GNU Linux-libre 4.14.254-gnu1
[releases.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/cpu.h>
28 #include <asm/cpu.h>
29 #include <asm/cpufeature.h>
30 #include <asm/cpu_ops.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT        \
42                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
45                                  COMPAT_HWCAP_LPAE)
46 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
47 unsigned int compat_elf_hwcap2 __read_mostly;
48 #endif
49
50 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
51 EXPORT_SYMBOL(cpu_hwcaps);
52
53 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
54 {
55         /* file-wide pr_fmt adds "CPU features: " prefix */
56         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
57         return 0;
58 }
59
60 static struct notifier_block cpu_hwcaps_notifier = {
61         .notifier_call = dump_cpu_hwcaps
62 };
63
64 static int __init register_cpu_hwcaps_dumper(void)
65 {
66         atomic_notifier_chain_register(&panic_notifier_list,
67                                        &cpu_hwcaps_notifier);
68         return 0;
69 }
70 __initcall(register_cpu_hwcaps_dumper);
71
72 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
73 EXPORT_SYMBOL(cpu_hwcap_keys);
74
75 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
76         {                                               \
77                 .sign = SIGNED,                         \
78                 .visible = VISIBLE,                     \
79                 .strict = STRICT,                       \
80                 .type = TYPE,                           \
81                 .shift = SHIFT,                         \
82                 .width = WIDTH,                         \
83                 .safe_val = SAFE_VAL,                   \
84         }
85
86 /* Define a feature with unsigned values */
87 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
88         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
89
90 /* Define a feature with a signed value */
91 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
92         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
93
94 #define ARM64_FTR_END                                   \
95         {                                               \
96                 .width = 0,                             \
97         }
98
99 /* meta feature for alternatives */
100 static bool __maybe_unused
101 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
102
103
104 /*
105  * NOTE: Any changes to the visibility of features should be kept in
106  * sync with the documentation of the CPU feature register ABI.
107  */
108 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
109         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
110         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
111         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
114         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
115         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
116         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
117         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
118         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
119         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
120         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
121         ARM64_FTR_END,
122 };
123
124 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
125         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
129         ARM64_FTR_END,
130 };
131
132 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
133         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
136         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
137         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
138         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
139         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
140         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
141         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
142         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
143         ARM64_FTR_END,
144 };
145
146 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
147         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
148         ARM64_FTR_END,
149 };
150
151 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
152         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
153         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
154         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
155         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
156         /* Linux shouldn't care about secure memory */
157         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
158         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
159         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
160         /*
161          * Differing PARange is fine as long as all peripherals and memory are mapped
162          * within the minimum PARange of all CPUs
163          */
164         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
165         ARM64_FTR_END,
166 };
167
168 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
169         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
170         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
171         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
172         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
174         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
175         ARM64_FTR_END,
176 };
177
178 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
179         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
180         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
181         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
182         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
183         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
185         ARM64_FTR_END,
186 };
187
188 static const struct arm64_ftr_bits ftr_ctr[] = {
189         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),           /* RES1 */
190         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 29, 1, 1),      /* DIC */
191         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 28, 1, 1),      /* IDC */
192         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, 24, 4, 0),     /* CWG */
193         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, 20, 4, 0),     /* ERG */
194         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
195         /*
196          * Linux can handle differing I-cache policies. Userspace JITs will
197          * make use of *minLine.
198          * If we have differing I-cache policies, report it as the weakest - VIPT.
199          */
200         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
201         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
202         ARM64_FTR_END,
203 };
204
205 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
206         .name           = "SYS_CTR_EL0",
207         .ftr_bits       = ftr_ctr
208 };
209
210 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
211         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
213         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
214         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
215         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
216         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
217         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
218         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
219         ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
223         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
224         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
226         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
227         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
228         /*
229          * We can instantiate multiple PMU instances with different levels
230          * of support.
231          */
232         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
233         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
234         ARM64_FTR_END,
235 };
236
237 static const struct arm64_ftr_bits ftr_mvfr2[] = {
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
240         ARM64_FTR_END,
241 };
242
243 static const struct arm64_ftr_bits ftr_dczid[] = {
244         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
245         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
246         ARM64_FTR_END,
247 };
248
249
250 static const struct arm64_ftr_bits ftr_id_isar5[] = {
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
254         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
255         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
256         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
257         ARM64_FTR_END,
258 };
259
260 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
262         ARM64_FTR_END,
263 };
264
265 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
266         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
269         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
270         ARM64_FTR_END,
271 };
272
273 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
274         /* [31:28] TraceFilt */
275         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
276         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
277         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
281         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
282         ARM64_FTR_END,
283 };
284
285 /*
286  * Common ftr bits for a 32bit register with all hidden, strict
287  * attributes, with 4bit feature fields and a default safe value of
288  * 0. Covers the following 32bit registers:
289  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
290  */
291 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
292         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
293         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
294         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
295         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
296         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
297         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
298         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
299         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
300         ARM64_FTR_END,
301 };
302
303 /* Table for a single 32bit feature value */
304 static const struct arm64_ftr_bits ftr_single32[] = {
305         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
306         ARM64_FTR_END,
307 };
308
309 static const struct arm64_ftr_bits ftr_raz[] = {
310         ARM64_FTR_END,
311 };
312
313 #define ARM64_FTR_REG(id, table) {              \
314         .sys_id = id,                           \
315         .reg =  &(struct arm64_ftr_reg){        \
316                 .name = #id,                    \
317                 .ftr_bits = &((table)[0]),      \
318         }}
319
320 static const struct __ftr_reg_entry {
321         u32                     sys_id;
322         struct arm64_ftr_reg    *reg;
323 } arm64_ftr_regs[] = {
324
325         /* Op1 = 0, CRn = 0, CRm = 1 */
326         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
327         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
328         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
329         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
330         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
331         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
332         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
333
334         /* Op1 = 0, CRn = 0, CRm = 2 */
335         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
336         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
337         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
338         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
339         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
340         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
341         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
342
343         /* Op1 = 0, CRn = 0, CRm = 3 */
344         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
345         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
346         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
347
348         /* Op1 = 0, CRn = 0, CRm = 4 */
349         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
350         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
351
352         /* Op1 = 0, CRn = 0, CRm = 5 */
353         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
354         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
355
356         /* Op1 = 0, CRn = 0, CRm = 6 */
357         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
358         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
359
360         /* Op1 = 0, CRn = 0, CRm = 7 */
361         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
362         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
363         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
364
365         /* Op1 = 3, CRn = 0, CRm = 0 */
366         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
367         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
368
369         /* Op1 = 3, CRn = 14, CRm = 0 */
370         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
371 };
372
373 static int search_cmp_ftr_reg(const void *id, const void *regp)
374 {
375         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
376 }
377
378 /*
379  * get_arm64_ftr_reg - Lookup a feature register entry using its
380  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
381  * ascending order of sys_id , we use binary search to find a matching
382  * entry.
383  *
384  * returns - Upon success,  matching ftr_reg entry for id.
385  *         - NULL on failure. It is upto the caller to decide
386  *           the impact of a failure.
387  */
388 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
389 {
390         const struct __ftr_reg_entry *ret;
391
392         ret = bsearch((const void *)(unsigned long)sys_id,
393                         arm64_ftr_regs,
394                         ARRAY_SIZE(arm64_ftr_regs),
395                         sizeof(arm64_ftr_regs[0]),
396                         search_cmp_ftr_reg);
397         if (ret)
398                 return ret->reg;
399         return NULL;
400 }
401
402 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
403                                s64 ftr_val)
404 {
405         u64 mask = arm64_ftr_mask(ftrp);
406
407         reg &= ~mask;
408         reg |= (ftr_val << ftrp->shift) & mask;
409         return reg;
410 }
411
412 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
413                                 s64 cur)
414 {
415         s64 ret = 0;
416
417         switch (ftrp->type) {
418         case FTR_EXACT:
419                 ret = ftrp->safe_val;
420                 break;
421         case FTR_LOWER_SAFE:
422                 ret = new < cur ? new : cur;
423                 break;
424         case FTR_HIGHER_OR_ZERO_SAFE:
425                 if (!cur || !new)
426                         break;
427                 /* Fallthrough */
428         case FTR_HIGHER_SAFE:
429                 ret = new > cur ? new : cur;
430                 break;
431         default:
432                 BUG();
433         }
434
435         return ret;
436 }
437
438 static void __init sort_ftr_regs(void)
439 {
440         int i;
441
442         /* Check that the array is sorted so that we can do the binary search */
443         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
444                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
445 }
446
447 /*
448  * Initialise the CPU feature register from Boot CPU values.
449  * Also initiliases the strict_mask for the register.
450  * Any bits that are not covered by an arm64_ftr_bits entry are considered
451  * RES0 for the system-wide value, and must strictly match.
452  */
453 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
454 {
455         u64 val = 0;
456         u64 strict_mask = ~0x0ULL;
457         u64 user_mask = 0;
458         u64 valid_mask = 0;
459
460         const struct arm64_ftr_bits *ftrp;
461         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
462
463         BUG_ON(!reg);
464
465         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
466                 u64 ftr_mask = arm64_ftr_mask(ftrp);
467                 s64 ftr_new = arm64_ftr_value(ftrp, new);
468
469                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
470
471                 valid_mask |= ftr_mask;
472                 if (!ftrp->strict)
473                         strict_mask &= ~ftr_mask;
474                 if (ftrp->visible)
475                         user_mask |= ftr_mask;
476                 else
477                         reg->user_val = arm64_ftr_set_value(ftrp,
478                                                             reg->user_val,
479                                                             ftrp->safe_val);
480         }
481
482         val &= valid_mask;
483
484         reg->sys_val = val;
485         reg->strict_mask = strict_mask;
486         reg->user_mask = user_mask;
487 }
488
489 extern const struct arm64_cpu_capabilities arm64_errata[];
490 static void __init setup_boot_cpu_capabilities(void);
491
492 void __init init_cpu_features(struct cpuinfo_arm64 *info)
493 {
494         /* Before we start using the tables, make sure it is sorted */
495         sort_ftr_regs();
496
497         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
498         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
499         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
500         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
501         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
502         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
503         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
504         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
505         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
506         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
507         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
508         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
509
510         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
511                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
512                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
513                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
514                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
515                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
516                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
517                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
518                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
519                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
520                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
521                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
522                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
523                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
524                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
525                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
526                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
527         }
528
529         /*
530          * Detect and enable early CPU capabilities based on the boot CPU,
531          * after we have initialised the CPU feature infrastructure.
532          */
533         setup_boot_cpu_capabilities();
534 }
535
536 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
537 {
538         const struct arm64_ftr_bits *ftrp;
539
540         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
541                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
542                 s64 ftr_new = arm64_ftr_value(ftrp, new);
543
544                 if (ftr_cur == ftr_new)
545                         continue;
546                 /* Find a safe value */
547                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
548                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
549         }
550
551 }
552
553 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
554 {
555         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
556
557         BUG_ON(!regp);
558         update_cpu_ftr_reg(regp, val);
559         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
560                 return 0;
561         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
562                         regp->name, boot, cpu, val);
563         return 1;
564 }
565
566 /*
567  * Update system wide CPU feature registers with the values from a
568  * non-boot CPU. Also performs SANITY checks to make sure that there
569  * aren't any insane variations from that of the boot CPU.
570  */
571 void update_cpu_features(int cpu,
572                          struct cpuinfo_arm64 *info,
573                          struct cpuinfo_arm64 *boot)
574 {
575         int taint = 0;
576
577         /*
578          * The kernel can handle differing I-cache policies, but otherwise
579          * caches should look identical. Userspace JITs will make use of
580          * *minLine.
581          */
582         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
583                                       info->reg_ctr, boot->reg_ctr);
584
585         /*
586          * Userspace may perform DC ZVA instructions. Mismatched block sizes
587          * could result in too much or too little memory being zeroed if a
588          * process is preempted and migrated between CPUs.
589          */
590         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
591                                       info->reg_dczid, boot->reg_dczid);
592
593         /* If different, timekeeping will be broken (especially with KVM) */
594         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
595                                       info->reg_cntfrq, boot->reg_cntfrq);
596
597         /*
598          * The kernel uses self-hosted debug features and expects CPUs to
599          * support identical debug features. We presently need CTX_CMPs, WRPs,
600          * and BRPs to be identical.
601          * ID_AA64DFR1 is currently RES0.
602          */
603         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
604                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
605         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
606                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
607         /*
608          * Even in big.LITTLE, processors should be identical instruction-set
609          * wise.
610          */
611         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
612                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
613         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
614                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
615
616         /*
617          * Differing PARange support is fine as long as all peripherals and
618          * memory are mapped within the minimum PARange of all CPUs.
619          * Linux should not care about secure memory.
620          */
621         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
622                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
623         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
624                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
625         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
626                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
627
628         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
629                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
630         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
631                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
632
633         /*
634          * If we have AArch32, we care about 32-bit features for compat.
635          * If the system doesn't support AArch32, don't update them.
636          */
637         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
638                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
639
640                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
641                                         info->reg_id_dfr0, boot->reg_id_dfr0);
642                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
643                                         info->reg_id_isar0, boot->reg_id_isar0);
644                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
645                                         info->reg_id_isar1, boot->reg_id_isar1);
646                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
647                                         info->reg_id_isar2, boot->reg_id_isar2);
648                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
649                                         info->reg_id_isar3, boot->reg_id_isar3);
650                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
651                                         info->reg_id_isar4, boot->reg_id_isar4);
652                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
653                                         info->reg_id_isar5, boot->reg_id_isar5);
654
655                 /*
656                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
657                  * ACTLR formats could differ across CPUs and therefore would have to
658                  * be trapped for virtualization anyway.
659                  */
660                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
661                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
662                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
663                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
664                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
665                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
666                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
667                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
668                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
669                                         info->reg_id_pfr0, boot->reg_id_pfr0);
670                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
671                                         info->reg_id_pfr1, boot->reg_id_pfr1);
672                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
673                                         info->reg_mvfr0, boot->reg_mvfr0);
674                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
675                                         info->reg_mvfr1, boot->reg_mvfr1);
676                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
677                                         info->reg_mvfr2, boot->reg_mvfr2);
678         }
679
680         /*
681          * Mismatched CPU features are a recipe for disaster. Don't even
682          * pretend to support them.
683          */
684         if (taint) {
685                 pr_warn_once("Unsupported CPU feature variation detected.\n");
686                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
687         }
688 }
689
690 u64 read_sanitised_ftr_reg(u32 id)
691 {
692         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
693
694         /* We shouldn't get a request for an unsupported register */
695         BUG_ON(!regp);
696         return regp->sys_val;
697 }
698
699 #define read_sysreg_case(r)     \
700         case r:         return read_sysreg_s(r)
701
702 /*
703  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
704  * Read the system register on the current CPU
705  */
706 static u64 __read_sysreg_by_encoding(u32 sys_id)
707 {
708         switch (sys_id) {
709         read_sysreg_case(SYS_ID_PFR0_EL1);
710         read_sysreg_case(SYS_ID_PFR1_EL1);
711         read_sysreg_case(SYS_ID_DFR0_EL1);
712         read_sysreg_case(SYS_ID_MMFR0_EL1);
713         read_sysreg_case(SYS_ID_MMFR1_EL1);
714         read_sysreg_case(SYS_ID_MMFR2_EL1);
715         read_sysreg_case(SYS_ID_MMFR3_EL1);
716         read_sysreg_case(SYS_ID_ISAR0_EL1);
717         read_sysreg_case(SYS_ID_ISAR1_EL1);
718         read_sysreg_case(SYS_ID_ISAR2_EL1);
719         read_sysreg_case(SYS_ID_ISAR3_EL1);
720         read_sysreg_case(SYS_ID_ISAR4_EL1);
721         read_sysreg_case(SYS_ID_ISAR5_EL1);
722         read_sysreg_case(SYS_MVFR0_EL1);
723         read_sysreg_case(SYS_MVFR1_EL1);
724         read_sysreg_case(SYS_MVFR2_EL1);
725
726         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
727         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
728         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
729         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
730         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
731         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
732         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
733         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
734         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
735
736         read_sysreg_case(SYS_CNTFRQ_EL0);
737         read_sysreg_case(SYS_CTR_EL0);
738         read_sysreg_case(SYS_DCZID_EL0);
739
740         default:
741                 BUG();
742                 return 0;
743         }
744 }
745
746 #include <linux/irqchip/arm-gic-v3.h>
747
748 static bool
749 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
750 {
751         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
752
753         return val >= entry->min_field_value;
754 }
755
756 static bool
757 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
758 {
759         u64 val;
760
761         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
762         if (scope == SCOPE_SYSTEM)
763                 val = read_sanitised_ftr_reg(entry->sys_reg);
764         else
765                 val = __read_sysreg_by_encoding(entry->sys_reg);
766
767         return feature_matches(val, entry);
768 }
769
770 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
771 {
772         bool has_sre;
773
774         if (!has_cpuid_feature(entry, scope))
775                 return false;
776
777         has_sre = gic_enable_sre();
778         if (!has_sre)
779                 pr_warn_once("%s present but disabled by higher exception level\n",
780                              entry->desc);
781
782         return has_sre;
783 }
784
785 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
786 {
787         u32 midr = read_cpuid_id();
788
789         /* Cavium ThunderX pass 1.x and 2.x */
790         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
791                 MIDR_CPU_VAR_REV(0, 0),
792                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
793 }
794
795 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
796                            int __unused)
797 {
798         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
799
800         /*
801          * Activate the lower HYP offset only if:
802          * - the idmap doesn't clash with it,
803          * - the kernel is not running at EL2.
804          */
805         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
806 }
807
808 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
809 {
810         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
811
812         return cpuid_feature_extract_signed_field(pfr0,
813                                         ID_AA64PFR0_FP_SHIFT) < 0;
814 }
815
816 static bool __meltdown_safe = true;
817 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
818
819 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
820                                 int scope)
821 {
822         /* List of CPUs that are not vulnerable and don't need KPTI */
823         static const struct midr_range kpti_safe_list[] = {
824                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
825                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
826                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
827                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
828                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
829                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
830                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
831                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
832                 { /* sentinel */ }
833         };
834         char const *str = "kpti command line option";
835         bool meltdown_safe;
836
837         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
838
839         /* Defer to CPU feature registers */
840         if (has_cpuid_feature(entry, scope))
841                 meltdown_safe = true;
842
843         if (!meltdown_safe)
844                 __meltdown_safe = false;
845
846         /*
847          * For reasons that aren't entirely clear, enabling KPTI on Cavium
848          * ThunderX leads to apparent I-cache corruption of kernel text, which
849          * ends as well as you might imagine. Don't even try.
850          */
851         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
852                 str = "ARM64_WORKAROUND_CAVIUM_27456";
853                 __kpti_forced = -1;
854         }
855
856         /* Useful for KASLR robustness */
857         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
858                 if (!__kpti_forced) {
859                         str = "KASLR";
860                         __kpti_forced = 1;
861                 }
862         }
863
864         if (cpu_mitigations_off() && !__kpti_forced) {
865                 str = "mitigations=off";
866                 __kpti_forced = -1;
867         }
868
869         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
870                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
871                 return false;
872         }
873
874         /* Forced? */
875         if (__kpti_forced) {
876                 pr_info_once("kernel page table isolation forced %s by %s\n",
877                              __kpti_forced > 0 ? "ON" : "OFF", str);
878                 return __kpti_forced > 0;
879         }
880
881         return !meltdown_safe;
882 }
883
884 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
885 static void
886 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
887 {
888         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
889         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
890         kpti_remap_fn *remap_fn;
891
892         static bool kpti_applied = false;
893         int cpu = smp_processor_id();
894
895         if (kpti_applied)
896                 return;
897
898         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
899
900         cpu_install_idmap();
901         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
902         cpu_uninstall_idmap();
903
904         if (!cpu)
905                 kpti_applied = true;
906
907         return;
908 }
909 #else
910 static void
911 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
912 {
913 }
914 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
915
916 static int __init parse_kpti(char *str)
917 {
918         bool enabled;
919         int ret = strtobool(str, &enabled);
920
921         if (ret)
922                 return ret;
923
924         __kpti_forced = enabled ? 1 : -1;
925         return 0;
926 }
927 early_param("kpti", parse_kpti);
928
929 #ifdef CONFIG_ARM64_VHE
930 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
931 {
932         return is_kernel_in_hyp_mode();
933 }
934
935 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
936 {
937         /*
938          * Copy register values that aren't redirected by hardware.
939          *
940          * Before code patching, we only set tpidr_el1, all CPUs need to copy
941          * this value to tpidr_el2 before we patch the code. Once we've done
942          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
943          * do anything here.
944          */
945         if (!alternatives_applied)
946                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
947 }
948 #endif
949
950 #ifdef CONFIG_ARM64_SSBD
951 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
952 {
953         if (user_mode(regs))
954                 return 1;
955
956         if (instr & BIT(CRm_shift))
957                 regs->pstate |= PSR_SSBS_BIT;
958         else
959                 regs->pstate &= ~PSR_SSBS_BIT;
960
961         arm64_skip_faulting_instruction(regs, 4);
962         return 0;
963 }
964
965 static struct undef_hook ssbs_emulation_hook = {
966         .instr_mask     = ~(1U << CRm_shift),
967         .instr_val      = 0xd500001f | REG_PSTATE_SSBS_IMM,
968         .fn             = ssbs_emulation_handler,
969 };
970
971 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
972 {
973         static bool undef_hook_registered = false;
974         static DEFINE_SPINLOCK(hook_lock);
975
976         spin_lock(&hook_lock);
977         if (!undef_hook_registered) {
978                 register_undef_hook(&ssbs_emulation_hook);
979                 undef_hook_registered = true;
980         }
981         spin_unlock(&hook_lock);
982
983         if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
984                 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
985                 arm64_set_ssbd_mitigation(false);
986         } else {
987                 arm64_set_ssbd_mitigation(true);
988         }
989 }
990 #endif /* CONFIG_ARM64_SSBD */
991
992 static const struct arm64_cpu_capabilities arm64_features[] = {
993         {
994                 .desc = "GIC system register CPU interface",
995                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
996                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
997                 .matches = has_useable_gicv3_cpuif,
998                 .sys_reg = SYS_ID_AA64PFR0_EL1,
999                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1000                 .sign = FTR_UNSIGNED,
1001                 .min_field_value = 1,
1002         },
1003 #ifdef CONFIG_ARM64_PAN
1004         {
1005                 .desc = "Privileged Access Never",
1006                 .capability = ARM64_HAS_PAN,
1007                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1008                 .matches = has_cpuid_feature,
1009                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1010                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1011                 .sign = FTR_UNSIGNED,
1012                 .min_field_value = 1,
1013                 .cpu_enable = cpu_enable_pan,
1014         },
1015 #endif /* CONFIG_ARM64_PAN */
1016 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1017         {
1018                 .desc = "LSE atomic instructions",
1019                 .capability = ARM64_HAS_LSE_ATOMICS,
1020                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1021                 .matches = has_cpuid_feature,
1022                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1023                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1024                 .sign = FTR_UNSIGNED,
1025                 .min_field_value = 2,
1026         },
1027 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1028         {
1029                 .desc = "Software prefetching using PRFM",
1030                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1031                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1032                 .matches = has_no_hw_prefetch,
1033         },
1034 #ifdef CONFIG_ARM64_UAO
1035         {
1036                 .desc = "User Access Override",
1037                 .capability = ARM64_HAS_UAO,
1038                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1039                 .matches = has_cpuid_feature,
1040                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1041                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1042                 .min_field_value = 1,
1043                 /*
1044                  * We rely on stop_machine() calling uao_thread_switch() to set
1045                  * UAO immediately after patching.
1046                  */
1047         },
1048 #endif /* CONFIG_ARM64_UAO */
1049 #ifdef CONFIG_ARM64_PAN
1050         {
1051                 .capability = ARM64_ALT_PAN_NOT_UAO,
1052                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1053                 .matches = cpufeature_pan_not_uao,
1054         },
1055 #endif /* CONFIG_ARM64_PAN */
1056 #ifdef CONFIG_ARM64_VHE
1057         {
1058                 .desc = "Virtualization Host Extensions",
1059                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1060                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1061                 .matches = runs_at_el2,
1062                 .cpu_enable = cpu_copy_el2regs,
1063         },
1064 #endif  /* CONFIG_ARM64_VHE */
1065         {
1066                 .desc = "32-bit EL0 Support",
1067                 .capability = ARM64_HAS_32BIT_EL0,
1068                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1069                 .matches = has_cpuid_feature,
1070                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1071                 .sign = FTR_UNSIGNED,
1072                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1073                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1074         },
1075         {
1076                 .desc = "Reduced HYP mapping offset",
1077                 .capability = ARM64_HYP_OFFSET_LOW,
1078                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1079                 .matches = hyp_offset_low,
1080         },
1081         {
1082                 .desc = "Kernel page table isolation (KPTI)",
1083                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1084                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1085                 /*
1086                  * The ID feature fields below are used to indicate that
1087                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1088                  * more details.
1089                  */
1090                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1091                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1092                 .min_field_value = 1,
1093                 .matches = unmap_kernel_at_el0,
1094                 .cpu_enable = kpti_install_ng_mappings,
1095         },
1096         {
1097                 /* FP/SIMD is not implemented */
1098                 .capability = ARM64_HAS_NO_FPSIMD,
1099                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1100                 .min_field_value = 0,
1101                 .matches = has_no_fpsimd,
1102         },
1103 #ifdef CONFIG_ARM64_PMEM
1104         {
1105                 .desc = "Data cache clean to Point of Persistence",
1106                 .capability = ARM64_HAS_DCPOP,
1107                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1108                 .matches = has_cpuid_feature,
1109                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1110                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1111                 .min_field_value = 1,
1112         },
1113 #endif
1114 #ifdef CONFIG_ARM64_SSBD
1115         {
1116                 .desc = "Speculative Store Bypassing Safe (SSBS)",
1117                 .capability = ARM64_SSBS,
1118                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1119                 .matches = has_cpuid_feature,
1120                 .sys_reg = SYS_ID_AA64PFR1_EL1,
1121                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1122                 .sign = FTR_UNSIGNED,
1123                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1124                 .cpu_enable = cpu_enable_ssbs,
1125         },
1126 #endif
1127         {},
1128 };
1129
1130
1131 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)             \
1132                 .matches = has_cpuid_feature,                   \
1133                 .sys_reg = reg,                                 \
1134                 .field_pos = field,                             \
1135                 .sign = s,                                      \
1136                 .min_field_value = min_value,                   \
1137
1138 #define __HWCAP_CAP(name, cap_type, cap)                        \
1139                 .desc = name,                                   \
1140                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,            \
1141                 .hwcap_type = cap_type,                         \
1142                 .hwcap = cap,                                   \
1143
1144 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)      \
1145         {                                                       \
1146                 __HWCAP_CAP(#cap, cap_type, cap)                \
1147                 HWCAP_CPUID_MATCH(reg, field, s, min_value)     \
1148         }
1149
1150 #define HWCAP_CAP_MATCH(match, cap_type, cap)                   \
1151         {                                                       \
1152                 __HWCAP_CAP(#cap, cap_type, cap)                \
1153                 .matches = match,                               \
1154         }
1155
1156 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1157         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1158         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1159         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1160         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1161         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1162         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1163         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1164         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1165         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1166         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1167         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1168         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1169         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1170         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1171         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1172         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1173         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1174         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1175         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1176         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1177         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1178         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1179         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1180         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1181         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1182         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
1183         {},
1184 };
1185
1186 #ifdef CONFIG_COMPAT
1187 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
1188 {
1189         /*
1190          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
1191          * in line with that of arm32 as in vfp_init(). We make sure that the
1192          * check is future proof, by making sure value is non-zero.
1193          */
1194         u32 mvfr1;
1195
1196         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1197         if (scope == SCOPE_SYSTEM)
1198                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
1199         else
1200                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
1201
1202         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
1203                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
1204                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
1205 }
1206 #endif
1207
1208 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1209 #ifdef CONFIG_COMPAT
1210         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
1211         HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
1212         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
1213         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
1214         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
1215         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1216         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1217         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1218         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1219         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1220 #endif
1221         {},
1222 };
1223
1224 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1225 {
1226         switch (cap->hwcap_type) {
1227         case CAP_HWCAP:
1228                 elf_hwcap |= cap->hwcap;
1229                 break;
1230 #ifdef CONFIG_COMPAT
1231         case CAP_COMPAT_HWCAP:
1232                 compat_elf_hwcap |= (u32)cap->hwcap;
1233                 break;
1234         case CAP_COMPAT_HWCAP2:
1235                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1236                 break;
1237 #endif
1238         default:
1239                 WARN_ON(1);
1240                 break;
1241         }
1242 }
1243
1244 /* Check if we have a particular HWCAP enabled */
1245 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1246 {
1247         bool rc;
1248
1249         switch (cap->hwcap_type) {
1250         case CAP_HWCAP:
1251                 rc = (elf_hwcap & cap->hwcap) != 0;
1252                 break;
1253 #ifdef CONFIG_COMPAT
1254         case CAP_COMPAT_HWCAP:
1255                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1256                 break;
1257         case CAP_COMPAT_HWCAP2:
1258                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1259                 break;
1260 #endif
1261         default:
1262                 WARN_ON(1);
1263                 rc = false;
1264         }
1265
1266         return rc;
1267 }
1268
1269 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1270 {
1271         /* We support emulation of accesses to CPU ID feature registers */
1272         elf_hwcap |= HWCAP_CPUID;
1273         for (; hwcaps->matches; hwcaps++)
1274                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1275                         cap_set_elf_hwcap(hwcaps);
1276 }
1277
1278 /*
1279  * Check if the current CPU has a given feature capability.
1280  * Should be called from non-preemptible context.
1281  */
1282 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1283                                unsigned int cap)
1284 {
1285         const struct arm64_cpu_capabilities *caps;
1286
1287         if (WARN_ON(preemptible()))
1288                 return false;
1289
1290         for (caps = cap_array; caps->matches; caps++)
1291                 if (caps->capability == cap &&
1292                     caps->matches(caps, SCOPE_LOCAL_CPU))
1293                         return true;
1294         return false;
1295 }
1296
1297 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1298                                       u16 scope_mask, const char *info)
1299 {
1300         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1301         for (; caps->matches; caps++) {
1302                 if (!(caps->type & scope_mask) ||
1303                     !caps->matches(caps, cpucap_default_scope(caps)))
1304                         continue;
1305
1306                 if (!cpus_have_cap(caps->capability) && caps->desc)
1307                         pr_info("%s %s\n", info, caps->desc);
1308                 cpus_set_cap(caps->capability);
1309         }
1310 }
1311
1312 static void update_cpu_capabilities(u16 scope_mask)
1313 {
1314         __update_cpu_capabilities(arm64_errata, scope_mask,
1315                                   "enabling workaround for");
1316         __update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1317 }
1318
1319 static int __enable_cpu_capability(void *arg)
1320 {
1321         const struct arm64_cpu_capabilities *cap = arg;
1322
1323         cap->cpu_enable(cap);
1324         return 0;
1325 }
1326
1327 /*
1328  * Run through the enabled capabilities and enable() it on all active
1329  * CPUs
1330  */
1331 static void __init
1332 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1333                           u16 scope_mask)
1334 {
1335         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1336         for (; caps->matches; caps++) {
1337                 unsigned int num = caps->capability;
1338
1339                 if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1340                         continue;
1341
1342                 /* Ensure cpus_have_const_cap(num) works */
1343                 static_branch_enable(&cpu_hwcap_keys[num]);
1344
1345                 if (caps->cpu_enable) {
1346                         /*
1347                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
1348                          * before any secondary CPU boots. Thus, each secondary
1349                          * will enable the capability as appropriate via
1350                          * check_local_cpu_capabilities(). The only exception is
1351                          * the boot CPU, for which the capability must be
1352                          * enabled here. This approach avoids costly
1353                          * stop_machine() calls for this case.
1354                          *
1355                          * Otherwise, use stop_machine() as it schedules the
1356                          * work allowing us to modify PSTATE, instead of
1357                          * on_each_cpu() which uses an IPI, giving us a PSTATE
1358                          * that disappears when we return.
1359                          */
1360                         if (scope_mask & SCOPE_BOOT_CPU)
1361                                 caps->cpu_enable(caps);
1362                         else
1363                                 stop_machine(__enable_cpu_capability,
1364                                              (void *)caps, cpu_online_mask);
1365                 }
1366         }
1367 }
1368
1369 static void __init enable_cpu_capabilities(u16 scope_mask)
1370 {
1371         __enable_cpu_capabilities(arm64_errata, scope_mask);
1372         __enable_cpu_capabilities(arm64_features, scope_mask);
1373 }
1374
1375 /*
1376  * Flag to indicate if we have computed the system wide
1377  * capabilities based on the boot time active CPUs. This
1378  * will be used to determine if a new booting CPU should
1379  * go through the verification process to make sure that it
1380  * supports the system capabilities, without using a hotplug
1381  * notifier.
1382  */
1383 static bool sys_caps_initialised;
1384
1385 static inline void set_sys_caps_initialised(void)
1386 {
1387         sys_caps_initialised = true;
1388 }
1389
1390 /*
1391  * Run through the list of capabilities to check for conflicts.
1392  * If the system has already detected a capability, take necessary
1393  * action on this CPU.
1394  *
1395  * Returns "false" on conflicts.
1396  */
1397 static bool
1398 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps_list,
1399                         u16 scope_mask)
1400 {
1401         bool cpu_has_cap, system_has_cap;
1402         const struct arm64_cpu_capabilities *caps;
1403
1404         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1405
1406         for (caps = caps_list; caps->matches; caps++) {
1407                 if (!(caps->type & scope_mask))
1408                         continue;
1409
1410                 cpu_has_cap = __this_cpu_has_cap(caps_list, caps->capability);
1411                 system_has_cap = cpus_have_cap(caps->capability);
1412
1413                 if (system_has_cap) {
1414                         /*
1415                          * Check if the new CPU misses an advertised feature,
1416                          * which is not safe to miss.
1417                          */
1418                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1419                                 break;
1420                         /*
1421                          * We have to issue cpu_enable() irrespective of
1422                          * whether the CPU has it or not, as it is enabeld
1423                          * system wide. It is upto the call back to take
1424                          * appropriate action on this CPU.
1425                          */
1426                         if (caps->cpu_enable)
1427                                 caps->cpu_enable(caps);
1428                 } else {
1429                         /*
1430                          * Check if the CPU has this capability if it isn't
1431                          * safe to have when the system doesn't.
1432                          */
1433                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1434                                 break;
1435                 }
1436         }
1437
1438         if (caps->matches) {
1439                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1440                         smp_processor_id(), caps->capability,
1441                         caps->desc, system_has_cap, cpu_has_cap);
1442                 return false;
1443         }
1444
1445         return true;
1446 }
1447
1448 static bool verify_local_cpu_caps(u16 scope_mask)
1449 {
1450         return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
1451                __verify_local_cpu_caps(arm64_features, scope_mask);
1452 }
1453
1454 /*
1455  * Check for CPU features that are used in early boot
1456  * based on the Boot CPU value.
1457  */
1458 static void check_early_cpu_features(void)
1459 {
1460         verify_cpu_asid_bits();
1461         /*
1462          * Early features are used by the kernel already. If there
1463          * is a conflict, we cannot proceed further.
1464          */
1465         if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1466                 cpu_panic_kernel();
1467 }
1468
1469 static void
1470 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1471 {
1472
1473         for (; caps->matches; caps++)
1474                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1475                         pr_crit("CPU%d: missing HWCAP: %s\n",
1476                                         smp_processor_id(), caps->desc);
1477                         cpu_die_early();
1478                 }
1479 }
1480
1481
1482 /*
1483  * Run through the enabled system capabilities and enable() it on this CPU.
1484  * The capabilities were decided based on the available CPUs at the boot time.
1485  * Any new CPU should match the system wide status of the capability. If the
1486  * new CPU doesn't have a capability which the system now has enabled, we
1487  * cannot do anything to fix it up and could cause unexpected failures. So
1488  * we park the CPU.
1489  */
1490 static void verify_local_cpu_capabilities(void)
1491 {
1492         /*
1493          * The capabilities with SCOPE_BOOT_CPU are checked from
1494          * check_early_cpu_features(), as they need to be verified
1495          * on all secondary CPUs.
1496          */
1497         if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1498                 cpu_die_early();
1499
1500         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1501         if (system_supports_32bit_el0())
1502                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1503 }
1504
1505 void check_local_cpu_capabilities(void)
1506 {
1507         /*
1508          * All secondary CPUs should conform to the early CPU features
1509          * in use by the kernel based on boot CPU.
1510          */
1511         check_early_cpu_features();
1512
1513         /*
1514          * If we haven't finalised the system capabilities, this CPU gets
1515          * a chance to update the errata work arounds and local features.
1516          * Otherwise, this CPU should verify that it has all the system
1517          * advertised capabilities.
1518          */
1519         if (!sys_caps_initialised)
1520                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1521         else
1522                 verify_local_cpu_capabilities();
1523 }
1524
1525 static void __init setup_boot_cpu_capabilities(void)
1526 {
1527         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1528         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1529         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1530         enable_cpu_capabilities(SCOPE_BOOT_CPU);
1531 }
1532
1533 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1534 EXPORT_SYMBOL(arm64_const_caps_ready);
1535
1536 static void __init mark_const_caps_ready(void)
1537 {
1538         static_branch_enable(&arm64_const_caps_ready);
1539 }
1540
1541 extern const struct arm64_cpu_capabilities arm64_errata[];
1542
1543 bool this_cpu_has_cap(unsigned int cap)
1544 {
1545         return (__this_cpu_has_cap(arm64_features, cap) ||
1546                 __this_cpu_has_cap(arm64_errata, cap));
1547 }
1548
1549 static void __init setup_system_capabilities(void)
1550 {
1551         /*
1552          * We have finalised the system-wide safe feature
1553          * registers, finalise the capabilities that depend
1554          * on it. Also enable all the available capabilities,
1555          * that are not enabled already.
1556          */
1557         update_cpu_capabilities(SCOPE_SYSTEM);
1558         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1559 }
1560
1561 void __init setup_cpu_features(void)
1562 {
1563         u32 cwg;
1564         int cls;
1565
1566         setup_system_capabilities();
1567         mark_const_caps_ready();
1568         setup_elf_hwcaps(arm64_elf_hwcaps);
1569
1570         if (system_supports_32bit_el0())
1571                 setup_elf_hwcaps(compat_elf_hwcaps);
1572
1573         /* Advertise that we have computed the system capabilities */
1574         set_sys_caps_initialised();
1575
1576         /*
1577          * Check for sane CTR_EL0.CWG value.
1578          */
1579         cwg = cache_type_cwg();
1580         cls = cache_line_size();
1581         if (!cwg)
1582                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1583                         cls);
1584         if (L1_CACHE_BYTES < cls)
1585                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1586                         L1_CACHE_BYTES, cls);
1587 }
1588
1589 static bool __maybe_unused
1590 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1591 {
1592         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1593 }
1594
1595 /*
1596  * We emulate only the following system register space.
1597  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1598  * See Table C5-6 System instruction encodings for System register accesses,
1599  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1600  */
1601 static inline bool __attribute_const__ is_emulated(u32 id)
1602 {
1603         return (sys_reg_Op0(id) == 0x3 &&
1604                 sys_reg_CRn(id) == 0x0 &&
1605                 sys_reg_Op1(id) == 0x0 &&
1606                 (sys_reg_CRm(id) == 0 ||
1607                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1608 }
1609
1610 /*
1611  * With CRm == 0, reg should be one of :
1612  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1613  */
1614 static inline int emulate_id_reg(u32 id, u64 *valp)
1615 {
1616         switch (id) {
1617         case SYS_MIDR_EL1:
1618                 *valp = read_cpuid_id();
1619                 break;
1620         case SYS_MPIDR_EL1:
1621                 *valp = SYS_MPIDR_SAFE_VAL;
1622                 break;
1623         case SYS_REVIDR_EL1:
1624                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1625                 *valp = 0;
1626                 break;
1627         default:
1628                 return -EINVAL;
1629         }
1630
1631         return 0;
1632 }
1633
1634 static int emulate_sys_reg(u32 id, u64 *valp)
1635 {
1636         struct arm64_ftr_reg *regp;
1637
1638         if (!is_emulated(id))
1639                 return -EINVAL;
1640
1641         if (sys_reg_CRm(id) == 0)
1642                 return emulate_id_reg(id, valp);
1643
1644         regp = get_arm64_ftr_reg(id);
1645         if (regp)
1646                 *valp = arm64_ftr_reg_user_value(regp);
1647         else
1648                 /*
1649                  * The untracked registers are either IMPLEMENTATION DEFINED
1650                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1651                  */
1652                 *valp = 0;
1653         return 0;
1654 }
1655
1656 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1657 {
1658         int rc;
1659         u32 sys_reg, dst;
1660         u64 val;
1661
1662         /*
1663          * sys_reg values are defined as used in mrs/msr instruction.
1664          * shift the imm value to get the encoding.
1665          */
1666         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1667         rc = emulate_sys_reg(sys_reg, &val);
1668         if (!rc) {
1669                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1670                 pt_regs_write_reg(regs, dst, val);
1671                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1672         }
1673
1674         return rc;
1675 }
1676
1677 static struct undef_hook mrs_hook = {
1678         .instr_mask = 0xfff00000,
1679         .instr_val  = 0xd5300000,
1680         .pstate_mask = COMPAT_PSR_MODE_MASK,
1681         .pstate_val = PSR_MODE_EL0t,
1682         .fn = emulate_mrs,
1683 };
1684
1685 static int __init enable_mrs_emulation(void)
1686 {
1687         register_undef_hook(&mrs_hook);
1688         return 0;
1689 }
1690
1691 core_initcall(enable_mrs_emulation);
1692
1693 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
1694                           char *buf)
1695 {
1696         if (__meltdown_safe)
1697                 return sprintf(buf, "Not affected\n");
1698
1699         if (arm64_kernel_unmapped_at_el0())
1700                 return sprintf(buf, "Mitigation: PTI\n");
1701
1702         return sprintf(buf, "Vulnerable\n");
1703 }