GNU Linux-libre 6.9.1-gnu
[releases.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT        \
100                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103                                  COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136
137 void dump_cpu_features(void)
138 {
139         /* file-wide pr_fmt adds "CPU features: " prefix */
140         pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142
143 #define __ARM64_MAX_POSITIVE(reg, field)                                \
144                 ((reg##_##field##_SIGNED ?                              \
145                   BIT(reg##_##field##_WIDTH - 1) :                      \
146                   BIT(reg##_##field##_WIDTH)) - 1)
147
148 #define __ARM64_MIN_NEGATIVE(reg, field)  BIT(reg##_##field##_WIDTH - 1)
149
150 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value)          \
151                 .sys_reg = SYS_##reg,                                   \
152                 .field_pos = reg##_##field##_SHIFT,                     \
153                 .field_width = reg##_##field##_WIDTH,                   \
154                 .sign = reg##_##field##_SIGNED,                         \
155                 .min_field_value = min_value,                           \
156                 .max_field_value = max_value,
157
158 /*
159  * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
160  * an implicit maximum that depends on the sign-ess of the field.
161  *
162  * An unsigned field will be capped at all ones, while a signed field
163  * will be limited to the positive half only.
164  */
165 #define ARM64_CPUID_FIELDS(reg, field, min_value)                       \
166         __ARM64_CPUID_FIELDS(reg, field,                                \
167                              SYS_FIELD_VALUE(reg, field, min_value),    \
168                              __ARM64_MAX_POSITIVE(reg, field))
169
170 /*
171  * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
172  * implicit minimal value to max_value. This should be used when
173  * matching a non-implemented property.
174  */
175 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value)                   \
176         __ARM64_CPUID_FIELDS(reg, field,                                \
177                              __ARM64_MIN_NEGATIVE(reg, field),          \
178                              SYS_FIELD_VALUE(reg, field, max_value))
179
180 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
181         {                                               \
182                 .sign = SIGNED,                         \
183                 .visible = VISIBLE,                     \
184                 .strict = STRICT,                       \
185                 .type = TYPE,                           \
186                 .shift = SHIFT,                         \
187                 .width = WIDTH,                         \
188                 .safe_val = SAFE_VAL,                   \
189         }
190
191 /* Define a feature with unsigned values */
192 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
193         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
194
195 /* Define a feature with a signed value */
196 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
197         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
198
199 #define ARM64_FTR_END                                   \
200         {                                               \
201                 .width = 0,                             \
202         }
203
204 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
205
206 static bool __system_matches_cap(unsigned int n);
207
208 /*
209  * NOTE: Any changes to the visibility of features should be kept in
210  * sync with the documentation of the CPU feature register ABI.
211  */
212 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
213         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
217         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
219         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
220         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
221         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
222         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
223         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
224         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
225         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
226         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
227         ARM64_FTR_END,
228 };
229
230 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
231         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
232         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
233         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
235         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
236         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
237         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
238                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
240                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
244         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
245                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
246         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
247                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
248         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
249         ARM64_FTR_END,
250 };
251
252 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
253         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
254         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
255         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
256         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
257         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
258         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
259         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
260                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
261         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
262                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
263         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
264         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
265         ARM64_FTR_END,
266 };
267
268 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
269         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
270         ARM64_FTR_END,
271 };
272
273 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
274         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
275         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
276         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
277         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
280         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
281                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
282         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
283         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
284         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
285         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
286         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
287         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
288         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
289         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
290         ARM64_FTR_END,
291 };
292
293 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
294         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
295                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
296         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
297         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
298         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
299                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
300         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
301         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
302                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
303         ARM64_FTR_END,
304 };
305
306 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
307         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
308         ARM64_FTR_END,
309 };
310
311 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
312         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
313                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
314         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
315                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
316         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
317                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
318         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
319                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
320         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
321                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
322         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
323                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
324         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
325                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
326         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
327                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
328         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
329                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
330         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
331                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
332         ARM64_FTR_END,
333 };
334
335 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
336         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
337                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
338         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
339                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
340         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
341                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
342         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
343                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
344         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
345                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
346         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
347                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
348         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
349                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
350         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
351                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
352         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
353                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
354         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
355                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
356         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
357                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
358         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
359                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
360         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
362         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
364         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
366         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
368         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
370         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
372         ARM64_FTR_END,
373 };
374
375 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
376         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
377         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
378         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
379         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
380         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
381         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
382         ARM64_FTR_END,
383 };
384
385 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
386         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
387         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
388         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
389         /*
390          * Page size not being supported at Stage-2 is not fatal. You
391          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
392          * your favourite nesting hypervisor.
393          *
394          * There is a small corner case where the hypervisor explicitly
395          * advertises a given granule size at Stage-2 (value 2) on some
396          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
397          * vCPUs. Although this is not forbidden by the architecture, it
398          * indicates that the hypervisor is being silly (or buggy).
399          *
400          * We make no effort to cope with this and pretend that if these
401          * fields are inconsistent across vCPUs, then it isn't worth
402          * trying to bring KVM up.
403          */
404         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
405         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
406         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
407         /*
408          * We already refuse to boot CPUs that don't support our configured
409          * page size, so we can only detect mismatches for a page size other
410          * than the one we're currently using. Unfortunately, SoCs like this
411          * exist in the wild so, even though we don't like it, we'll have to go
412          * along with it and treat them as non-strict.
413          */
414         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
415         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
416         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
417
418         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
419         /* Linux shouldn't care about secure memory */
420         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
421         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
422         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
423         /*
424          * Differing PARange is fine as long as all peripherals and memory are mapped
425          * within the minimum PARange of all CPUs
426          */
427         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
428         ARM64_FTR_END,
429 };
430
431 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
432         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
433         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
434         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
435         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
436         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
437         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
438         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
439         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
440         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
441         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
442         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
443         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
444         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
445         ARM64_FTR_END,
446 };
447
448 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
449         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
450         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
451         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
452         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
453         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
454         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
455         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
456         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
457         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
458         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
459         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
460         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
461         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
462         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
463         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
464         ARM64_FTR_END,
465 };
466
467 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
468         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
469         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
470         ARM64_FTR_END,
471 };
472
473 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
474         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
475         ARM64_FTR_END,
476 };
477
478 static const struct arm64_ftr_bits ftr_ctr[] = {
479         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
480         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
481         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
482         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
483         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
484         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
485         /*
486          * Linux can handle differing I-cache policies. Userspace JITs will
487          * make use of *minLine.
488          * If we have differing I-cache policies, report it as the weakest - VIPT.
489          */
490         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),        /* L1Ip */
491         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
492         ARM64_FTR_END,
493 };
494
495 static struct arm64_ftr_override __ro_after_init no_override = { };
496
497 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
498         .name           = "SYS_CTR_EL0",
499         .ftr_bits       = ftr_ctr,
500         .override       = &no_override,
501 };
502
503 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
504         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
505         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
506         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
507         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
508         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
509         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
510         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
511         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
512         ARM64_FTR_END,
513 };
514
515 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
516         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
517         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
518         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
519         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
520         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
521         /*
522          * We can instantiate multiple PMU instances with different levels
523          * of support.
524          */
525         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
526         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
527         ARM64_FTR_END,
528 };
529
530 static const struct arm64_ftr_bits ftr_mvfr0[] = {
531         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
532         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
533         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
534         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
535         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
536         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
537         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
538         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
539         ARM64_FTR_END,
540 };
541
542 static const struct arm64_ftr_bits ftr_mvfr1[] = {
543         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
544         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
545         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
546         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
547         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
548         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
549         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
550         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
551         ARM64_FTR_END,
552 };
553
554 static const struct arm64_ftr_bits ftr_mvfr2[] = {
555         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
556         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
557         ARM64_FTR_END,
558 };
559
560 static const struct arm64_ftr_bits ftr_dczid[] = {
561         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
562         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
563         ARM64_FTR_END,
564 };
565
566 static const struct arm64_ftr_bits ftr_gmid[] = {
567         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
568         ARM64_FTR_END,
569 };
570
571 static const struct arm64_ftr_bits ftr_id_isar0[] = {
572         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
573         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
574         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
575         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
576         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
577         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
578         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
579         ARM64_FTR_END,
580 };
581
582 static const struct arm64_ftr_bits ftr_id_isar5[] = {
583         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
584         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
585         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
586         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
587         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
588         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
589         ARM64_FTR_END,
590 };
591
592 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
593         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
594         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
595         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
596         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
597         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
598         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
599         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
600
601         /*
602          * SpecSEI = 1 indicates that the PE might generate an SError on an
603          * external abort on speculative read. It is safe to assume that an
604          * SError might be generated than it will not be. Hence it has been
605          * classified as FTR_HIGHER_SAFE.
606          */
607         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
608         ARM64_FTR_END,
609 };
610
611 static const struct arm64_ftr_bits ftr_id_isar4[] = {
612         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
613         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
614         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
615         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
616         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
617         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
618         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
619         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
620         ARM64_FTR_END,
621 };
622
623 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
624         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
625         ARM64_FTR_END,
626 };
627
628 static const struct arm64_ftr_bits ftr_id_isar6[] = {
629         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
630         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
631         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
632         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
633         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
634         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
635         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
636         ARM64_FTR_END,
637 };
638
639 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
640         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
641         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
642         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
643         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
644         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
645         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
646         ARM64_FTR_END,
647 };
648
649 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
650         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
651         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
652         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
653         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
654         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
655         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
656         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
657         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
658         ARM64_FTR_END,
659 };
660
661 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
662         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
663         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
664         ARM64_FTR_END,
665 };
666
667 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
668         /* [31:28] TraceFilt */
669         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
670         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
671         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
672         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
673         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
674         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
675         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
676         ARM64_FTR_END,
677 };
678
679 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
680         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
681         ARM64_FTR_END,
682 };
683
684 /*
685  * Common ftr bits for a 32bit register with all hidden, strict
686  * attributes, with 4bit feature fields and a default safe value of
687  * 0. Covers the following 32bit registers:
688  * id_isar[1-3], id_mmfr[1-3]
689  */
690 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
691         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
692         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
693         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
694         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
695         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
696         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
697         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
698         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
699         ARM64_FTR_END,
700 };
701
702 /* Table for a single 32bit feature value */
703 static const struct arm64_ftr_bits ftr_single32[] = {
704         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
705         ARM64_FTR_END,
706 };
707
708 static const struct arm64_ftr_bits ftr_raz[] = {
709         ARM64_FTR_END,
710 };
711
712 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {      \
713                 .sys_id = id,                                   \
714                 .reg =  &(struct arm64_ftr_reg){                \
715                         .name = id_str,                         \
716                         .override = (ovr),                      \
717                         .ftr_bits = &((table)[0]),              \
718         }}
719
720 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)  \
721         __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
722
723 #define ARM64_FTR_REG(id, table)                \
724         __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
725
726 struct arm64_ftr_override id_aa64mmfr0_override;
727 struct arm64_ftr_override id_aa64mmfr1_override;
728 struct arm64_ftr_override id_aa64mmfr2_override;
729 struct arm64_ftr_override id_aa64pfr0_override;
730 struct arm64_ftr_override id_aa64pfr1_override;
731 struct arm64_ftr_override id_aa64zfr0_override;
732 struct arm64_ftr_override id_aa64smfr0_override;
733 struct arm64_ftr_override id_aa64isar1_override;
734 struct arm64_ftr_override id_aa64isar2_override;
735
736 struct arm64_ftr_override arm64_sw_feature_override;
737
738 static const struct __ftr_reg_entry {
739         u32                     sys_id;
740         struct arm64_ftr_reg    *reg;
741 } arm64_ftr_regs[] = {
742
743         /* Op1 = 0, CRn = 0, CRm = 1 */
744         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
745         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
746         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
747         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
748         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
749         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
750         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
751
752         /* Op1 = 0, CRn = 0, CRm = 2 */
753         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
754         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
755         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
756         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
757         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
758         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
759         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
760         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
761
762         /* Op1 = 0, CRn = 0, CRm = 3 */
763         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
764         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
765         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
766         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
767         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
768         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
769
770         /* Op1 = 0, CRn = 0, CRm = 4 */
771         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
772                                &id_aa64pfr0_override),
773         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
774                                &id_aa64pfr1_override),
775         ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
776         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
777                                &id_aa64zfr0_override),
778         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
779                                &id_aa64smfr0_override),
780         ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
781
782         /* Op1 = 0, CRn = 0, CRm = 5 */
783         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
784         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
785
786         /* Op1 = 0, CRn = 0, CRm = 6 */
787         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
788         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
789                                &id_aa64isar1_override),
790         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
791                                &id_aa64isar2_override),
792         ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
793
794         /* Op1 = 0, CRn = 0, CRm = 7 */
795         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
796                                &id_aa64mmfr0_override),
797         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
798                                &id_aa64mmfr1_override),
799         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
800                                &id_aa64mmfr2_override),
801         ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
802         ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
803
804         /* Op1 = 1, CRn = 0, CRm = 0 */
805         ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
806
807         /* Op1 = 3, CRn = 0, CRm = 0 */
808         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
809         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
810
811         /* Op1 = 3, CRn = 14, CRm = 0 */
812         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
813 };
814
815 static int search_cmp_ftr_reg(const void *id, const void *regp)
816 {
817         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
818 }
819
820 /*
821  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
822  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
823  * ascending order of sys_id, we use binary search to find a matching
824  * entry.
825  *
826  * returns - Upon success,  matching ftr_reg entry for id.
827  *         - NULL on failure. It is upto the caller to decide
828  *           the impact of a failure.
829  */
830 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
831 {
832         const struct __ftr_reg_entry *ret;
833
834         ret = bsearch((const void *)(unsigned long)sys_id,
835                         arm64_ftr_regs,
836                         ARRAY_SIZE(arm64_ftr_regs),
837                         sizeof(arm64_ftr_regs[0]),
838                         search_cmp_ftr_reg);
839         if (ret)
840                 return ret->reg;
841         return NULL;
842 }
843
844 /*
845  * get_arm64_ftr_reg - Looks up a feature register entry using
846  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
847  *
848  * returns - Upon success,  matching ftr_reg entry for id.
849  *         - NULL on failure but with an WARN_ON().
850  */
851 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
852 {
853         struct arm64_ftr_reg *reg;
854
855         reg = get_arm64_ftr_reg_nowarn(sys_id);
856
857         /*
858          * Requesting a non-existent register search is an error. Warn
859          * and let the caller handle it.
860          */
861         WARN_ON(!reg);
862         return reg;
863 }
864
865 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
866                                s64 ftr_val)
867 {
868         u64 mask = arm64_ftr_mask(ftrp);
869
870         reg &= ~mask;
871         reg |= (ftr_val << ftrp->shift) & mask;
872         return reg;
873 }
874
875 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
876                                 s64 cur)
877 {
878         s64 ret = 0;
879
880         switch (ftrp->type) {
881         case FTR_EXACT:
882                 ret = ftrp->safe_val;
883                 break;
884         case FTR_LOWER_SAFE:
885                 ret = min(new, cur);
886                 break;
887         case FTR_HIGHER_OR_ZERO_SAFE:
888                 if (!cur || !new)
889                         break;
890                 fallthrough;
891         case FTR_HIGHER_SAFE:
892                 ret = max(new, cur);
893                 break;
894         default:
895                 BUG();
896         }
897
898         return ret;
899 }
900
901 static void __init sort_ftr_regs(void)
902 {
903         unsigned int i;
904
905         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
906                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
907                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
908                 unsigned int j = 0;
909
910                 /*
911                  * Features here must be sorted in descending order with respect
912                  * to their shift values and should not overlap with each other.
913                  */
914                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
915                         unsigned int width = ftr_reg->ftr_bits[j].width;
916                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
917                         unsigned int prev_shift;
918
919                         WARN((shift  + width) > 64,
920                                 "%s has invalid feature at shift %d\n",
921                                 ftr_reg->name, shift);
922
923                         /*
924                          * Skip the first feature. There is nothing to
925                          * compare against for now.
926                          */
927                         if (j == 0)
928                                 continue;
929
930                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
931                         WARN((shift + width) > prev_shift,
932                                 "%s has feature overlap at shift %d\n",
933                                 ftr_reg->name, shift);
934                 }
935
936                 /*
937                  * Skip the first register. There is nothing to
938                  * compare against for now.
939                  */
940                 if (i == 0)
941                         continue;
942                 /*
943                  * Registers here must be sorted in ascending order with respect
944                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
945                  * to work correctly.
946                  */
947                 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
948         }
949 }
950
951 /*
952  * Initialise the CPU feature register from Boot CPU values.
953  * Also initiliases the strict_mask for the register.
954  * Any bits that are not covered by an arm64_ftr_bits entry are considered
955  * RES0 for the system-wide value, and must strictly match.
956  */
957 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
958 {
959         u64 val = 0;
960         u64 strict_mask = ~0x0ULL;
961         u64 user_mask = 0;
962         u64 valid_mask = 0;
963
964         const struct arm64_ftr_bits *ftrp;
965         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
966
967         if (!reg)
968                 return;
969
970         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
971                 u64 ftr_mask = arm64_ftr_mask(ftrp);
972                 s64 ftr_new = arm64_ftr_value(ftrp, new);
973                 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
974
975                 if ((ftr_mask & reg->override->mask) == ftr_mask) {
976                         s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
977                         char *str = NULL;
978
979                         if (ftr_ovr != tmp) {
980                                 /* Unsafe, remove the override */
981                                 reg->override->mask &= ~ftr_mask;
982                                 reg->override->val &= ~ftr_mask;
983                                 tmp = ftr_ovr;
984                                 str = "ignoring override";
985                         } else if (ftr_new != tmp) {
986                                 /* Override was valid */
987                                 ftr_new = tmp;
988                                 str = "forced";
989                         } else if (ftr_ovr == tmp) {
990                                 /* Override was the safe value */
991                                 str = "already set";
992                         }
993
994                         if (str)
995                                 pr_warn("%s[%d:%d]: %s to %llx\n",
996                                         reg->name,
997                                         ftrp->shift + ftrp->width - 1,
998                                         ftrp->shift, str,
999                                         tmp & (BIT(ftrp->width) - 1));
1000                 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
1001                         reg->override->val &= ~ftr_mask;
1002                         pr_warn("%s[%d:%d]: impossible override, ignored\n",
1003                                 reg->name,
1004                                 ftrp->shift + ftrp->width - 1,
1005                                 ftrp->shift);
1006                 }
1007
1008                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
1009
1010                 valid_mask |= ftr_mask;
1011                 if (!ftrp->strict)
1012                         strict_mask &= ~ftr_mask;
1013                 if (ftrp->visible)
1014                         user_mask |= ftr_mask;
1015                 else
1016                         reg->user_val = arm64_ftr_set_value(ftrp,
1017                                                             reg->user_val,
1018                                                             ftrp->safe_val);
1019         }
1020
1021         val &= valid_mask;
1022
1023         reg->sys_val = val;
1024         reg->strict_mask = strict_mask;
1025         reg->user_mask = user_mask;
1026 }
1027
1028 extern const struct arm64_cpu_capabilities arm64_errata[];
1029 static const struct arm64_cpu_capabilities arm64_features[];
1030
1031 static void __init
1032 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1033 {
1034         for (; caps->matches; caps++) {
1035                 if (WARN(caps->capability >= ARM64_NCAPS,
1036                         "Invalid capability %d\n", caps->capability))
1037                         continue;
1038                 if (WARN(cpucap_ptrs[caps->capability],
1039                         "Duplicate entry for capability %d\n",
1040                         caps->capability))
1041                         continue;
1042                 cpucap_ptrs[caps->capability] = caps;
1043         }
1044 }
1045
1046 static void __init init_cpucap_indirect_list(void)
1047 {
1048         init_cpucap_indirect_list_from_array(arm64_features);
1049         init_cpucap_indirect_list_from_array(arm64_errata);
1050 }
1051
1052 static void __init setup_boot_cpu_capabilities(void);
1053
1054 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1055 {
1056         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1057         init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1058         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1059         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1060         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1061         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1062         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1063         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1064         init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1065         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1066         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1067         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1068         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1069         init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1070         init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1071         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1072         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1073         init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1074         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1075         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1076         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1077 }
1078
1079 #ifdef CONFIG_ARM64_PSEUDO_NMI
1080 static bool enable_pseudo_nmi;
1081
1082 static int __init early_enable_pseudo_nmi(char *p)
1083 {
1084         return kstrtobool(p, &enable_pseudo_nmi);
1085 }
1086 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1087
1088 static __init void detect_system_supports_pseudo_nmi(void)
1089 {
1090         struct device_node *np;
1091
1092         if (!enable_pseudo_nmi)
1093                 return;
1094
1095         /*
1096          * Detect broken MediaTek firmware that doesn't properly save and
1097          * restore GIC priorities.
1098          */
1099         np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1100         if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1101                 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1102                 enable_pseudo_nmi = false;
1103         }
1104         of_node_put(np);
1105 }
1106 #else /* CONFIG_ARM64_PSEUDO_NMI */
1107 static inline void detect_system_supports_pseudo_nmi(void) { }
1108 #endif
1109
1110 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1111 {
1112         /* Before we start using the tables, make sure it is sorted */
1113         sort_ftr_regs();
1114
1115         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1116         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1117         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1118         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1119         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1120         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1121         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1122         init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1123         init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1124         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1125         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1126         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1127         init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1128         init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1129         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1130         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1131         init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1132         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1133         init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1134         init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1135
1136         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1137                 init_32bit_cpu_features(&info->aarch32);
1138
1139         if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1140             id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1141                 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1142
1143                 vec_init_vq_map(ARM64_VEC_SVE);
1144
1145                 cpacr_restore(cpacr);
1146         }
1147
1148         if (IS_ENABLED(CONFIG_ARM64_SME) &&
1149             id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1150                 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1151
1152                 /*
1153                  * We mask out SMPS since even if the hardware
1154                  * supports priorities the kernel does not at present
1155                  * and we block access to them.
1156                  */
1157                 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1158                 vec_init_vq_map(ARM64_VEC_SME);
1159
1160                 cpacr_restore(cpacr);
1161         }
1162
1163         if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1164                 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1165 }
1166
1167 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1168 {
1169         const struct arm64_ftr_bits *ftrp;
1170
1171         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1172                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1173                 s64 ftr_new = arm64_ftr_value(ftrp, new);
1174
1175                 if (ftr_cur == ftr_new)
1176                         continue;
1177                 /* Find a safe value */
1178                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1179                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1180         }
1181
1182 }
1183
1184 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1185 {
1186         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1187
1188         if (!regp)
1189                 return 0;
1190
1191         update_cpu_ftr_reg(regp, val);
1192         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1193                 return 0;
1194         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1195                         regp->name, boot, cpu, val);
1196         return 1;
1197 }
1198
1199 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1200 {
1201         const struct arm64_ftr_bits *ftrp;
1202         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1203
1204         if (!regp)
1205                 return;
1206
1207         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1208                 if (ftrp->shift == field) {
1209                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1210                         break;
1211                 }
1212         }
1213
1214         /* Bogus field? */
1215         WARN_ON(!ftrp->width);
1216 }
1217
1218 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1219                                          struct cpuinfo_arm64 *boot)
1220 {
1221         static bool boot_cpu_32bit_regs_overridden = false;
1222
1223         if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1224                 return;
1225
1226         if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1227                 return;
1228
1229         boot->aarch32 = info->aarch32;
1230         init_32bit_cpu_features(&boot->aarch32);
1231         boot_cpu_32bit_regs_overridden = true;
1232 }
1233
1234 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1235                                      struct cpuinfo_32bit *boot)
1236 {
1237         int taint = 0;
1238         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1239
1240         /*
1241          * If we don't have AArch32 at EL1, then relax the strictness of
1242          * EL1-dependent register fields to avoid spurious sanity check fails.
1243          */
1244         if (!id_aa64pfr0_32bit_el1(pfr0)) {
1245                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1246                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1247                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1248                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1249                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1250                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1251         }
1252
1253         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1254                                       info->reg_id_dfr0, boot->reg_id_dfr0);
1255         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1256                                       info->reg_id_dfr1, boot->reg_id_dfr1);
1257         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1258                                       info->reg_id_isar0, boot->reg_id_isar0);
1259         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1260                                       info->reg_id_isar1, boot->reg_id_isar1);
1261         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1262                                       info->reg_id_isar2, boot->reg_id_isar2);
1263         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1264                                       info->reg_id_isar3, boot->reg_id_isar3);
1265         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1266                                       info->reg_id_isar4, boot->reg_id_isar4);
1267         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1268                                       info->reg_id_isar5, boot->reg_id_isar5);
1269         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1270                                       info->reg_id_isar6, boot->reg_id_isar6);
1271
1272         /*
1273          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1274          * ACTLR formats could differ across CPUs and therefore would have to
1275          * be trapped for virtualization anyway.
1276          */
1277         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1278                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1279         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1280                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1281         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1282                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1283         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1284                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1285         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1286                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1287         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1288                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1289         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1290                                       info->reg_id_pfr0, boot->reg_id_pfr0);
1291         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1292                                       info->reg_id_pfr1, boot->reg_id_pfr1);
1293         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1294                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1295         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1296                                       info->reg_mvfr0, boot->reg_mvfr0);
1297         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1298                                       info->reg_mvfr1, boot->reg_mvfr1);
1299         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1300                                       info->reg_mvfr2, boot->reg_mvfr2);
1301
1302         return taint;
1303 }
1304
1305 /*
1306  * Update system wide CPU feature registers with the values from a
1307  * non-boot CPU. Also performs SANITY checks to make sure that there
1308  * aren't any insane variations from that of the boot CPU.
1309  */
1310 void update_cpu_features(int cpu,
1311                          struct cpuinfo_arm64 *info,
1312                          struct cpuinfo_arm64 *boot)
1313 {
1314         int taint = 0;
1315
1316         /*
1317          * The kernel can handle differing I-cache policies, but otherwise
1318          * caches should look identical. Userspace JITs will make use of
1319          * *minLine.
1320          */
1321         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1322                                       info->reg_ctr, boot->reg_ctr);
1323
1324         /*
1325          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1326          * could result in too much or too little memory being zeroed if a
1327          * process is preempted and migrated between CPUs.
1328          */
1329         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1330                                       info->reg_dczid, boot->reg_dczid);
1331
1332         /* If different, timekeeping will be broken (especially with KVM) */
1333         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1334                                       info->reg_cntfrq, boot->reg_cntfrq);
1335
1336         /*
1337          * The kernel uses self-hosted debug features and expects CPUs to
1338          * support identical debug features. We presently need CTX_CMPs, WRPs,
1339          * and BRPs to be identical.
1340          * ID_AA64DFR1 is currently RES0.
1341          */
1342         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1343                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1344         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1345                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1346         /*
1347          * Even in big.LITTLE, processors should be identical instruction-set
1348          * wise.
1349          */
1350         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1351                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1352         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1353                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1354         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1355                                       info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1356         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1357                                       info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1358
1359         /*
1360          * Differing PARange support is fine as long as all peripherals and
1361          * memory are mapped within the minimum PARange of all CPUs.
1362          * Linux should not care about secure memory.
1363          */
1364         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1365                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1366         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1367                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1368         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1369                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1370         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1371                                       info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1372
1373         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1374                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1375         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1376                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1377         taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1378                                       info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1379
1380         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1381                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1382
1383         taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1384                                       info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1385
1386         taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1387                                       info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1388
1389         /* Probe vector lengths */
1390         if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1391             id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1392                 if (!system_capabilities_finalized()) {
1393                         unsigned long cpacr = cpacr_save_enable_kernel_sve();
1394
1395                         vec_update_vq_map(ARM64_VEC_SVE);
1396
1397                         cpacr_restore(cpacr);
1398                 }
1399         }
1400
1401         if (IS_ENABLED(CONFIG_ARM64_SME) &&
1402             id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1403                 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1404
1405                 /*
1406                  * We mask out SMPS since even if the hardware
1407                  * supports priorities the kernel does not at present
1408                  * and we block access to them.
1409                  */
1410                 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1411
1412                 /* Probe vector lengths */
1413                 if (!system_capabilities_finalized())
1414                         vec_update_vq_map(ARM64_VEC_SME);
1415
1416                 cpacr_restore(cpacr);
1417         }
1418
1419         /*
1420          * The kernel uses the LDGM/STGM instructions and the number of tags
1421          * they read/write depends on the GMID_EL1.BS field. Check that the
1422          * value is the same on all CPUs.
1423          */
1424         if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1425             id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1426                 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1427                                               info->reg_gmid, boot->reg_gmid);
1428         }
1429
1430         /*
1431          * If we don't have AArch32 at all then skip the checks entirely
1432          * as the register values may be UNKNOWN and we're not going to be
1433          * using them for anything.
1434          *
1435          * This relies on a sanitised view of the AArch64 ID registers
1436          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1437          */
1438         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1439                 lazy_init_32bit_cpu_features(info, boot);
1440                 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1441                                                    &boot->aarch32);
1442         }
1443
1444         /*
1445          * Mismatched CPU features are a recipe for disaster. Don't even
1446          * pretend to support them.
1447          */
1448         if (taint) {
1449                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1450                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1451         }
1452 }
1453
1454 u64 read_sanitised_ftr_reg(u32 id)
1455 {
1456         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1457
1458         if (!regp)
1459                 return 0;
1460         return regp->sys_val;
1461 }
1462 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1463
1464 #define read_sysreg_case(r)     \
1465         case r:         val = read_sysreg_s(r); break;
1466
1467 /*
1468  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1469  * Read the system register on the current CPU
1470  */
1471 u64 __read_sysreg_by_encoding(u32 sys_id)
1472 {
1473         struct arm64_ftr_reg *regp;
1474         u64 val;
1475
1476         switch (sys_id) {
1477         read_sysreg_case(SYS_ID_PFR0_EL1);
1478         read_sysreg_case(SYS_ID_PFR1_EL1);
1479         read_sysreg_case(SYS_ID_PFR2_EL1);
1480         read_sysreg_case(SYS_ID_DFR0_EL1);
1481         read_sysreg_case(SYS_ID_DFR1_EL1);
1482         read_sysreg_case(SYS_ID_MMFR0_EL1);
1483         read_sysreg_case(SYS_ID_MMFR1_EL1);
1484         read_sysreg_case(SYS_ID_MMFR2_EL1);
1485         read_sysreg_case(SYS_ID_MMFR3_EL1);
1486         read_sysreg_case(SYS_ID_MMFR4_EL1);
1487         read_sysreg_case(SYS_ID_MMFR5_EL1);
1488         read_sysreg_case(SYS_ID_ISAR0_EL1);
1489         read_sysreg_case(SYS_ID_ISAR1_EL1);
1490         read_sysreg_case(SYS_ID_ISAR2_EL1);
1491         read_sysreg_case(SYS_ID_ISAR3_EL1);
1492         read_sysreg_case(SYS_ID_ISAR4_EL1);
1493         read_sysreg_case(SYS_ID_ISAR5_EL1);
1494         read_sysreg_case(SYS_ID_ISAR6_EL1);
1495         read_sysreg_case(SYS_MVFR0_EL1);
1496         read_sysreg_case(SYS_MVFR1_EL1);
1497         read_sysreg_case(SYS_MVFR2_EL1);
1498
1499         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1500         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1501         read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1502         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1503         read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1504         read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1505         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1506         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1507         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1508         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1509         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1510         read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1511         read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1512         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1513         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1514         read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1515         read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1516
1517         read_sysreg_case(SYS_CNTFRQ_EL0);
1518         read_sysreg_case(SYS_CTR_EL0);
1519         read_sysreg_case(SYS_DCZID_EL0);
1520
1521         default:
1522                 BUG();
1523                 return 0;
1524         }
1525
1526         regp  = get_arm64_ftr_reg(sys_id);
1527         if (regp) {
1528                 val &= ~regp->override->mask;
1529                 val |= (regp->override->val & regp->override->mask);
1530         }
1531
1532         return val;
1533 }
1534
1535 #include <linux/irqchip/arm-gic-v3.h>
1536
1537 static bool
1538 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1539 {
1540         return true;
1541 }
1542
1543 static bool
1544 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1545 {
1546         int val, min, max;
1547         u64 tmp;
1548
1549         val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1550                                                 entry->field_width,
1551                                                 entry->sign);
1552
1553         tmp = entry->min_field_value;
1554         tmp <<= entry->field_pos;
1555
1556         min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1557                                                 entry->field_width,
1558                                                 entry->sign);
1559
1560         tmp = entry->max_field_value;
1561         tmp <<= entry->field_pos;
1562
1563         max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1564                                                 entry->field_width,
1565                                                 entry->sign);
1566
1567         return val >= min && val <= max;
1568 }
1569
1570 static u64
1571 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1572 {
1573         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1574         if (scope == SCOPE_SYSTEM)
1575                 return read_sanitised_ftr_reg(entry->sys_reg);
1576         else
1577                 return __read_sysreg_by_encoding(entry->sys_reg);
1578 }
1579
1580 static bool
1581 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1582 {
1583         int mask;
1584         struct arm64_ftr_reg *regp;
1585         u64 val = read_scoped_sysreg(entry, scope);
1586
1587         regp = get_arm64_ftr_reg(entry->sys_reg);
1588         if (!regp)
1589                 return false;
1590
1591         mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1592                                                           entry->field_pos,
1593                                                           entry->field_width);
1594         if (!mask)
1595                 return false;
1596
1597         return feature_matches(val, entry);
1598 }
1599
1600 static bool
1601 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1602 {
1603         u64 val = read_scoped_sysreg(entry, scope);
1604         return feature_matches(val, entry);
1605 }
1606
1607 const struct cpumask *system_32bit_el0_cpumask(void)
1608 {
1609         if (!system_supports_32bit_el0())
1610                 return cpu_none_mask;
1611
1612         if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1613                 return cpu_32bit_el0_mask;
1614
1615         return cpu_possible_mask;
1616 }
1617
1618 static int __init parse_32bit_el0_param(char *str)
1619 {
1620         allow_mismatched_32bit_el0 = true;
1621         return 0;
1622 }
1623 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1624
1625 static ssize_t aarch32_el0_show(struct device *dev,
1626                                 struct device_attribute *attr, char *buf)
1627 {
1628         const struct cpumask *mask = system_32bit_el0_cpumask();
1629
1630         return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1631 }
1632 static const DEVICE_ATTR_RO(aarch32_el0);
1633
1634 static int __init aarch32_el0_sysfs_init(void)
1635 {
1636         struct device *dev_root;
1637         int ret = 0;
1638
1639         if (!allow_mismatched_32bit_el0)
1640                 return 0;
1641
1642         dev_root = bus_get_dev_root(&cpu_subsys);
1643         if (dev_root) {
1644                 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1645                 put_device(dev_root);
1646         }
1647         return ret;
1648 }
1649 device_initcall(aarch32_el0_sysfs_init);
1650
1651 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1652 {
1653         if (!has_cpuid_feature(entry, scope))
1654                 return allow_mismatched_32bit_el0;
1655
1656         if (scope == SCOPE_SYSTEM)
1657                 pr_info("detected: 32-bit EL0 Support\n");
1658
1659         return true;
1660 }
1661
1662 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1663 {
1664         bool has_sre;
1665
1666         if (!has_cpuid_feature(entry, scope))
1667                 return false;
1668
1669         has_sre = gic_enable_sre();
1670         if (!has_sre)
1671                 pr_warn_once("%s present but disabled by higher exception level\n",
1672                              entry->desc);
1673
1674         return has_sre;
1675 }
1676
1677 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1678                           int scope)
1679 {
1680         u64 ctr;
1681
1682         if (scope == SCOPE_SYSTEM)
1683                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1684         else
1685                 ctr = read_cpuid_effective_cachetype();
1686
1687         return ctr & BIT(CTR_EL0_IDC_SHIFT);
1688 }
1689
1690 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1691 {
1692         /*
1693          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1694          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1695          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1696          * value.
1697          */
1698         if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1699                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1700 }
1701
1702 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1703                           int scope)
1704 {
1705         u64 ctr;
1706
1707         if (scope == SCOPE_SYSTEM)
1708                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1709         else
1710                 ctr = read_cpuid_cachetype();
1711
1712         return ctr & BIT(CTR_EL0_DIC_SHIFT);
1713 }
1714
1715 static bool __maybe_unused
1716 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1717 {
1718         /*
1719          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1720          * may share TLB entries with a CPU stuck in the crashed
1721          * kernel.
1722          */
1723         if (is_kdump_kernel())
1724                 return false;
1725
1726         if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1727                 return false;
1728
1729         return has_cpuid_feature(entry, scope);
1730 }
1731
1732 static bool __meltdown_safe = true;
1733 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1734
1735 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1736                                 int scope)
1737 {
1738         /* List of CPUs that are not vulnerable and don't need KPTI */
1739         static const struct midr_range kpti_safe_list[] = {
1740                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1741                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1742                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1743                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1744                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1745                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1746                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1747                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1748                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1749                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1750                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1751                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1752                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1753                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1754                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1755                 { /* sentinel */ }
1756         };
1757         char const *str = "kpti command line option";
1758         bool meltdown_safe;
1759
1760         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1761
1762         /* Defer to CPU feature registers */
1763         if (has_cpuid_feature(entry, scope))
1764                 meltdown_safe = true;
1765
1766         if (!meltdown_safe)
1767                 __meltdown_safe = false;
1768
1769         /*
1770          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1771          * ThunderX leads to apparent I-cache corruption of kernel text, which
1772          * ends as well as you might imagine. Don't even try. We cannot rely
1773          * on the cpus_have_*cap() helpers here to detect the CPU erratum
1774          * because cpucap detection order may change. However, since we know
1775          * affected CPUs are always in a homogeneous configuration, it is
1776          * safe to rely on this_cpu_has_cap() here.
1777          */
1778         if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1779                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1780                 __kpti_forced = -1;
1781         }
1782
1783         /* Useful for KASLR robustness */
1784         if (kaslr_enabled() && kaslr_requires_kpti()) {
1785                 if (!__kpti_forced) {
1786                         str = "KASLR";
1787                         __kpti_forced = 1;
1788                 }
1789         }
1790
1791         if (cpu_mitigations_off() && !__kpti_forced) {
1792                 str = "mitigations=off";
1793                 __kpti_forced = -1;
1794         }
1795
1796         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1797                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1798                 return false;
1799         }
1800
1801         /* Forced? */
1802         if (__kpti_forced) {
1803                 pr_info_once("kernel page table isolation forced %s by %s\n",
1804                              __kpti_forced > 0 ? "ON" : "OFF", str);
1805                 return __kpti_forced > 0;
1806         }
1807
1808         return !meltdown_safe;
1809 }
1810
1811 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1812 {
1813         /*
1814          * Although the Apple M2 family appears to support NV1, the
1815          * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1816          * that it doesn't support NV1 at all.
1817          */
1818         static const struct midr_range nv1_ni_list[] = {
1819                 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1820                 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1821                 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1822                 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1823                 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1824                 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1825                 {}
1826         };
1827
1828         return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1829                 !(has_cpuid_feature(entry, scope) ||
1830                   is_midr_in_range_list(read_cpuid_id(), nv1_ni_list)));
1831 }
1832
1833 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1834 static bool has_lpa2_at_stage1(u64 mmfr0)
1835 {
1836         unsigned int tgran;
1837
1838         tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1839                                         ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1840         return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1841 }
1842
1843 static bool has_lpa2_at_stage2(u64 mmfr0)
1844 {
1845         unsigned int tgran;
1846
1847         tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1848                                         ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1849         return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1850 }
1851
1852 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1853 {
1854         u64 mmfr0;
1855
1856         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1857         return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1858 }
1859 #else
1860 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1861 {
1862         return false;
1863 }
1864 #endif
1865
1866 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1867 #define KPTI_NG_TEMP_VA         (-(1UL << PMD_SHIFT))
1868
1869 extern
1870 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1871                              phys_addr_t size, pgprot_t prot,
1872                              phys_addr_t (*pgtable_alloc)(int), int flags);
1873
1874 static phys_addr_t __initdata kpti_ng_temp_alloc;
1875
1876 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1877 {
1878         kpti_ng_temp_alloc -= PAGE_SIZE;
1879         return kpti_ng_temp_alloc;
1880 }
1881
1882 static int __init __kpti_install_ng_mappings(void *__unused)
1883 {
1884         typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1885         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1886         kpti_remap_fn *remap_fn;
1887
1888         int cpu = smp_processor_id();
1889         int levels = CONFIG_PGTABLE_LEVELS;
1890         int order = order_base_2(levels);
1891         u64 kpti_ng_temp_pgd_pa = 0;
1892         pgd_t *kpti_ng_temp_pgd;
1893         u64 alloc = 0;
1894
1895         if (levels == 5 && !pgtable_l5_enabled())
1896                 levels = 4;
1897         else if (levels == 4 && !pgtable_l4_enabled())
1898                 levels = 3;
1899
1900         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1901
1902         if (!cpu) {
1903                 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1904                 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1905                 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1906
1907                 //
1908                 // Create a minimal page table hierarchy that permits us to map
1909                 // the swapper page tables temporarily as we traverse them.
1910                 //
1911                 // The physical pages are laid out as follows:
1912                 //
1913                 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1914                 // :  PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[]  :
1915                 // +--------+-\-------+-\------ +-\------ +-///--------+
1916                 //      ^
1917                 // The first page is mapped into this hierarchy at a PMD_SHIFT
1918                 // aligned virtual address, so that we can manipulate the PTE
1919                 // level entries while the mapping is active. The first entry
1920                 // covers the PTE[] page itself, the remaining entries are free
1921                 // to be used as a ad-hoc fixmap.
1922                 //
1923                 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1924                                         KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1925                                         kpti_ng_pgd_alloc, 0);
1926         }
1927
1928         cpu_install_idmap();
1929         remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1930         cpu_uninstall_idmap();
1931
1932         if (!cpu) {
1933                 free_pages(alloc, order);
1934                 arm64_use_ng_mappings = true;
1935         }
1936
1937         return 0;
1938 }
1939
1940 static void __init kpti_install_ng_mappings(void)
1941 {
1942         /* Check whether KPTI is going to be used */
1943         if (!arm64_kernel_unmapped_at_el0())
1944                 return;
1945
1946         /*
1947          * We don't need to rewrite the page-tables if either we've done
1948          * it already or we have KASLR enabled and therefore have not
1949          * created any global mappings at all.
1950          */
1951         if (arm64_use_ng_mappings)
1952                 return;
1953
1954         stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1955 }
1956
1957 #else
1958 static inline void kpti_install_ng_mappings(void)
1959 {
1960 }
1961 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1962
1963 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1964 {
1965         if (__this_cpu_read(this_cpu_vector) == vectors) {
1966                 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1967
1968                 __this_cpu_write(this_cpu_vector, v);
1969         }
1970
1971 }
1972
1973 static int __init parse_kpti(char *str)
1974 {
1975         bool enabled;
1976         int ret = kstrtobool(str, &enabled);
1977
1978         if (ret)
1979                 return ret;
1980
1981         __kpti_forced = enabled ? 1 : -1;
1982         return 0;
1983 }
1984 early_param("kpti", parse_kpti);
1985
1986 #ifdef CONFIG_ARM64_HW_AFDBM
1987 static struct cpumask dbm_cpus __read_mostly;
1988
1989 static inline void __cpu_enable_hw_dbm(void)
1990 {
1991         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1992
1993         write_sysreg(tcr, tcr_el1);
1994         isb();
1995         local_flush_tlb_all();
1996 }
1997
1998 static bool cpu_has_broken_dbm(void)
1999 {
2000         /* List of CPUs which have broken DBM support. */
2001         static const struct midr_range cpus[] = {
2002 #ifdef CONFIG_ARM64_ERRATUM_1024718
2003                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2004                 /* Kryo4xx Silver (rdpe => r1p0) */
2005                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2006 #endif
2007 #ifdef CONFIG_ARM64_ERRATUM_2051678
2008                 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2009 #endif
2010                 {},
2011         };
2012
2013         return is_midr_in_range_list(read_cpuid_id(), cpus);
2014 }
2015
2016 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2017 {
2018         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2019                !cpu_has_broken_dbm();
2020 }
2021
2022 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2023 {
2024         if (cpu_can_use_dbm(cap)) {
2025                 __cpu_enable_hw_dbm();
2026                 cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2027         }
2028 }
2029
2030 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2031                        int __unused)
2032 {
2033         /*
2034          * DBM is a non-conflicting feature. i.e, the kernel can safely
2035          * run a mix of CPUs with and without the feature. So, we
2036          * unconditionally enable the capability to allow any late CPU
2037          * to use the feature. We only enable the control bits on the
2038          * CPU, if it is supported.
2039          */
2040
2041         return true;
2042 }
2043
2044 #endif
2045
2046 #ifdef CONFIG_ARM64_AMU_EXTN
2047
2048 /*
2049  * The "amu_cpus" cpumask only signals that the CPU implementation for the
2050  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2051  * information regarding all the events that it supports. When a CPU bit is
2052  * set in the cpumask, the user of this feature can only rely on the presence
2053  * of the 4 fixed counters for that CPU. But this does not guarantee that the
2054  * counters are enabled or access to these counters is enabled by code
2055  * executed at higher exception levels (firmware).
2056  */
2057 static struct cpumask amu_cpus __read_mostly;
2058
2059 bool cpu_has_amu_feat(int cpu)
2060 {
2061         return cpumask_test_cpu(cpu, &amu_cpus);
2062 }
2063
2064 int get_cpu_with_amu_feat(void)
2065 {
2066         return cpumask_any(&amu_cpus);
2067 }
2068
2069 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2070 {
2071         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2072                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2073
2074                 /* 0 reference values signal broken/disabled counters */
2075                 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2076                         update_freq_counters_refs();
2077         }
2078 }
2079
2080 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2081                     int __unused)
2082 {
2083         /*
2084          * The AMU extension is a non-conflicting feature: the kernel can
2085          * safely run a mix of CPUs with and without support for the
2086          * activity monitors extension. Therefore, unconditionally enable
2087          * the capability to allow any late CPU to use the feature.
2088          *
2089          * With this feature unconditionally enabled, the cpu_enable
2090          * function will be called for all CPUs that match the criteria,
2091          * including secondary and hotplugged, marking this feature as
2092          * present on that respective CPU. The enable function will also
2093          * print a detection message.
2094          */
2095
2096         return true;
2097 }
2098 #else
2099 int get_cpu_with_amu_feat(void)
2100 {
2101         return nr_cpu_ids;
2102 }
2103 #endif
2104
2105 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2106 {
2107         return is_kernel_in_hyp_mode();
2108 }
2109
2110 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2111 {
2112         /*
2113          * Copy register values that aren't redirected by hardware.
2114          *
2115          * Before code patching, we only set tpidr_el1, all CPUs need to copy
2116          * this value to tpidr_el2 before we patch the code. Once we've done
2117          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2118          * do anything here.
2119          */
2120         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2121                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2122 }
2123
2124 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2125                                     int scope)
2126 {
2127         if (kvm_get_mode() != KVM_MODE_NV)
2128                 return false;
2129
2130         if (!has_cpuid_feature(cap, scope)) {
2131                 pr_warn("unavailable: %s\n", cap->desc);
2132                 return false;
2133         }
2134
2135         return true;
2136 }
2137
2138 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2139                           int __unused)
2140 {
2141         return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2142 }
2143
2144 #ifdef CONFIG_ARM64_PAN
2145 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2146 {
2147         /*
2148          * We modify PSTATE. This won't work from irq context as the PSTATE
2149          * is discarded once we return from the exception.
2150          */
2151         WARN_ON_ONCE(in_interrupt());
2152
2153         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2154         set_pstate_pan(1);
2155 }
2156 #endif /* CONFIG_ARM64_PAN */
2157
2158 #ifdef CONFIG_ARM64_RAS_EXTN
2159 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2160 {
2161         /* Firmware may have left a deferred SError in this register. */
2162         write_sysreg_s(0, SYS_DISR_EL1);
2163 }
2164 #endif /* CONFIG_ARM64_RAS_EXTN */
2165
2166 #ifdef CONFIG_ARM64_PTR_AUTH
2167 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2168 {
2169         int boot_val, sec_val;
2170
2171         /* We don't expect to be called with SCOPE_SYSTEM */
2172         WARN_ON(scope == SCOPE_SYSTEM);
2173         /*
2174          * The ptr-auth feature levels are not intercompatible with lower
2175          * levels. Hence we must match ptr-auth feature level of the secondary
2176          * CPUs with that of the boot CPU. The level of boot cpu is fetched
2177          * from the sanitised register whereas direct register read is done for
2178          * the secondary CPUs.
2179          * The sanitised feature state is guaranteed to match that of the
2180          * boot CPU as a mismatched secondary CPU is parked before it gets
2181          * a chance to update the state, with the capability.
2182          */
2183         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2184                                                entry->field_pos, entry->sign);
2185         if (scope & SCOPE_BOOT_CPU)
2186                 return boot_val >= entry->min_field_value;
2187         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2188         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2189                                               entry->field_pos, entry->sign);
2190         return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2191 }
2192
2193 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2194                                      int scope)
2195 {
2196         bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2197         bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2198         bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2199
2200         return apa || apa3 || api;
2201 }
2202
2203 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2204                              int __unused)
2205 {
2206         bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2207         bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2208         bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2209
2210         return gpa || gpa3 || gpi;
2211 }
2212 #endif /* CONFIG_ARM64_PTR_AUTH */
2213
2214 #ifdef CONFIG_ARM64_E0PD
2215 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2216 {
2217         if (this_cpu_has_cap(ARM64_HAS_E0PD))
2218                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2219 }
2220 #endif /* CONFIG_ARM64_E0PD */
2221
2222 #ifdef CONFIG_ARM64_PSEUDO_NMI
2223 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2224                                    int scope)
2225 {
2226         /*
2227          * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2228          * feature, so will be detected earlier.
2229          */
2230         BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2231         if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2232                 return false;
2233
2234         return enable_pseudo_nmi;
2235 }
2236
2237 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2238                                       int scope)
2239 {
2240         /*
2241          * If we're not using priority masking then we won't be poking PMR_EL1,
2242          * and there's no need to relax synchronization of writes to it, and
2243          * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2244          * that.
2245          *
2246          * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2247          * feature, so will be detected earlier.
2248          */
2249         BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2250         if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2251                 return false;
2252
2253         /*
2254          * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2255          * hint for interrupt distribution, a DSB is not necessary when
2256          * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2257          *
2258          * Linux itself doesn't use 1:N distribution, so has no need to
2259          * set PMHE. The only reason to have it set is if EL3 requires it
2260          * (and we can't change it).
2261          */
2262         return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2263 }
2264 #endif
2265
2266 #ifdef CONFIG_ARM64_BTI
2267 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2268 {
2269         /*
2270          * Use of X16/X17 for tail-calls and trampolines that jump to
2271          * function entry points using BR is a requirement for
2272          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2273          * So, be strict and forbid other BRs using other registers to
2274          * jump onto a PACIxSP instruction:
2275          */
2276         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2277         isb();
2278 }
2279 #endif /* CONFIG_ARM64_BTI */
2280
2281 #ifdef CONFIG_ARM64_MTE
2282 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2283 {
2284         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2285
2286         mte_cpu_setup();
2287
2288         /*
2289          * Clear the tags in the zero page. This needs to be done via the
2290          * linear map which has the Tagged attribute.
2291          */
2292         if (try_page_mte_tagging(ZERO_PAGE(0))) {
2293                 mte_clear_page_tags(lm_alias(empty_zero_page));
2294                 set_page_mte_tagged(ZERO_PAGE(0));
2295         }
2296
2297         kasan_init_hw_tags_cpu();
2298 }
2299 #endif /* CONFIG_ARM64_MTE */
2300
2301 static void user_feature_fixup(void)
2302 {
2303         if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2304                 struct arm64_ftr_reg *regp;
2305
2306                 regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2307                 if (regp)
2308                         regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2309         }
2310 }
2311
2312 static void elf_hwcap_fixup(void)
2313 {
2314 #ifdef CONFIG_COMPAT
2315         if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2316                 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2317 #endif /* CONFIG_COMPAT */
2318 }
2319
2320 #ifdef CONFIG_KVM
2321 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2322 {
2323         return kvm_get_mode() == KVM_MODE_PROTECTED;
2324 }
2325 #endif /* CONFIG_KVM */
2326
2327 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2328 {
2329         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2330 }
2331
2332 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2333 {
2334         set_pstate_dit(1);
2335 }
2336
2337 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2338 {
2339         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2340 }
2341
2342 /* Internal helper functions to match cpu capability type */
2343 static bool
2344 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2345 {
2346         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2347 }
2348
2349 static bool
2350 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2351 {
2352         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2353 }
2354
2355 static bool
2356 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2357 {
2358         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2359 }
2360
2361 static const struct arm64_cpu_capabilities arm64_features[] = {
2362         {
2363                 .capability = ARM64_ALWAYS_BOOT,
2364                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2365                 .matches = has_always,
2366         },
2367         {
2368                 .capability = ARM64_ALWAYS_SYSTEM,
2369                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2370                 .matches = has_always,
2371         },
2372         {
2373                 .desc = "GIC system register CPU interface",
2374                 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2375                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2376                 .matches = has_useable_gicv3_cpuif,
2377                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2378         },
2379         {
2380                 .desc = "Enhanced Counter Virtualization",
2381                 .capability = ARM64_HAS_ECV,
2382                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2383                 .matches = has_cpuid_feature,
2384                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2385         },
2386         {
2387                 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2388                 .capability = ARM64_HAS_ECV_CNTPOFF,
2389                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2390                 .matches = has_cpuid_feature,
2391                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2392         },
2393 #ifdef CONFIG_ARM64_PAN
2394         {
2395                 .desc = "Privileged Access Never",
2396                 .capability = ARM64_HAS_PAN,
2397                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2398                 .matches = has_cpuid_feature,
2399                 .cpu_enable = cpu_enable_pan,
2400                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2401         },
2402 #endif /* CONFIG_ARM64_PAN */
2403 #ifdef CONFIG_ARM64_EPAN
2404         {
2405                 .desc = "Enhanced Privileged Access Never",
2406                 .capability = ARM64_HAS_EPAN,
2407                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2408                 .matches = has_cpuid_feature,
2409                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2410         },
2411 #endif /* CONFIG_ARM64_EPAN */
2412 #ifdef CONFIG_ARM64_LSE_ATOMICS
2413         {
2414                 .desc = "LSE atomic instructions",
2415                 .capability = ARM64_HAS_LSE_ATOMICS,
2416                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2417                 .matches = has_cpuid_feature,
2418                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2419         },
2420 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2421         {
2422                 .desc = "Virtualization Host Extensions",
2423                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2424                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2425                 .matches = runs_at_el2,
2426                 .cpu_enable = cpu_copy_el2regs,
2427         },
2428         {
2429                 .desc = "Nested Virtualization Support",
2430                 .capability = ARM64_HAS_NESTED_VIRT,
2431                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2432                 .matches = has_nested_virt_support,
2433                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2434         },
2435         {
2436                 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2437                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2438                 .matches = has_32bit_el0,
2439                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2440         },
2441 #ifdef CONFIG_KVM
2442         {
2443                 .desc = "32-bit EL1 Support",
2444                 .capability = ARM64_HAS_32BIT_EL1,
2445                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2446                 .matches = has_cpuid_feature,
2447                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2448         },
2449         {
2450                 .desc = "Protected KVM",
2451                 .capability = ARM64_KVM_PROTECTED_MODE,
2452                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2453                 .matches = is_kvm_protected_mode,
2454         },
2455         {
2456                 .desc = "HCRX_EL2 register",
2457                 .capability = ARM64_HAS_HCX,
2458                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2459                 .matches = has_cpuid_feature,
2460                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2461         },
2462 #endif
2463         {
2464                 .desc = "Kernel page table isolation (KPTI)",
2465                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2466                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2467                 .cpu_enable = cpu_enable_kpti,
2468                 .matches = unmap_kernel_at_el0,
2469                 /*
2470                  * The ID feature fields below are used to indicate that
2471                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2472                  * more details.
2473                  */
2474                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2475         },
2476         {
2477                 .capability = ARM64_HAS_FPSIMD,
2478                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2479                 .matches = has_cpuid_feature,
2480                 .cpu_enable = cpu_enable_fpsimd,
2481                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2482         },
2483 #ifdef CONFIG_ARM64_PMEM
2484         {
2485                 .desc = "Data cache clean to Point of Persistence",
2486                 .capability = ARM64_HAS_DCPOP,
2487                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2488                 .matches = has_cpuid_feature,
2489                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2490         },
2491         {
2492                 .desc = "Data cache clean to Point of Deep Persistence",
2493                 .capability = ARM64_HAS_DCPODP,
2494                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2495                 .matches = has_cpuid_feature,
2496                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2497         },
2498 #endif
2499 #ifdef CONFIG_ARM64_SVE
2500         {
2501                 .desc = "Scalable Vector Extension",
2502                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2503                 .capability = ARM64_SVE,
2504                 .cpu_enable = cpu_enable_sve,
2505                 .matches = has_cpuid_feature,
2506                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2507         },
2508 #endif /* CONFIG_ARM64_SVE */
2509 #ifdef CONFIG_ARM64_RAS_EXTN
2510         {
2511                 .desc = "RAS Extension Support",
2512                 .capability = ARM64_HAS_RAS_EXTN,
2513                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2514                 .matches = has_cpuid_feature,
2515                 .cpu_enable = cpu_clear_disr,
2516                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2517         },
2518 #endif /* CONFIG_ARM64_RAS_EXTN */
2519 #ifdef CONFIG_ARM64_AMU_EXTN
2520         {
2521                 .desc = "Activity Monitors Unit (AMU)",
2522                 .capability = ARM64_HAS_AMU_EXTN,
2523                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2524                 .matches = has_amu,
2525                 .cpu_enable = cpu_amu_enable,
2526                 .cpus = &amu_cpus,
2527                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2528         },
2529 #endif /* CONFIG_ARM64_AMU_EXTN */
2530         {
2531                 .desc = "Data cache clean to the PoU not required for I/D coherence",
2532                 .capability = ARM64_HAS_CACHE_IDC,
2533                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2534                 .matches = has_cache_idc,
2535                 .cpu_enable = cpu_emulate_effective_ctr,
2536         },
2537         {
2538                 .desc = "Instruction cache invalidation not required for I/D coherence",
2539                 .capability = ARM64_HAS_CACHE_DIC,
2540                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2541                 .matches = has_cache_dic,
2542         },
2543         {
2544                 .desc = "Stage-2 Force Write-Back",
2545                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2546                 .capability = ARM64_HAS_STAGE2_FWB,
2547                 .matches = has_cpuid_feature,
2548                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2549         },
2550         {
2551                 .desc = "ARMv8.4 Translation Table Level",
2552                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2553                 .capability = ARM64_HAS_ARMv8_4_TTL,
2554                 .matches = has_cpuid_feature,
2555                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2556         },
2557         {
2558                 .desc = "TLB range maintenance instructions",
2559                 .capability = ARM64_HAS_TLB_RANGE,
2560                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2561                 .matches = has_cpuid_feature,
2562                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2563         },
2564 #ifdef CONFIG_ARM64_HW_AFDBM
2565         {
2566                 .desc = "Hardware dirty bit management",
2567                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2568                 .capability = ARM64_HW_DBM,
2569                 .matches = has_hw_dbm,
2570                 .cpu_enable = cpu_enable_hw_dbm,
2571                 .cpus = &dbm_cpus,
2572                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2573         },
2574 #endif
2575         {
2576                 .desc = "CRC32 instructions",
2577                 .capability = ARM64_HAS_CRC32,
2578                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2579                 .matches = has_cpuid_feature,
2580                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2581         },
2582         {
2583                 .desc = "Speculative Store Bypassing Safe (SSBS)",
2584                 .capability = ARM64_SSBS,
2585                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2586                 .matches = has_cpuid_feature,
2587                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2588         },
2589 #ifdef CONFIG_ARM64_CNP
2590         {
2591                 .desc = "Common not Private translations",
2592                 .capability = ARM64_HAS_CNP,
2593                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2594                 .matches = has_useable_cnp,
2595                 .cpu_enable = cpu_enable_cnp,
2596                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2597         },
2598 #endif
2599         {
2600                 .desc = "Speculation barrier (SB)",
2601                 .capability = ARM64_HAS_SB,
2602                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2603                 .matches = has_cpuid_feature,
2604                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2605         },
2606 #ifdef CONFIG_ARM64_PTR_AUTH
2607         {
2608                 .desc = "Address authentication (architected QARMA5 algorithm)",
2609                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2610                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2611                 .matches = has_address_auth_cpucap,
2612                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2613         },
2614         {
2615                 .desc = "Address authentication (architected QARMA3 algorithm)",
2616                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2617                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2618                 .matches = has_address_auth_cpucap,
2619                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2620         },
2621         {
2622                 .desc = "Address authentication (IMP DEF algorithm)",
2623                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2624                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2625                 .matches = has_address_auth_cpucap,
2626                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2627         },
2628         {
2629                 .capability = ARM64_HAS_ADDRESS_AUTH,
2630                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2631                 .matches = has_address_auth_metacap,
2632         },
2633         {
2634                 .desc = "Generic authentication (architected QARMA5 algorithm)",
2635                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2636                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2637                 .matches = has_cpuid_feature,
2638                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2639         },
2640         {
2641                 .desc = "Generic authentication (architected QARMA3 algorithm)",
2642                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2643                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2644                 .matches = has_cpuid_feature,
2645                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2646         },
2647         {
2648                 .desc = "Generic authentication (IMP DEF algorithm)",
2649                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2650                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2651                 .matches = has_cpuid_feature,
2652                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2653         },
2654         {
2655                 .capability = ARM64_HAS_GENERIC_AUTH,
2656                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2657                 .matches = has_generic_auth,
2658         },
2659 #endif /* CONFIG_ARM64_PTR_AUTH */
2660 #ifdef CONFIG_ARM64_PSEUDO_NMI
2661         {
2662                 /*
2663                  * Depends on having GICv3
2664                  */
2665                 .desc = "IRQ priority masking",
2666                 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2667                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2668                 .matches = can_use_gic_priorities,
2669         },
2670         {
2671                 /*
2672                  * Depends on ARM64_HAS_GIC_PRIO_MASKING
2673                  */
2674                 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2675                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2676                 .matches = has_gic_prio_relaxed_sync,
2677         },
2678 #endif
2679 #ifdef CONFIG_ARM64_E0PD
2680         {
2681                 .desc = "E0PD",
2682                 .capability = ARM64_HAS_E0PD,
2683                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2684                 .cpu_enable = cpu_enable_e0pd,
2685                 .matches = has_cpuid_feature,
2686                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2687         },
2688 #endif
2689         {
2690                 .desc = "Random Number Generator",
2691                 .capability = ARM64_HAS_RNG,
2692                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2693                 .matches = has_cpuid_feature,
2694                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2695         },
2696 #ifdef CONFIG_ARM64_BTI
2697         {
2698                 .desc = "Branch Target Identification",
2699                 .capability = ARM64_BTI,
2700 #ifdef CONFIG_ARM64_BTI_KERNEL
2701                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2702 #else
2703                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2704 #endif
2705                 .matches = has_cpuid_feature,
2706                 .cpu_enable = bti_enable,
2707                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2708         },
2709 #endif
2710 #ifdef CONFIG_ARM64_MTE
2711         {
2712                 .desc = "Memory Tagging Extension",
2713                 .capability = ARM64_MTE,
2714                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2715                 .matches = has_cpuid_feature,
2716                 .cpu_enable = cpu_enable_mte,
2717                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2718         },
2719         {
2720                 .desc = "Asymmetric MTE Tag Check Fault",
2721                 .capability = ARM64_MTE_ASYMM,
2722                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2723                 .matches = has_cpuid_feature,
2724                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2725         },
2726 #endif /* CONFIG_ARM64_MTE */
2727         {
2728                 .desc = "RCpc load-acquire (LDAPR)",
2729                 .capability = ARM64_HAS_LDAPR,
2730                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2731                 .matches = has_cpuid_feature,
2732                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2733         },
2734         {
2735                 .desc = "Fine Grained Traps",
2736                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2737                 .capability = ARM64_HAS_FGT,
2738                 .matches = has_cpuid_feature,
2739                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2740         },
2741 #ifdef CONFIG_ARM64_SME
2742         {
2743                 .desc = "Scalable Matrix Extension",
2744                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2745                 .capability = ARM64_SME,
2746                 .matches = has_cpuid_feature,
2747                 .cpu_enable = cpu_enable_sme,
2748                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2749         },
2750         /* FA64 should be sorted after the base SME capability */
2751         {
2752                 .desc = "FA64",
2753                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2754                 .capability = ARM64_SME_FA64,
2755                 .matches = has_cpuid_feature,
2756                 .cpu_enable = cpu_enable_fa64,
2757                 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2758         },
2759         {
2760                 .desc = "SME2",
2761                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2762                 .capability = ARM64_SME2,
2763                 .matches = has_cpuid_feature,
2764                 .cpu_enable = cpu_enable_sme2,
2765                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2766         },
2767 #endif /* CONFIG_ARM64_SME */
2768         {
2769                 .desc = "WFx with timeout",
2770                 .capability = ARM64_HAS_WFXT,
2771                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2772                 .matches = has_cpuid_feature,
2773                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2774         },
2775         {
2776                 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2777                 .capability = ARM64_HAS_TIDCP1,
2778                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2779                 .matches = has_cpuid_feature,
2780                 .cpu_enable = cpu_trap_el0_impdef,
2781                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2782         },
2783         {
2784                 .desc = "Data independent timing control (DIT)",
2785                 .capability = ARM64_HAS_DIT,
2786                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2787                 .matches = has_cpuid_feature,
2788                 .cpu_enable = cpu_enable_dit,
2789                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2790         },
2791         {
2792                 .desc = "Memory Copy and Memory Set instructions",
2793                 .capability = ARM64_HAS_MOPS,
2794                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2795                 .matches = has_cpuid_feature,
2796                 .cpu_enable = cpu_enable_mops,
2797                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2798         },
2799         {
2800                 .capability = ARM64_HAS_TCR2,
2801                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2802                 .matches = has_cpuid_feature,
2803                 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2804         },
2805         {
2806                 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2807                 .capability = ARM64_HAS_S1PIE,
2808                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2809                 .matches = has_cpuid_feature,
2810                 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2811         },
2812         {
2813                 .desc = "VHE for hypervisor only",
2814                 .capability = ARM64_KVM_HVHE,
2815                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2816                 .matches = hvhe_possible,
2817         },
2818         {
2819                 .desc = "Enhanced Virtualization Traps",
2820                 .capability = ARM64_HAS_EVT,
2821                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2822                 .matches = has_cpuid_feature,
2823                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2824         },
2825         {
2826                 .desc = "52-bit Virtual Addressing for KVM (LPA2)",
2827                 .capability = ARM64_HAS_LPA2,
2828                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2829                 .matches = has_lpa2,
2830         },
2831         {
2832                 .desc = "FPMR",
2833                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2834                 .capability = ARM64_HAS_FPMR,
2835                 .matches = has_cpuid_feature,
2836                 .cpu_enable = cpu_enable_fpmr,
2837                 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2838         },
2839 #ifdef CONFIG_ARM64_VA_BITS_52
2840         {
2841                 .capability = ARM64_HAS_VA52,
2842                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2843                 .matches = has_cpuid_feature,
2844 #ifdef CONFIG_ARM64_64K_PAGES
2845                 .desc = "52-bit Virtual Addressing (LVA)",
2846                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
2847 #else
2848                 .desc = "52-bit Virtual Addressing (LPA2)",
2849 #ifdef CONFIG_ARM64_4K_PAGES
2850                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
2851 #else
2852                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
2853 #endif
2854 #endif
2855         },
2856 #endif
2857         {
2858                 .desc = "NV1",
2859                 .capability = ARM64_HAS_HCR_NV1,
2860                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2861                 .matches = has_nv1,
2862                 ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
2863         },
2864         {},
2865 };
2866
2867 #define HWCAP_CPUID_MATCH(reg, field, min_value)                        \
2868                 .matches = has_user_cpuid_feature,                      \
2869                 ARM64_CPUID_FIELDS(reg, field, min_value)
2870
2871 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2872                 .desc = name,                                                   \
2873                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2874                 .hwcap_type = cap_type,                                         \
2875                 .hwcap = cap,                                                   \
2876
2877 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)         \
2878         {                                                                       \
2879                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2880                 HWCAP_CPUID_MATCH(reg, field, min_value)                \
2881         }
2882
2883 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2884         {                                                                       \
2885                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2886                 .matches = cpucap_multi_entry_cap_matches,                      \
2887                 .match_list = list,                                             \
2888         }
2889
2890 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2891         {                                                                       \
2892                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2893                 .matches = match,                                               \
2894         }
2895
2896 #ifdef CONFIG_ARM64_PTR_AUTH
2897 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2898         {
2899                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2900         },
2901         {
2902                 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2903         },
2904         {
2905                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2906         },
2907         {},
2908 };
2909
2910 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2911         {
2912                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2913         },
2914         {
2915                 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2916         },
2917         {
2918                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2919         },
2920         {},
2921 };
2922 #endif
2923
2924 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2925         HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2926         HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2927         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2928         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2929         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2930         HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2931         HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2932         HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
2933         HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2934         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2935         HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2936         HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2937         HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2938         HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2939         HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2940         HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2941         HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2942         HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2943         HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2944         HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2945         HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2946         HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2947         HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
2948         HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2949         HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2950         HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2951         HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2952         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2953         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2954         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
2955         HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2956         HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2957         HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2958         HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2959         HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2960         HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2961         HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
2962         HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
2963         HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2964 #ifdef CONFIG_ARM64_SVE
2965         HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2966         HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2967         HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2968         HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2969         HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2970         HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2971         HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
2972         HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2973         HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2974         HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2975         HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2976         HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2977         HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2978         HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2979 #endif
2980         HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2981 #ifdef CONFIG_ARM64_BTI
2982         HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2983 #endif
2984 #ifdef CONFIG_ARM64_PTR_AUTH
2985         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2986         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2987 #endif
2988 #ifdef CONFIG_ARM64_MTE
2989         HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2990         HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2991 #endif /* CONFIG_ARM64_MTE */
2992         HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
2993         HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
2994         HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2995         HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2996         HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2997         HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2998         HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
2999         HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3000 #ifdef CONFIG_ARM64_SME
3001         HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3002         HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3003         HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3004         HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3005         HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3006         HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3007         HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3008         HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3009         HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3010         HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3011         HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3012         HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3013         HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3014         HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3015         HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3016         HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3017         HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3018         HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3019         HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3020         HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3021 #endif /* CONFIG_ARM64_SME */
3022         HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3023         HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3024         HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3025         HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3026         HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3027         HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3028         {},
3029 };
3030
3031 #ifdef CONFIG_COMPAT
3032 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3033 {
3034         /*
3035          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3036          * in line with that of arm32 as in vfp_init(). We make sure that the
3037          * check is future proof, by making sure value is non-zero.
3038          */
3039         u32 mvfr1;
3040
3041         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3042         if (scope == SCOPE_SYSTEM)
3043                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3044         else
3045                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3046
3047         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3048                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3049                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3050 }
3051 #endif
3052
3053 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3054 #ifdef CONFIG_COMPAT
3055         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3056         HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3057         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3058         HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3059         HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3060         HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3061         HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3062         HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3063         HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3064         HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3065         HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3066         HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3067         HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3068         HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3069         HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3070         HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3071         HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3072         HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3073 #endif
3074         {},
3075 };
3076
3077 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3078 {
3079         switch (cap->hwcap_type) {
3080         case CAP_HWCAP:
3081                 cpu_set_feature(cap->hwcap);
3082                 break;
3083 #ifdef CONFIG_COMPAT
3084         case CAP_COMPAT_HWCAP:
3085                 compat_elf_hwcap |= (u32)cap->hwcap;
3086                 break;
3087         case CAP_COMPAT_HWCAP2:
3088                 compat_elf_hwcap2 |= (u32)cap->hwcap;
3089                 break;
3090 #endif
3091         default:
3092                 WARN_ON(1);
3093                 break;
3094         }
3095 }
3096
3097 /* Check if we have a particular HWCAP enabled */
3098 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3099 {
3100         bool rc;
3101
3102         switch (cap->hwcap_type) {
3103         case CAP_HWCAP:
3104                 rc = cpu_have_feature(cap->hwcap);
3105                 break;
3106 #ifdef CONFIG_COMPAT
3107         case CAP_COMPAT_HWCAP:
3108                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3109                 break;
3110         case CAP_COMPAT_HWCAP2:
3111                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3112                 break;
3113 #endif
3114         default:
3115                 WARN_ON(1);
3116                 rc = false;
3117         }
3118
3119         return rc;
3120 }
3121
3122 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3123 {
3124         /* We support emulation of accesses to CPU ID feature registers */
3125         cpu_set_named_feature(CPUID);
3126         for (; hwcaps->matches; hwcaps++)
3127                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3128                         cap_set_elf_hwcap(hwcaps);
3129 }
3130
3131 static void update_cpu_capabilities(u16 scope_mask)
3132 {
3133         int i;
3134         const struct arm64_cpu_capabilities *caps;
3135
3136         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3137         for (i = 0; i < ARM64_NCAPS; i++) {
3138                 caps = cpucap_ptrs[i];
3139                 if (!caps || !(caps->type & scope_mask) ||
3140                     cpus_have_cap(caps->capability) ||
3141                     !caps->matches(caps, cpucap_default_scope(caps)))
3142                         continue;
3143
3144                 if (caps->desc && !caps->cpus)
3145                         pr_info("detected: %s\n", caps->desc);
3146
3147                 __set_bit(caps->capability, system_cpucaps);
3148
3149                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3150                         set_bit(caps->capability, boot_cpucaps);
3151         }
3152 }
3153
3154 /*
3155  * Enable all the available capabilities on this CPU. The capabilities
3156  * with BOOT_CPU scope are handled separately and hence skipped here.
3157  */
3158 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3159 {
3160         int i;
3161         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3162
3163         for_each_available_cap(i) {
3164                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3165
3166                 if (WARN_ON(!cap))
3167                         continue;
3168
3169                 if (!(cap->type & non_boot_scope))
3170                         continue;
3171
3172                 if (cap->cpu_enable)
3173                         cap->cpu_enable(cap);
3174         }
3175         return 0;
3176 }
3177
3178 /*
3179  * Run through the enabled capabilities and enable() it on all active
3180  * CPUs
3181  */
3182 static void __init enable_cpu_capabilities(u16 scope_mask)
3183 {
3184         int i;
3185         const struct arm64_cpu_capabilities *caps;
3186         bool boot_scope;
3187
3188         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3189         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3190
3191         for (i = 0; i < ARM64_NCAPS; i++) {
3192                 caps = cpucap_ptrs[i];
3193                 if (!caps || !(caps->type & scope_mask) ||
3194                     !cpus_have_cap(caps->capability))
3195                         continue;
3196
3197                 if (boot_scope && caps->cpu_enable)
3198                         /*
3199                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
3200                          * before any secondary CPU boots. Thus, each secondary
3201                          * will enable the capability as appropriate via
3202                          * check_local_cpu_capabilities(). The only exception is
3203                          * the boot CPU, for which the capability must be
3204                          * enabled here. This approach avoids costly
3205                          * stop_machine() calls for this case.
3206                          */
3207                         caps->cpu_enable(caps);
3208         }
3209
3210         /*
3211          * For all non-boot scope capabilities, use stop_machine()
3212          * as it schedules the work allowing us to modify PSTATE,
3213          * instead of on_each_cpu() which uses an IPI, giving us a
3214          * PSTATE that disappears when we return.
3215          */
3216         if (!boot_scope)
3217                 stop_machine(cpu_enable_non_boot_scope_capabilities,
3218                              NULL, cpu_online_mask);
3219 }
3220
3221 /*
3222  * Run through the list of capabilities to check for conflicts.
3223  * If the system has already detected a capability, take necessary
3224  * action on this CPU.
3225  */
3226 static void verify_local_cpu_caps(u16 scope_mask)
3227 {
3228         int i;
3229         bool cpu_has_cap, system_has_cap;
3230         const struct arm64_cpu_capabilities *caps;
3231
3232         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3233
3234         for (i = 0; i < ARM64_NCAPS; i++) {
3235                 caps = cpucap_ptrs[i];
3236                 if (!caps || !(caps->type & scope_mask))
3237                         continue;
3238
3239                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3240                 system_has_cap = cpus_have_cap(caps->capability);
3241
3242                 if (system_has_cap) {
3243                         /*
3244                          * Check if the new CPU misses an advertised feature,
3245                          * which is not safe to miss.
3246                          */
3247                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3248                                 break;
3249                         /*
3250                          * We have to issue cpu_enable() irrespective of
3251                          * whether the CPU has it or not, as it is enabeld
3252                          * system wide. It is upto the call back to take
3253                          * appropriate action on this CPU.
3254                          */
3255                         if (caps->cpu_enable)
3256                                 caps->cpu_enable(caps);
3257                 } else {
3258                         /*
3259                          * Check if the CPU has this capability if it isn't
3260                          * safe to have when the system doesn't.
3261                          */
3262                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3263                                 break;
3264                 }
3265         }
3266
3267         if (i < ARM64_NCAPS) {
3268                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3269                         smp_processor_id(), caps->capability,
3270                         caps->desc, system_has_cap, cpu_has_cap);
3271
3272                 if (cpucap_panic_on_conflict(caps))
3273                         cpu_panic_kernel();
3274                 else
3275                         cpu_die_early();
3276         }
3277 }
3278
3279 /*
3280  * Check for CPU features that are used in early boot
3281  * based on the Boot CPU value.
3282  */
3283 static void check_early_cpu_features(void)
3284 {
3285         verify_cpu_asid_bits();
3286
3287         verify_local_cpu_caps(SCOPE_BOOT_CPU);
3288 }
3289
3290 static void
3291 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3292 {
3293
3294         for (; caps->matches; caps++)
3295                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3296                         pr_crit("CPU%d: missing HWCAP: %s\n",
3297                                         smp_processor_id(), caps->desc);
3298                         cpu_die_early();
3299                 }
3300 }
3301
3302 static void verify_local_elf_hwcaps(void)
3303 {
3304         __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3305
3306         if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3307                 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3308 }
3309
3310 static void verify_sve_features(void)
3311 {
3312         unsigned long cpacr = cpacr_save_enable_kernel_sve();
3313
3314         if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3315                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3316                         smp_processor_id());
3317                 cpu_die_early();
3318         }
3319
3320         cpacr_restore(cpacr);
3321 }
3322
3323 static void verify_sme_features(void)
3324 {
3325         unsigned long cpacr = cpacr_save_enable_kernel_sme();
3326
3327         if (vec_verify_vq_map(ARM64_VEC_SME)) {
3328                 pr_crit("CPU%d: SME: vector length support mismatch\n",
3329                         smp_processor_id());
3330                 cpu_die_early();
3331         }
3332
3333         cpacr_restore(cpacr);
3334 }
3335
3336 static void verify_hyp_capabilities(void)
3337 {
3338         u64 safe_mmfr1, mmfr0, mmfr1;
3339         int parange, ipa_max;
3340         unsigned int safe_vmid_bits, vmid_bits;
3341
3342         if (!IS_ENABLED(CONFIG_KVM))
3343                 return;
3344
3345         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3346         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3347         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3348
3349         /* Verify VMID bits */
3350         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3351         vmid_bits = get_vmid_bits(mmfr1);
3352         if (vmid_bits < safe_vmid_bits) {
3353                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3354                 cpu_die_early();
3355         }
3356
3357         /* Verify IPA range */
3358         parange = cpuid_feature_extract_unsigned_field(mmfr0,
3359                                 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3360         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3361         if (ipa_max < get_kvm_ipa_limit()) {
3362                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3363                 cpu_die_early();
3364         }
3365 }
3366
3367 /*
3368  * Run through the enabled system capabilities and enable() it on this CPU.
3369  * The capabilities were decided based on the available CPUs at the boot time.
3370  * Any new CPU should match the system wide status of the capability. If the
3371  * new CPU doesn't have a capability which the system now has enabled, we
3372  * cannot do anything to fix it up and could cause unexpected failures. So
3373  * we park the CPU.
3374  */
3375 static void verify_local_cpu_capabilities(void)
3376 {
3377         /*
3378          * The capabilities with SCOPE_BOOT_CPU are checked from
3379          * check_early_cpu_features(), as they need to be verified
3380          * on all secondary CPUs.
3381          */
3382         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3383         verify_local_elf_hwcaps();
3384
3385         if (system_supports_sve())
3386                 verify_sve_features();
3387
3388         if (system_supports_sme())
3389                 verify_sme_features();
3390
3391         if (is_hyp_mode_available())
3392                 verify_hyp_capabilities();
3393 }
3394
3395 void check_local_cpu_capabilities(void)
3396 {
3397         /*
3398          * All secondary CPUs should conform to the early CPU features
3399          * in use by the kernel based on boot CPU.
3400          */
3401         check_early_cpu_features();
3402
3403         /*
3404          * If we haven't finalised the system capabilities, this CPU gets
3405          * a chance to update the errata work arounds and local features.
3406          * Otherwise, this CPU should verify that it has all the system
3407          * advertised capabilities.
3408          */
3409         if (!system_capabilities_finalized())
3410                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3411         else
3412                 verify_local_cpu_capabilities();
3413 }
3414
3415 bool this_cpu_has_cap(unsigned int n)
3416 {
3417         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3418                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3419
3420                 if (cap)
3421                         return cap->matches(cap, SCOPE_LOCAL_CPU);
3422         }
3423
3424         return false;
3425 }
3426 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3427
3428 /*
3429  * This helper function is used in a narrow window when,
3430  * - The system wide safe registers are set with all the SMP CPUs and,
3431  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3432  */
3433 static bool __maybe_unused __system_matches_cap(unsigned int n)
3434 {
3435         if (n < ARM64_NCAPS) {
3436                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3437
3438                 if (cap)
3439                         return cap->matches(cap, SCOPE_SYSTEM);
3440         }
3441         return false;
3442 }
3443
3444 void cpu_set_feature(unsigned int num)
3445 {
3446         set_bit(num, elf_hwcap);
3447 }
3448
3449 bool cpu_have_feature(unsigned int num)
3450 {
3451         return test_bit(num, elf_hwcap);
3452 }
3453 EXPORT_SYMBOL_GPL(cpu_have_feature);
3454
3455 unsigned long cpu_get_elf_hwcap(void)
3456 {
3457         /*
3458          * We currently only populate the first 32 bits of AT_HWCAP. Please
3459          * note that for userspace compatibility we guarantee that bits 62
3460          * and 63 will always be returned as 0.
3461          */
3462         return elf_hwcap[0];
3463 }
3464
3465 unsigned long cpu_get_elf_hwcap2(void)
3466 {
3467         return elf_hwcap[1];
3468 }
3469
3470 static void __init setup_boot_cpu_capabilities(void)
3471 {
3472         /*
3473          * The boot CPU's feature register values have been recorded. Detect
3474          * boot cpucaps and local cpucaps for the boot CPU, then enable and
3475          * patch alternatives for the available boot cpucaps.
3476          */
3477         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3478         enable_cpu_capabilities(SCOPE_BOOT_CPU);
3479         apply_boot_alternatives();
3480 }
3481
3482 void __init setup_boot_cpu_features(void)
3483 {
3484         /*
3485          * Initialize the indirect array of CPU capabilities pointers before we
3486          * handle the boot CPU.
3487          */
3488         init_cpucap_indirect_list();
3489
3490         /*
3491          * Detect broken pseudo-NMI. Must be called _before_ the call to
3492          * setup_boot_cpu_capabilities() since it interacts with
3493          * can_use_gic_priorities().
3494          */
3495         detect_system_supports_pseudo_nmi();
3496
3497         setup_boot_cpu_capabilities();
3498 }
3499
3500 static void __init setup_system_capabilities(void)
3501 {
3502         /*
3503          * The system-wide safe feature register values have been finalized.
3504          * Detect, enable, and patch alternatives for the available system
3505          * cpucaps.
3506          */
3507         update_cpu_capabilities(SCOPE_SYSTEM);
3508         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3509         apply_alternatives_all();
3510
3511         /*
3512          * Log any cpucaps with a cpumask as these aren't logged by
3513          * update_cpu_capabilities().
3514          */
3515         for (int i = 0; i < ARM64_NCAPS; i++) {
3516                 const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3517
3518                 if (caps && caps->cpus && caps->desc &&
3519                         cpumask_any(caps->cpus) < nr_cpu_ids)
3520                         pr_info("detected: %s on CPU%*pbl\n",
3521                                 caps->desc, cpumask_pr_args(caps->cpus));
3522         }
3523
3524         /*
3525          * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3526          */
3527         if (system_uses_ttbr0_pan())
3528                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3529 }
3530
3531 void __init setup_system_features(void)
3532 {
3533         setup_system_capabilities();
3534
3535         kpti_install_ng_mappings();
3536
3537         sve_setup();
3538         sme_setup();
3539
3540         /*
3541          * Check for sane CTR_EL0.CWG value.
3542          */
3543         if (!cache_type_cwg())
3544                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3545                         ARCH_DMA_MINALIGN);
3546 }
3547
3548 void __init setup_user_features(void)
3549 {
3550         user_feature_fixup();
3551
3552         setup_elf_hwcaps(arm64_elf_hwcaps);
3553
3554         if (system_supports_32bit_el0()) {
3555                 setup_elf_hwcaps(compat_elf_hwcaps);
3556                 elf_hwcap_fixup();
3557         }
3558
3559         minsigstksz_setup();
3560 }
3561
3562 static int enable_mismatched_32bit_el0(unsigned int cpu)
3563 {
3564         /*
3565          * The first 32-bit-capable CPU we detected and so can no longer
3566          * be offlined by userspace. -1 indicates we haven't yet onlined
3567          * a 32-bit-capable CPU.
3568          */
3569         static int lucky_winner = -1;
3570
3571         struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3572         bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3573
3574         if (cpu_32bit) {
3575                 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3576                 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3577         }
3578
3579         if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3580                 return 0;
3581
3582         if (lucky_winner >= 0)
3583                 return 0;
3584
3585         /*
3586          * We've detected a mismatch. We need to keep one of our CPUs with
3587          * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3588          * every CPU in the system for a 32-bit task.
3589          */
3590         lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3591                                                          cpu_active_mask);
3592         get_cpu_device(lucky_winner)->offline_disabled = true;
3593         setup_elf_hwcaps(compat_elf_hwcaps);
3594         elf_hwcap_fixup();
3595         pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3596                 cpu, lucky_winner);
3597         return 0;
3598 }
3599
3600 static int __init init_32bit_el0_mask(void)
3601 {
3602         if (!allow_mismatched_32bit_el0)
3603                 return 0;
3604
3605         if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3606                 return -ENOMEM;
3607
3608         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3609                                  "arm64/mismatched_32bit_el0:online",
3610                                  enable_mismatched_32bit_el0, NULL);
3611 }
3612 subsys_initcall_sync(init_32bit_el0_mask);
3613
3614 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3615 {
3616         cpu_enable_swapper_cnp();
3617 }
3618
3619 /*
3620  * We emulate only the following system register space.
3621  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3622  * See Table C5-6 System instruction encodings for System register accesses,
3623  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3624  */
3625 static inline bool __attribute_const__ is_emulated(u32 id)
3626 {
3627         return (sys_reg_Op0(id) == 0x3 &&
3628                 sys_reg_CRn(id) == 0x0 &&
3629                 sys_reg_Op1(id) == 0x0 &&
3630                 (sys_reg_CRm(id) == 0 ||
3631                  ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3632 }
3633
3634 /*
3635  * With CRm == 0, reg should be one of :
3636  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3637  */
3638 static inline int emulate_id_reg(u32 id, u64 *valp)
3639 {
3640         switch (id) {
3641         case SYS_MIDR_EL1:
3642                 *valp = read_cpuid_id();
3643                 break;
3644         case SYS_MPIDR_EL1:
3645                 *valp = SYS_MPIDR_SAFE_VAL;
3646                 break;
3647         case SYS_REVIDR_EL1:
3648                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3649                 *valp = 0;
3650                 break;
3651         default:
3652                 return -EINVAL;
3653         }
3654
3655         return 0;
3656 }
3657
3658 static int emulate_sys_reg(u32 id, u64 *valp)
3659 {
3660         struct arm64_ftr_reg *regp;
3661
3662         if (!is_emulated(id))
3663                 return -EINVAL;
3664
3665         if (sys_reg_CRm(id) == 0)
3666                 return emulate_id_reg(id, valp);
3667
3668         regp = get_arm64_ftr_reg_nowarn(id);
3669         if (regp)
3670                 *valp = arm64_ftr_reg_user_value(regp);
3671         else
3672                 /*
3673                  * The untracked registers are either IMPLEMENTATION DEFINED
3674                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
3675                  */
3676                 *valp = 0;
3677         return 0;
3678 }
3679
3680 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3681 {
3682         int rc;
3683         u64 val;
3684
3685         rc = emulate_sys_reg(sys_reg, &val);
3686         if (!rc) {
3687                 pt_regs_write_reg(regs, rt, val);
3688                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3689         }
3690         return rc;
3691 }
3692
3693 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3694 {
3695         u32 sys_reg, rt;
3696
3697         if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3698                 return false;
3699
3700         /*
3701          * sys_reg values are defined as used in mrs/msr instruction.
3702          * shift the imm value to get the encoding.
3703          */
3704         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3705         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3706         return do_emulate_mrs(regs, sys_reg, rt) == 0;
3707 }
3708
3709 enum mitigation_state arm64_get_meltdown_state(void)
3710 {
3711         if (__meltdown_safe)
3712                 return SPECTRE_UNAFFECTED;
3713
3714         if (arm64_kernel_unmapped_at_el0())
3715                 return SPECTRE_MITIGATED;
3716
3717         return SPECTRE_VULNERABLE;
3718 }
3719
3720 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3721                           char *buf)
3722 {
3723         switch (arm64_get_meltdown_state()) {
3724         case SPECTRE_UNAFFECTED:
3725                 return sprintf(buf, "Not affected\n");
3726
3727         case SPECTRE_MITIGATED:
3728                 return sprintf(buf, "Mitigation: PTI\n");
3729
3730         default:
3731                 return sprintf(buf, "Vulnerable\n");
3732         }
3733 }