Linux 6.7-rc7
[linux-modified.git] / arch / arm64 / crypto / ghash-ce-glue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
4  *
5  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
6  */
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <asm/unaligned.h>
11 #include <crypto/aes.h>
12 #include <crypto/gcm.h>
13 #include <crypto/algapi.h>
14 #include <crypto/b128ops.h>
15 #include <crypto/gf128mul.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/hash.h>
18 #include <crypto/internal/simd.h>
19 #include <crypto/internal/skcipher.h>
20 #include <crypto/scatterwalk.h>
21 #include <linux/cpufeature.h>
22 #include <linux/crypto.h>
23 #include <linux/module.h>
24
25 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
26 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
27 MODULE_LICENSE("GPL v2");
28 MODULE_ALIAS_CRYPTO("ghash");
29
30 #define GHASH_BLOCK_SIZE        16
31 #define GHASH_DIGEST_SIZE       16
32
33 #define RFC4106_NONCE_SIZE      4
34
35 struct ghash_key {
36         be128                   k;
37         u64                     h[][2];
38 };
39
40 struct ghash_desc_ctx {
41         u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
42         u8 buf[GHASH_BLOCK_SIZE];
43         u32 count;
44 };
45
46 struct gcm_aes_ctx {
47         struct crypto_aes_ctx   aes_key;
48         u8                      nonce[RFC4106_NONCE_SIZE];
49         struct ghash_key        ghash_key;
50 };
51
52 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
53                                        u64 const h[][2], const char *head);
54
55 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
56                                       u64 const h[][2], const char *head);
57
58 asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
59                                   u64 const h[][2], u64 dg[], u8 ctr[],
60                                   u32 const rk[], int rounds, u8 tag[]);
61 asmlinkage int pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
62                                  u64 const h[][2], u64 dg[], u8 ctr[],
63                                  u32 const rk[], int rounds, const u8 l[],
64                                  const u8 tag[], u64 authsize);
65
66 static int ghash_init(struct shash_desc *desc)
67 {
68         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
69
70         *ctx = (struct ghash_desc_ctx){};
71         return 0;
72 }
73
74 static void ghash_do_update(int blocks, u64 dg[], const char *src,
75                             struct ghash_key *key, const char *head)
76 {
77         be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
78
79         do {
80                 const u8 *in = src;
81
82                 if (head) {
83                         in = head;
84                         blocks++;
85                         head = NULL;
86                 } else {
87                         src += GHASH_BLOCK_SIZE;
88                 }
89
90                 crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
91                 gf128mul_lle(&dst, &key->k);
92         } while (--blocks);
93
94         dg[0] = be64_to_cpu(dst.b);
95         dg[1] = be64_to_cpu(dst.a);
96 }
97
98 static __always_inline
99 void ghash_do_simd_update(int blocks, u64 dg[], const char *src,
100                           struct ghash_key *key, const char *head,
101                           void (*simd_update)(int blocks, u64 dg[],
102                                               const char *src,
103                                               u64 const h[][2],
104                                               const char *head))
105 {
106         if (likely(crypto_simd_usable())) {
107                 kernel_neon_begin();
108                 simd_update(blocks, dg, src, key->h, head);
109                 kernel_neon_end();
110         } else {
111                 ghash_do_update(blocks, dg, src, key, head);
112         }
113 }
114
115 /* avoid hogging the CPU for too long */
116 #define MAX_BLOCKS      (SZ_64K / GHASH_BLOCK_SIZE)
117
118 static int ghash_update(struct shash_desc *desc, const u8 *src,
119                         unsigned int len)
120 {
121         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
122         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
123
124         ctx->count += len;
125
126         if ((partial + len) >= GHASH_BLOCK_SIZE) {
127                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
128                 int blocks;
129
130                 if (partial) {
131                         int p = GHASH_BLOCK_SIZE - partial;
132
133                         memcpy(ctx->buf + partial, src, p);
134                         src += p;
135                         len -= p;
136                 }
137
138                 blocks = len / GHASH_BLOCK_SIZE;
139                 len %= GHASH_BLOCK_SIZE;
140
141                 do {
142                         int chunk = min(blocks, MAX_BLOCKS);
143
144                         ghash_do_simd_update(chunk, ctx->digest, src, key,
145                                              partial ? ctx->buf : NULL,
146                                              pmull_ghash_update_p8);
147
148                         blocks -= chunk;
149                         src += chunk * GHASH_BLOCK_SIZE;
150                         partial = 0;
151                 } while (unlikely(blocks > 0));
152         }
153         if (len)
154                 memcpy(ctx->buf + partial, src, len);
155         return 0;
156 }
157
158 static int ghash_final(struct shash_desc *desc, u8 *dst)
159 {
160         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
161         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
162
163         if (partial) {
164                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
165
166                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
167
168                 ghash_do_simd_update(1, ctx->digest, ctx->buf, key, NULL,
169                                      pmull_ghash_update_p8);
170         }
171         put_unaligned_be64(ctx->digest[1], dst);
172         put_unaligned_be64(ctx->digest[0], dst + 8);
173
174         memzero_explicit(ctx, sizeof(*ctx));
175         return 0;
176 }
177
178 static void ghash_reflect(u64 h[], const be128 *k)
179 {
180         u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
181
182         h[0] = (be64_to_cpu(k->b) << 1) | carry;
183         h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
184
185         if (carry)
186                 h[1] ^= 0xc200000000000000UL;
187 }
188
189 static int ghash_setkey(struct crypto_shash *tfm,
190                         const u8 *inkey, unsigned int keylen)
191 {
192         struct ghash_key *key = crypto_shash_ctx(tfm);
193
194         if (keylen != GHASH_BLOCK_SIZE)
195                 return -EINVAL;
196
197         /* needed for the fallback */
198         memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
199
200         ghash_reflect(key->h[0], &key->k);
201         return 0;
202 }
203
204 static struct shash_alg ghash_alg = {
205         .base.cra_name          = "ghash",
206         .base.cra_driver_name   = "ghash-neon",
207         .base.cra_priority      = 150,
208         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
209         .base.cra_ctxsize       = sizeof(struct ghash_key) + sizeof(u64[2]),
210         .base.cra_module        = THIS_MODULE,
211
212         .digestsize             = GHASH_DIGEST_SIZE,
213         .init                   = ghash_init,
214         .update                 = ghash_update,
215         .final                  = ghash_final,
216         .setkey                 = ghash_setkey,
217         .descsize               = sizeof(struct ghash_desc_ctx),
218 };
219
220 static int num_rounds(struct crypto_aes_ctx *ctx)
221 {
222         /*
223          * # of rounds specified by AES:
224          * 128 bit key          10 rounds
225          * 192 bit key          12 rounds
226          * 256 bit key          14 rounds
227          * => n byte key        => 6 + (n/4) rounds
228          */
229         return 6 + ctx->key_length / 4;
230 }
231
232 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
233                           unsigned int keylen)
234 {
235         struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
236         u8 key[GHASH_BLOCK_SIZE];
237         be128 h;
238         int ret;
239
240         ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
241         if (ret)
242                 return -EINVAL;
243
244         aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
245
246         /* needed for the fallback */
247         memcpy(&ctx->ghash_key.k, key, GHASH_BLOCK_SIZE);
248
249         ghash_reflect(ctx->ghash_key.h[0], &ctx->ghash_key.k);
250
251         h = ctx->ghash_key.k;
252         gf128mul_lle(&h, &ctx->ghash_key.k);
253         ghash_reflect(ctx->ghash_key.h[1], &h);
254
255         gf128mul_lle(&h, &ctx->ghash_key.k);
256         ghash_reflect(ctx->ghash_key.h[2], &h);
257
258         gf128mul_lle(&h, &ctx->ghash_key.k);
259         ghash_reflect(ctx->ghash_key.h[3], &h);
260
261         return 0;
262 }
263
264 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
265 {
266         return crypto_gcm_check_authsize(authsize);
267 }
268
269 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
270                            int *buf_count, struct gcm_aes_ctx *ctx)
271 {
272         if (*buf_count > 0) {
273                 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
274
275                 memcpy(&buf[*buf_count], src, buf_added);
276
277                 *buf_count += buf_added;
278                 src += buf_added;
279                 count -= buf_added;
280         }
281
282         if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
283                 int blocks = count / GHASH_BLOCK_SIZE;
284
285                 ghash_do_simd_update(blocks, dg, src, &ctx->ghash_key,
286                                      *buf_count ? buf : NULL,
287                                      pmull_ghash_update_p64);
288
289                 src += blocks * GHASH_BLOCK_SIZE;
290                 count %= GHASH_BLOCK_SIZE;
291                 *buf_count = 0;
292         }
293
294         if (count > 0) {
295                 memcpy(buf, src, count);
296                 *buf_count = count;
297         }
298 }
299
300 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
301 {
302         struct crypto_aead *aead = crypto_aead_reqtfm(req);
303         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
304         u8 buf[GHASH_BLOCK_SIZE];
305         struct scatter_walk walk;
306         int buf_count = 0;
307
308         scatterwalk_start(&walk, req->src);
309
310         do {
311                 u32 n = scatterwalk_clamp(&walk, len);
312                 u8 *p;
313
314                 if (!n) {
315                         scatterwalk_start(&walk, sg_next(walk.sg));
316                         n = scatterwalk_clamp(&walk, len);
317                 }
318                 p = scatterwalk_map(&walk);
319
320                 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
321                 len -= n;
322
323                 scatterwalk_unmap(p);
324                 scatterwalk_advance(&walk, n);
325                 scatterwalk_done(&walk, 0, len);
326         } while (len);
327
328         if (buf_count) {
329                 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
330                 ghash_do_simd_update(1, dg, buf, &ctx->ghash_key, NULL,
331                                      pmull_ghash_update_p64);
332         }
333 }
334
335 static int gcm_encrypt(struct aead_request *req, char *iv, int assoclen)
336 {
337         struct crypto_aead *aead = crypto_aead_reqtfm(req);
338         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
339         int nrounds = num_rounds(&ctx->aes_key);
340         struct skcipher_walk walk;
341         u8 buf[AES_BLOCK_SIZE];
342         u64 dg[2] = {};
343         be128 lengths;
344         u8 *tag;
345         int err;
346
347         lengths.a = cpu_to_be64(assoclen * 8);
348         lengths.b = cpu_to_be64(req->cryptlen * 8);
349
350         if (assoclen)
351                 gcm_calculate_auth_mac(req, dg, assoclen);
352
353         put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
354
355         err = skcipher_walk_aead_encrypt(&walk, req, false);
356
357         do {
358                 const u8 *src = walk.src.virt.addr;
359                 u8 *dst = walk.dst.virt.addr;
360                 int nbytes = walk.nbytes;
361
362                 tag = (u8 *)&lengths;
363
364                 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
365                         src = dst = memcpy(buf + sizeof(buf) - nbytes,
366                                            src, nbytes);
367                 } else if (nbytes < walk.total) {
368                         nbytes &= ~(AES_BLOCK_SIZE - 1);
369                         tag = NULL;
370                 }
371
372                 kernel_neon_begin();
373                 pmull_gcm_encrypt(nbytes, dst, src, ctx->ghash_key.h,
374                                   dg, iv, ctx->aes_key.key_enc, nrounds,
375                                   tag);
376                 kernel_neon_end();
377
378                 if (unlikely(!nbytes))
379                         break;
380
381                 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
382                         memcpy(walk.dst.virt.addr,
383                                buf + sizeof(buf) - nbytes, nbytes);
384
385                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
386         } while (walk.nbytes);
387
388         if (err)
389                 return err;
390
391         /* copy authtag to end of dst */
392         scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
393                                  crypto_aead_authsize(aead), 1);
394
395         return 0;
396 }
397
398 static int gcm_decrypt(struct aead_request *req, char *iv, int assoclen)
399 {
400         struct crypto_aead *aead = crypto_aead_reqtfm(req);
401         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
402         unsigned int authsize = crypto_aead_authsize(aead);
403         int nrounds = num_rounds(&ctx->aes_key);
404         struct skcipher_walk walk;
405         u8 otag[AES_BLOCK_SIZE];
406         u8 buf[AES_BLOCK_SIZE];
407         u64 dg[2] = {};
408         be128 lengths;
409         u8 *tag;
410         int ret;
411         int err;
412
413         lengths.a = cpu_to_be64(assoclen * 8);
414         lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
415
416         if (assoclen)
417                 gcm_calculate_auth_mac(req, dg, assoclen);
418
419         put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
420
421         scatterwalk_map_and_copy(otag, req->src,
422                                  req->assoclen + req->cryptlen - authsize,
423                                  authsize, 0);
424
425         err = skcipher_walk_aead_decrypt(&walk, req, false);
426
427         do {
428                 const u8 *src = walk.src.virt.addr;
429                 u8 *dst = walk.dst.virt.addr;
430                 int nbytes = walk.nbytes;
431
432                 tag = (u8 *)&lengths;
433
434                 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
435                         src = dst = memcpy(buf + sizeof(buf) - nbytes,
436                                            src, nbytes);
437                 } else if (nbytes < walk.total) {
438                         nbytes &= ~(AES_BLOCK_SIZE - 1);
439                         tag = NULL;
440                 }
441
442                 kernel_neon_begin();
443                 ret = pmull_gcm_decrypt(nbytes, dst, src, ctx->ghash_key.h,
444                                         dg, iv, ctx->aes_key.key_enc,
445                                         nrounds, tag, otag, authsize);
446                 kernel_neon_end();
447
448                 if (unlikely(!nbytes))
449                         break;
450
451                 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
452                         memcpy(walk.dst.virt.addr,
453                                buf + sizeof(buf) - nbytes, nbytes);
454
455                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
456         } while (walk.nbytes);
457
458         if (err)
459                 return err;
460
461         return ret ? -EBADMSG : 0;
462 }
463
464 static int gcm_aes_encrypt(struct aead_request *req)
465 {
466         u8 iv[AES_BLOCK_SIZE];
467
468         memcpy(iv, req->iv, GCM_AES_IV_SIZE);
469         return gcm_encrypt(req, iv, req->assoclen);
470 }
471
472 static int gcm_aes_decrypt(struct aead_request *req)
473 {
474         u8 iv[AES_BLOCK_SIZE];
475
476         memcpy(iv, req->iv, GCM_AES_IV_SIZE);
477         return gcm_decrypt(req, iv, req->assoclen);
478 }
479
480 static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
481                           unsigned int keylen)
482 {
483         struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
484         int err;
485
486         keylen -= RFC4106_NONCE_SIZE;
487         err = gcm_aes_setkey(tfm, inkey, keylen);
488         if (err)
489                 return err;
490
491         memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
492         return 0;
493 }
494
495 static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
496 {
497         return crypto_rfc4106_check_authsize(authsize);
498 }
499
500 static int rfc4106_encrypt(struct aead_request *req)
501 {
502         struct crypto_aead *aead = crypto_aead_reqtfm(req);
503         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
504         u8 iv[AES_BLOCK_SIZE];
505
506         memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
507         memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
508
509         return crypto_ipsec_check_assoclen(req->assoclen) ?:
510                gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
511 }
512
513 static int rfc4106_decrypt(struct aead_request *req)
514 {
515         struct crypto_aead *aead = crypto_aead_reqtfm(req);
516         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
517         u8 iv[AES_BLOCK_SIZE];
518
519         memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
520         memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
521
522         return crypto_ipsec_check_assoclen(req->assoclen) ?:
523                gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
524 }
525
526 static struct aead_alg gcm_aes_algs[] = {{
527         .ivsize                 = GCM_AES_IV_SIZE,
528         .chunksize              = AES_BLOCK_SIZE,
529         .maxauthsize            = AES_BLOCK_SIZE,
530         .setkey                 = gcm_aes_setkey,
531         .setauthsize            = gcm_aes_setauthsize,
532         .encrypt                = gcm_aes_encrypt,
533         .decrypt                = gcm_aes_decrypt,
534
535         .base.cra_name          = "gcm(aes)",
536         .base.cra_driver_name   = "gcm-aes-ce",
537         .base.cra_priority      = 300,
538         .base.cra_blocksize     = 1,
539         .base.cra_ctxsize       = sizeof(struct gcm_aes_ctx) +
540                                   4 * sizeof(u64[2]),
541         .base.cra_module        = THIS_MODULE,
542 }, {
543         .ivsize                 = GCM_RFC4106_IV_SIZE,
544         .chunksize              = AES_BLOCK_SIZE,
545         .maxauthsize            = AES_BLOCK_SIZE,
546         .setkey                 = rfc4106_setkey,
547         .setauthsize            = rfc4106_setauthsize,
548         .encrypt                = rfc4106_encrypt,
549         .decrypt                = rfc4106_decrypt,
550
551         .base.cra_name          = "rfc4106(gcm(aes))",
552         .base.cra_driver_name   = "rfc4106-gcm-aes-ce",
553         .base.cra_priority      = 300,
554         .base.cra_blocksize     = 1,
555         .base.cra_ctxsize       = sizeof(struct gcm_aes_ctx) +
556                                   4 * sizeof(u64[2]),
557         .base.cra_module        = THIS_MODULE,
558 }};
559
560 static int __init ghash_ce_mod_init(void)
561 {
562         if (!cpu_have_named_feature(ASIMD))
563                 return -ENODEV;
564
565         if (cpu_have_named_feature(PMULL))
566                 return crypto_register_aeads(gcm_aes_algs,
567                                              ARRAY_SIZE(gcm_aes_algs));
568
569         return crypto_register_shash(&ghash_alg);
570 }
571
572 static void __exit ghash_ce_mod_exit(void)
573 {
574         if (cpu_have_named_feature(PMULL))
575                 crypto_unregister_aeads(gcm_aes_algs, ARRAY_SIZE(gcm_aes_algs));
576         else
577                 crypto_unregister_shash(&ghash_alg);
578 }
579
580 static const struct cpu_feature __maybe_unused ghash_cpu_feature[] = {
581         { cpu_feature(PMULL) }, { }
582 };
583 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
584
585 module_init(ghash_ce_mod_init);
586 module_exit(ghash_ce_mod_exit);