_generic_auth,
2571         },
2572 #endif /* CONFIG_ARM64_PTR_AUTH */
2573 #ifdef CONFIG_ARM64_PSEUDO_NMI
2574         {
2575                 /*
2576                  * Depends on having GICv3
2577                  */
2578                 .desc = "IRQ priority masking",
2579                 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2580                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2581                 .matches = can_use_gic_priorities,
2582         },
2583         {
2584                 /*
2585                  * Depends on ARM64_HAS_GIC_PRIO_MASKING
2586                  */
2587                 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2588                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2589                 .matches = has_gic_prio_relaxed_sync,
2590         },
2591 #endif
2592 #ifdef CONFIG_ARM64_E0PD
2593         {
2594                 .desc = "E0PD",
2595                 .capability = ARM64_HAS_E0PD,
2596                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2597                 .cpu_enable = cpu_enable_e0pd,
2598                 .matches = has_cpuid_feature,
2599                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2600         },
2601 #endif
2602         {
2603                 .desc = "Random Number Generator",
2604                 .capability = ARM64_HAS_RNG,
2605                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2606                 .matches = has_cpuid_feature,
2607                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2608         },
2609 #ifdef CONFIG_ARM64_BTI
2610         {
2611                 .desc = "Branch Target Identification",
2612                 .capability = ARM64_BTI,
2613 #ifdef CONFIG_ARM64_BTI_KERNEL
2614                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2615 #else
2616                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2617 #endif
2618                 .matches = has_cpuid_feature,
2619                 .cpu_enable = bti_enable,
2620                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2621         },
2622 #endif
2623 #ifdef CONFIG_ARM64_MTE
2624         {
2625                 .desc = "Memory Tagging Extension",
2626                 .capability = ARM64_MTE,
2627                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2628                 .matches = has_cpuid_feature,
2629                 .cpu_enable = cpu_enable_mte,
2630                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2631         },
2632         {
2633                 .desc = "Asymmetric MTE Tag Check Fault",
2634                 .capability = ARM64_MTE_ASYMM,
2635                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2636                 .matches = has_cpuid_feature,
2637                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2638         },
2639 #endif /* CONFIG_ARM64_MTE */
2640         {
2641                 .desc = "RCpc load-acquire (LDAPR)",
2642                 .capability = ARM64_HAS_LDAPR,
2643                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2644                 .matches = has_cpuid_feature,
2645                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2646         },
2647         {
2648                 .desc = "Fine Grained Traps",
2649                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2650                 .capability = ARM64_HAS_FGT,
2651                 .matches = has_cpuid_feature,
2652                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2653         },
2654 #ifdef CONFIG_ARM64_SME
2655         {
2656                 .desc = "Scalable Matrix Extension",
2657                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2658                 .capability = ARM64_SME,
2659                 .matches = has_cpuid_feature,
2660                 .cpu_enable = cpu_enable_sme,
2661                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2662         },
2663         /* FA64 should be sorted after the base SME capability */
2664         {
2665                 .desc = "FA64",
2666                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2667                 .capability = ARM64_SME_FA64,
2668                 .matches = has_cpuid_feature,
2669                 .cpu_enable = cpu_enable_fa64,
2670                 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2671         },
2672         {
2673                 .desc = "SME2",
2674                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2675                 .capability = ARM64_SME2,
2676                 .matches = has_cpuid_feature,
2677                 .cpu_enable = cpu_enable_sme2,
2678                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2679         },
2680 #endif /* CONFIG_ARM64_SME */
2681         {
2682                 .desc = "WFx with timeout",
2683                 .capability = ARM64_HAS_WFXT,
2684                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2685                 .matches = has_cpuid_feature,
2686                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2687         },
2688         {
2689                 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2690                 .capability = ARM64_HAS_TIDCP1,
2691                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2692                 .matches = has_cpuid_feature,
2693                 .cpu_enable = cpu_trap_el0_impdef,
2694                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2695         },
2696         {
2697                 .desc = "Data independent timing control (DIT)",
2698                 .capability = ARM64_HAS_DIT,
2699                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2700                 .matches = has_cpuid_feature,
2701                 .cpu_enable = cpu_enable_dit,
2702                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2703         },
2704         {
2705                 .desc = "Memory Copy and Memory Set instructions",
2706                 .capability = ARM64_HAS_MOPS,
2707                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2708                 .matches = has_cpuid_feature,
2709                 .cpu_enable = cpu_enable_mops,
2710                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2711         },
2712         {
2713                 .capability = ARM64_HAS_TCR2,
2714                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2715                 .matches = has_cpuid_feature,
2716                 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2717         },
2718         {
2719                 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2720                 .capability = ARM64_HAS_S1PIE,
2721                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2722                 .matches = has_cpuid_feature,
2723                 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2724         },
2725         {
2726                 .desc = "VHE for hypervisor only",
2727                 .capability = ARM64_KVM_HVHE,
2728                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2729                 .matches = hvhe_possible,
2730         },
2731         {
2732                 .desc = "Enhanced Virtualization Traps",
2733                 .capability = ARM64_HAS_EVT,
2734                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2735                 .matches = has_cpuid_feature,
2736                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2737         },
2738         {},
2739 };
2740
2741 #define HWCAP_CPUID_MATCH(reg, field, min_value)                        \
2742                 .matches = has_user_cpuid_feature,                      \
2743                 ARM64_CPUID_FIELDS(reg, field, min_value)
2744
2745 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2746                 .desc = name,                                                   \
2747                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2748                 .hwcap_type = cap_type,                                         \
2749                 .hwcap = cap,                                                   \
2750
2751 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)         \
2752         {                                                                       \
2753                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2754                 HWCAP_CPUID_MATCH(reg, field, min_value)                \
2755         }
2756
2757 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2758         {                                                                       \
2759                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2760                 .matches = cpucap_multi_entry_cap_matches,                      \
2761                 .match_list = list,                                             \
2762         }
2763
2764 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2765         {                                                                       \
2766                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2767                 .matches = match,                                               \
2768         }
2769
2770 #ifdef CONFIG_ARM64_PTR_AUTH
2771 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2772         {
2773                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2774         },
2775         {
2776                 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2777         },
2778         {
2779                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2780         },
2781         {},
2782 };
2783
2784 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2785         {
2786                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2787         },
2788         {
2789                 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2790         },
2791         {
2792                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2793         },
2794         {},
2795 };
2796 #endif
2797
2798 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2799         HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2800         HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2801         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2802         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2803         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2804         HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2805         HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2806         HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
2807         HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2808         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2809         HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2810         HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2811         HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2812         HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2813         HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2814         HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2815         HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2816         HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2817         HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2818         HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2819         HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2820         HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2821         HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2822         HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2823         HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2824         HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2825         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2826         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2827         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
2828         HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2829         HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2830         HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2831         HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2832         HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2833         HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2834         HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2835 #ifdef CONFIG_ARM64_SVE
2836         HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2837         HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2838         HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2839         HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2840         HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2841         HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2842         HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
2843         HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2844         HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2845         HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2846         HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2847         HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2848         HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2849         HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2850 #endif
2851         HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2852 #ifdef CONFIG_ARM64_BTI
2853         HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2854 #endif
2855 #ifdef CONFIG_ARM64_PTR_AUTH
2856         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2857         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2858 #endif
2859 #ifdef CONFIG_ARM64_MTE
2860         HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2861         HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2862 #endif /* CONFIG_ARM64_MTE */
2863         HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
2864         HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
2865         HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2866         HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2867         HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2868         HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2869         HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
2870         HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
2871 #ifdef CONFIG_ARM64_SME
2872         HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2873         HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2874         HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
2875         HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
2876         HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2877         HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2878         HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
2879         HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
2880         HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
2881         HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2882         HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2883         HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2884         HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
2885         HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2886 #endif /* CONFIG_ARM64_SME */
2887         {},
2888 };
2889
2890 #ifdef CONFIG_COMPAT
2891 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2892 {
2893         /*
2894          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2895          * in line with that of arm32 as in vfp_init(). We make sure that the
2896          * check is future proof, by making sure value is non-zero.
2897          */
2898         u32 mvfr1;
2899
2900         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2901         if (scope == SCOPE_SYSTEM)
2902                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2903         else
2904                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2905
2906         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
2907                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
2908                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
2909 }
2910 #endif
2911
2912 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2913 #ifdef CONFIG_COMPAT
2914         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2915         HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2916         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2917         HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2918         HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2919         HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
2920         HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
2921         HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2922         HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2923         HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2924         HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2925         HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2926         HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
2927         HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
2928         HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
2929         HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
2930         HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
2931         HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
2932 #endif
2933         {},
2934 };
2935
2936 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2937 {
2938         switch (cap->hwcap_type) {
2939         case CAP_HWCAP:
2940                 cpu_set_feature(cap->hwcap);
2941                 break;
2942 #ifdef CONFIG_COMPAT
2943         case CAP_COMPAT_HWCAP:
2944                 compat_elf_hwcap |= (u32)cap->hwcap;
2945                 break;
2946         case CAP_COMPAT_HWCAP2:
2947                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2948                 break;
2949 #endif
2950         default:
2951                 WARN_ON(1);
2952                 break;
2953         }
2954 }
2955
2956 /* Check if we have a particular HWCAP enabled */
2957 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2958 {
2959         bool rc;
2960
2961         switch (cap->hwcap_type) {
2962         case CAP_HWCAP:
2963                 rc = cpu_have_feature(cap->hwcap);
2964                 break;
2965 #ifdef CONFIG_COMPAT
2966         case CAP_COMPAT_HWCAP:
2967                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2968                 break;
2969         case CAP_COMPAT_HWCAP2:
2970                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2971                 break;
2972 #endif
2973         default:
2974                 WARN_ON(1);
2975                 rc = false;
2976         }
2977
2978         return rc;
2979 }
2980
2981 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2982 {
2983         /* We support emulation of accesses to CPU ID feature registers */
2984         cpu_set_named_feature(CPUID);
2985         for (; hwcaps->matches; hwcaps++)
2986                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2987                         cap_set_elf_hwcap(hwcaps);
2988 }
2989
2990 static void update_cpu_capabilities(u16 scope_mask)
2991 {
2992         int i;
2993         const struct arm64_cpu_capabilities *caps;
2994
2995         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2996         for (i = 0; i < ARM64_NCAPS; i++) {
2997                 caps = cpucap_ptrs[i];
2998                 if (!caps || !(caps->type & scope_mask) ||
2999                     cpus_have_cap(caps->capability) ||
3000                     !caps->matches(caps, cpucap_default_scope(caps)))
3001                         continue;
3002
3003                 if (caps->desc && !caps->cpus)
3004                         pr_info("detected: %s\n", caps->desc);
3005
3006                 __set_bit(caps->capability, system_cpucaps);
3007
3008                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3009                         set_bit(caps->capability, boot_cpucaps);
3010         }
3011 }
3012
3013 /*
3014  * Enable all the available capabilities on this CPU. The capabilities
3015  * with BOOT_CPU scope are handled separately and hence skipped here.
3016  */
3017 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3018 {
3019         int i;
3020         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3021
3022         for_each_available_cap(i) {
3023                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3024
3025                 if (WARN_ON(!cap))
3026                         continue;
3027
3028                 if (!(cap->type & non_boot_scope))
3029                         continue;
3030
3031                 if (cap->cpu_enable)
3032                         cap->cpu_enable(cap);
3033         }
3034         return 0;
3035 }
3036
3037 /*
3038  * Run through the enabled capabilities and enable() it on all active
3039  * CPUs
3040  */
3041 static void __init enable_cpu_capabilities(u16 scope_mask)
3042 {
3043         int i;
3044         const struct arm64_cpu_capabilities *caps;
3045         bool boot_scope;
3046
3047         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3048         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3049
3050         for (i = 0; i < ARM64_NCAPS; i++) {
3051                 unsigned int num;
3052
3053                 caps = cpucap_ptrs[i];
3054                 if (!caps || !(caps->type & scope_mask))
3055                         continue;
3056                 num = caps->capability;
3057                 if (!cpus_have_cap(num))
3058                         continue;
3059
3060                 if (boot_scope && caps->cpu_enable)
3061                         /*
3062                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
3063                          * before any secondary CPU boots. Thus, each secondary
3064                          * will enable the capability as appropriate via
3065                          * check_local_cpu_capabilities(). The only exception is
3066                          * the boot CPU, for which the capability must be
3067                          * enabled here. This approach avoids costly
3068                          * stop_machine() calls for this case.
3069                          */
3070                         caps->cpu_enable(caps);
3071         }
3072
3073         /*
3074          * For all non-boot scope capabilities, use stop_machine()
3075          * as it schedules the work allowing us to modify PSTATE,
3076          * instead of on_each_cpu() which uses an IPI, giving us a
3077          * PSTATE that disappears when we return.
3078          */
3079         if (!boot_scope)
3080                 stop_machine(cpu_enable_non_boot_scope_capabilities,
3081                              NULL, cpu_online_mask);
3082 }
3083
3084 /*
3085  * Run through the list of capabilities to check for conflicts.
3086  * If the system has already detected a capability, take necessary
3087  * action on this CPU.
3088  */
3089 static void verify_local_cpu_caps(u16 scope_mask)
3090 {
3091         int i;
3092         bool cpu_has_cap, system_has_cap;
3093         const struct arm64_cpu_capabilities *caps;
3094
3095         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3096
3097         for (i = 0; i < ARM64_NCAPS; i++) {
3098                 caps = cpucap_ptrs[i];
3099                 if (!caps || !(caps->type & scope_mask))
3100                         continue;
3101
3102                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3103                 system_has_cap = cpus_have_cap(caps->capability);
3104
3105                 if (system_has_cap) {
3106                         /*
3107                          * Check if the new CPU misses an advertised feature,
3108                          * which is not safe to miss.
3109                          */
3110                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3111                                 break;
3112                         /*
3113                          * We have to issue cpu_enable() irrespective of
3114                          * whether the CPU has it or not, as it is enabeld
3115                          * system wide. It is upto the call back to take
3116                          * appropriate action on this CPU.
3117                          */
3118                         if (caps->cpu_enable)
3119                                 caps->cpu_enable(caps);
3120                 } else {
3121                         /*
3122                          * Check if the CPU has this capability if it isn't
3123                          * safe to have when the system doesn't.
3124                          */
3125                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3126                                 break;
3127                 }
3128         }
3129
3130         if (i < ARM64_NCAPS) {
3131                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3132                         smp_processor_id(), caps->capability,
3133                         caps->desc, system_has_cap, cpu_has_cap);
3134
3135                 if (cpucap_panic_on_conflict(caps))
3136                         cpu_panic_kernel();
3137                 else
3138                         cpu_die_early();
3139         }
3140 }
3141
3142 /*
3143  * Check for CPU features that are used in early boot
3144  * based on the Boot CPU value.
3145  */
3146 static void check_early_cpu_features(void)
3147 {
3148         verify_cpu_asid_bits();
3149
3150         verify_local_cpu_caps(SCOPE_BOOT_CPU);
3151 }
3152
3153 static void
3154 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3155 {
3156
3157         for (; caps->matches; caps++)
3158                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3159                         pr_crit("CPU%d: missing HWCAP: %s\n",
3160                                         smp_processor_id(), caps->desc);
3161                         cpu_die_early();
3162                 }
3163 }
3164
3165 static void verify_local_elf_hwcaps(void)
3166 {
3167         __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3168
3169         if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3170                 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3171 }
3172
3173 static void verify_sve_features(void)
3174 {
3175         unsigned long cpacr = cpacr_save_enable_kernel_sve();
3176
3177         if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3178                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3179                         smp_processor_id());
3180                 cpu_die_early();
3181         }
3182
3183         cpacr_restore(cpacr);
3184 }
3185
3186 static void verify_sme_features(void)
3187 {
3188         unsigned long cpacr = cpacr_save_enable_kernel_sme();
3189
3190         if (vec_verify_vq_map(ARM64_VEC_SME)) {
3191                 pr_crit("CPU%d: SME: vector length support mismatch\n",
3192                         smp_processor_id());
3193                 cpu_die_early();
3194         }
3195
3196         cpacr_restore(cpacr);
3197 }
3198
3199 static void verify_hyp_capabilities(void)
3200 {
3201         u64 safe_mmfr1, mmfr0, mmfr1;
3202         int parange, ipa_max;
3203         unsigned int safe_vmid_bits, vmid_bits;
3204
3205         if (!IS_ENABLED(CONFIG_KVM))
3206                 return;
3207
3208         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3209         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3210         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3211
3212         /* Verify VMID bits */
3213         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3214         vmid_bits = get_vmid_bits(mmfr1);
3215         if (vmid_bits < safe_vmid_bits) {
3216                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3217                 cpu_die_early();
3218         }
3219
3220         /* Verify IPA range */
3221         parange = cpuid_feature_extract_unsigned_field(mmfr0,
3222                                 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3223         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3224         if (ipa_max < get_kvm_ipa_limit()) {
3225                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3226                 cpu_die_early();
3227         }
3228 }
3229
3230 /*
3231  * Run through the enabled system capabilities and enable() it on this CPU.
3232  * The capabilities were decided based on the available CPUs at the boot time.
3233  * Any new CPU should match the system wide status of the capability. If the
3234  * new CPU doesn't have a capability which the system now has enabled, we
3235  * cannot do anything to fix it up and could cause unexpected failures. So
3236  * we park the CPU.
3237  */
3238 static void verify_local_cpu_capabilities(void)
3239 {
3240         /*
3241          * The capabilities with SCOPE_BOOT_CPU are checked from
3242          * check_early_cpu_features(), as they need to be verified
3243          * on all secondary CPUs.
3244          */
3245         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3246         verify_local_elf_hwcaps();
3247
3248         if (system_supports_sve())
3249                 verify_sve_features();
3250
3251         if (system_supports_sme())
3252                 verify_sme_features();
3253
3254         if (is_hyp_mode_available())
3255                 verify_hyp_capabilities();
3256 }
3257
3258 void check_local_cpu_capabilities(void)
3259 {
3260         /*
3261          * All secondary CPUs should conform to the early CPU features
3262          * in use by the kernel based on boot CPU.
3263          */
3264         check_early_cpu_features();
3265
3266         /*
3267          * If we haven't finalised the system capabilities, this CPU gets
3268          * a chance to update the errata work arounds and local features.
3269          * Otherwise, this CPU should verify that it has all the system
3270          * advertised capabilities.
3271          */
3272         if (!system_capabilities_finalized())
3273                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3274         else
3275                 verify_local_cpu_capabilities();
3276 }
3277
3278 static void __init setup_boot_cpu_capabilities(void)
3279 {
3280         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3281         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3282         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3283         enable_cpu_capabilities(SCOPE_BOOT_CPU);
3284 }
3285
3286 bool this_cpu_has_cap(unsigned int n)
3287 {
3288         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3289                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3290
3291                 if (cap)
3292                         return cap->matches(cap, SCOPE_LOCAL_CPU);
3293         }
3294
3295         return false;
3296 }
3297 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3298
3299 /*
3300  * This helper function is used in a narrow window when,
3301  * - The system wide safe registers are set with all the SMP CPUs and,
3302  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3303  */
3304 static bool __maybe_unused __system_matches_cap(unsigned int n)
3305 {
3306         if (n < ARM64_NCAPS) {
3307                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3308
3309                 if (cap)
3310                         return cap->matches(cap, SCOPE_SYSTEM);
3311         }
3312         return false;
3313 }
3314
3315 void cpu_set_feature(unsigned int num)
3316 {
3317         set_bit(num, elf_hwcap);
3318 }
3319
3320 bool cpu_have_feature(unsigned int num)
3321 {
3322         return test_bit(num, elf_hwcap);
3323 }
3324 EXPORT_SYMBOL_GPL(cpu_have_feature);
3325
3326 unsigned long cpu_get_elf_hwcap(void)
3327 {
3328         /*
3329          * We currently only populate the first 32 bits of AT_HWCAP. Please
3330          * note that for userspace compatibility we guarantee that bits 62
3331          * and 63 will always be returned as 0.
3332          */
3333         return elf_hwcap[0];
3334 }
3335
3336 unsigned long cpu_get_elf_hwcap2(void)
3337 {
3338         return elf_hwcap[1];
3339 }
3340
3341 void __init setup_system_features(void)
3342 {
3343         int i;
3344         /*
3345          * The system-wide safe feature feature register values have been
3346          * finalized. Finalize and log the available system capabilities.
3347          */
3348         update_cpu_capabilities(SCOPE_SYSTEM);
3349         if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
3350             !cpus_have_cap(ARM64_HAS_PAN))
3351                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3352
3353         /*
3354          * Enable all the available capabilities which have not been enabled
3355          * already.
3356          */
3357         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3358
3359         kpti_install_ng_mappings();
3360
3361         sve_setup();
3362         sme_setup();
3363
3364         /*
3365          * Check for sane CTR_EL0.CWG value.
3366          */
3367         if (!cache_type_cwg())
3368                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3369                         ARCH_DMA_MINALIGN);
3370
3371         for (i = 0; i < ARM64_NCAPS; i++) {
3372                 const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3373
3374                 if (caps && caps->cpus && caps->desc &&
3375                         cpumask_any(caps->cpus) < nr_cpu_ids)
3376                         pr_info("detected: %s on CPU%*pbl\n",
3377                                 caps->desc, cpumask_pr_args(caps->cpus));
3378         }
3379 }
3380
3381 void __init setup_user_features(void)
3382 {
3383         user_feature_fixup();
3384
3385         setup_elf_hwcaps(arm64_elf_hwcaps);
3386
3387         if (system_supports_32bit_el0()) {
3388                 setup_elf_hwcaps(compat_elf_hwcaps);
3389                 elf_hwcap_fixup();
3390         }
3391
3392         minsigstksz_setup();
3393 }
3394
3395 static int enable_mismatched_32bit_el0(unsigned int cpu)
3396 {
3397         /*
3398          * The first 32-bit-capable CPU we detected and so can no longer
3399          * be offlined by userspace. -1 indicates we haven't yet onlined
3400          * a 32-bit-capable CPU.
3401          */
3402         static int lucky_winner = -1;
3403
3404         struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3405         bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3406
3407         if (cpu_32bit) {
3408                 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3409                 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3410         }
3411
3412         if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3413                 return 0;
3414
3415         if (lucky_winner >= 0)
3416                 return 0;
3417
3418         /*
3419          * We've detected a mismatch. We need to keep one of our CPUs with
3420          * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3421          * every CPU in the system for a 32-bit task.
3422          */
3423         lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3424                                                          cpu_active_mask);
3425         get_cpu_device(lucky_winner)->offline_disabled = true;
3426         setup_elf_hwcaps(compat_elf_hwcaps);
3427         elf_hwcap_fixup();
3428         pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3429                 cpu, lucky_winner);
3430         return 0;
3431 }
3432
3433 static int __init init_32bit_el0_mask(void)
3434 {
3435         if (!allow_mismatched_32bit_el0)
3436                 return 0;
3437
3438         if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3439                 return -ENOMEM;
3440
3441         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3442                                  "arm64/mismatched_32bit_el0:online",
3443                                  enable_mismatched_32bit_el0, NULL);
3444 }
3445 subsys_initcall_sync(init_32bit_el0_mask);
3446
3447 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3448 {
3449         cpu_enable_swapper_cnp();
3450 }
3451
3452 /*
3453  * We emulate only the following system register space.
3454  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3455  * See Table C5-6 System instruction encodings for System register accesses,
3456  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3457  */
3458 static inline bool __attribute_const__ is_emulated(u32 id)
3459 {
3460         return (sys_reg_Op0(id) == 0x3 &&
3461                 sys_reg_CRn(id) == 0x0 &&
3462                 sys_reg_Op1(id) == 0x0 &&
3463                 (sys_reg_CRm(id) == 0 ||
3464                  ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3465 }
3466
3467 /*
3468  * With CRm == 0, reg should be one of :
3469  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3470  */
3471 static inline int emulate_id_reg(u32 id, u64 *valp)
3472 {
3473         switch (id) {
3474         case SYS_MIDR_EL1:
3475                 *valp = read_cpuid_id();
3476                 break;
3477         case SYS_MPIDR_EL1:
3478                 *valp = SYS_MPIDR_SAFE_VAL;
3479                 break;
3480         case SYS_REVIDR_EL1:
3481                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3482                 *valp = 0;
3483                 break;
3484         default:
3485                 return -EINVAL;
3486         }
3487
3488         return 0;
3489 }
3490
3491 static int emulate_sys_reg(u32 id, u64 *valp)
3492 {
3493         struct arm64_ftr_reg *regp;
3494
3495         if (!is_emulated(id))
3496                 return -EINVAL;
3497
3498         if (sys_reg_CRm(id) == 0)
3499                 return emulate_id_reg(id, valp);
3500
3501         regp = get_arm64_ftr_reg_nowarn(id);
3502         if (regp)
3503                 *valp = arm64_ftr_reg_user_value(regp);
3504         else
3505                 /*
3506                  * The untracked registers are either IMPLEMENTATION DEFINED
3507                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
3508                  */
3509                 *valp = 0;
3510         return 0;
3511 }
3512
3513 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3514 {
3515         int rc;
3516         u64 val;
3517
3518         rc = emulate_sys_reg(sys_reg, &val);
3519         if (!rc) {
3520                 pt_regs_write_reg(regs, rt, val);
3521                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3522         }
3523         return rc;
3524 }
3525
3526 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3527 {
3528         u32 sys_reg, rt;
3529
3530         if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3531                 return false;
3532
3533         /*
3534          * sys_reg values are defined as used in mrs/msr instruction.
3535          * shift the imm value to get the encoding.
3536          */
3537         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3538         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3539         return do_emulate_mrs(regs, sys_reg, rt) == 0;
3540 }
3541
3542 enum mitigation_state arm64_get_meltdown_state(void)
3543 {
3544         if (__meltdown_safe)
3545                 return SPECTRE_UNAFFECTED;
3546
3547         if (arm64_kernel_unmapped_at_el0())
3548                 return SPECTRE_MITIGATED;
3549
3550         return SPECTRE_VULNERABLE;
3551 }
3552
3553 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3554                           char *buf)
3555 {
3556         switch (arm64_get_meltdown_state()) {
3557         case SPECTRE_UNAFFECTED:
3558                 return sprintf(buf, "Not affected\n");
3559
3560         case SPECTRE_MITIGATED:
3561                 return sprintf(buf, "Mitigation: PTI\n");
3562
3563         default:
3564                 return sprintf(buf, "Vulnerable\n");
3565         }
3566 }