GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / arm64 / crypto / ghash-ce-glue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
4  *
5  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
6  */
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <asm/unaligned.h>
11 #include <crypto/aes.h>
12 #include <crypto/algapi.h>
13 #include <crypto/b128ops.h>
14 #include <crypto/gf128mul.h>
15 #include <crypto/internal/aead.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/simd.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/cpufeature.h>
21 #include <linux/crypto.h>
22 #include <linux/module.h>
23
24 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
25 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
26 MODULE_LICENSE("GPL v2");
27 MODULE_ALIAS_CRYPTO("ghash");
28
29 #define GHASH_BLOCK_SIZE        16
30 #define GHASH_DIGEST_SIZE       16
31 #define GCM_IV_SIZE             12
32
33 struct ghash_key {
34         u64                     h[2];
35         u64                     h2[2];
36         u64                     h3[2];
37         u64                     h4[2];
38
39         be128                   k;
40 };
41
42 struct ghash_desc_ctx {
43         u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
44         u8 buf[GHASH_BLOCK_SIZE];
45         u32 count;
46 };
47
48 struct gcm_aes_ctx {
49         struct crypto_aes_ctx   aes_key;
50         struct ghash_key        ghash_key;
51 };
52
53 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
54                                        struct ghash_key const *k,
55                                        const char *head);
56
57 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
58                                       struct ghash_key const *k,
59                                       const char *head);
60
61 asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
62                                   const u8 src[], struct ghash_key const *k,
63                                   u8 ctr[], u32 const rk[], int rounds,
64                                   u8 ks[]);
65
66 asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
67                                   const u8 src[], struct ghash_key const *k,
68                                   u8 ctr[], u32 const rk[], int rounds);
69
70 asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
71                                         u32 const rk[], int rounds);
72
73 static int ghash_init(struct shash_desc *desc)
74 {
75         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
76
77         *ctx = (struct ghash_desc_ctx){};
78         return 0;
79 }
80
81 static void ghash_do_update(int blocks, u64 dg[], const char *src,
82                             struct ghash_key *key, const char *head,
83                             void (*simd_update)(int blocks, u64 dg[],
84                                                 const char *src,
85                                                 struct ghash_key const *k,
86                                                 const char *head))
87 {
88         if (likely(crypto_simd_usable())) {
89                 kernel_neon_begin();
90                 simd_update(blocks, dg, src, key, head);
91                 kernel_neon_end();
92         } else {
93                 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
94
95                 do {
96                         const u8 *in = src;
97
98                         if (head) {
99                                 in = head;
100                                 blocks++;
101                                 head = NULL;
102                         } else {
103                                 src += GHASH_BLOCK_SIZE;
104                         }
105
106                         crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
107                         gf128mul_lle(&dst, &key->k);
108                 } while (--blocks);
109
110                 dg[0] = be64_to_cpu(dst.b);
111                 dg[1] = be64_to_cpu(dst.a);
112         }
113 }
114
115 /* avoid hogging the CPU for too long */
116 #define MAX_BLOCKS      (SZ_64K / GHASH_BLOCK_SIZE)
117
118 static int __ghash_update(struct shash_desc *desc, const u8 *src,
119                           unsigned int len,
120                           void (*simd_update)(int blocks, u64 dg[],
121                                               const char *src,
122                                               struct ghash_key const *k,
123                                               const char *head))
124 {
125         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
126         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
127
128         ctx->count += len;
129
130         if ((partial + len) >= GHASH_BLOCK_SIZE) {
131                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
132                 int blocks;
133
134                 if (partial) {
135                         int p = GHASH_BLOCK_SIZE - partial;
136
137                         memcpy(ctx->buf + partial, src, p);
138                         src += p;
139                         len -= p;
140                 }
141
142                 blocks = len / GHASH_BLOCK_SIZE;
143                 len %= GHASH_BLOCK_SIZE;
144
145                 do {
146                         int chunk = min(blocks, MAX_BLOCKS);
147
148                         ghash_do_update(chunk, ctx->digest, src, key,
149                                         partial ? ctx->buf : NULL,
150                                         simd_update);
151
152                         blocks -= chunk;
153                         src += chunk * GHASH_BLOCK_SIZE;
154                         partial = 0;
155                 } while (unlikely(blocks > 0));
156         }
157         if (len)
158                 memcpy(ctx->buf + partial, src, len);
159         return 0;
160 }
161
162 static int ghash_update_p8(struct shash_desc *desc, const u8 *src,
163                            unsigned int len)
164 {
165         return __ghash_update(desc, src, len, pmull_ghash_update_p8);
166 }
167
168 static int ghash_update_p64(struct shash_desc *desc, const u8 *src,
169                             unsigned int len)
170 {
171         return __ghash_update(desc, src, len, pmull_ghash_update_p64);
172 }
173
174 static int ghash_final_p8(struct shash_desc *desc, u8 *dst)
175 {
176         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
177         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
178
179         if (partial) {
180                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
181
182                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
183
184                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
185                                 pmull_ghash_update_p8);
186         }
187         put_unaligned_be64(ctx->digest[1], dst);
188         put_unaligned_be64(ctx->digest[0], dst + 8);
189
190         *ctx = (struct ghash_desc_ctx){};
191         return 0;
192 }
193
194 static int ghash_final_p64(struct shash_desc *desc, u8 *dst)
195 {
196         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
197         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
198
199         if (partial) {
200                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
201
202                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
203
204                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
205                                 pmull_ghash_update_p64);
206         }
207         put_unaligned_be64(ctx->digest[1], dst);
208         put_unaligned_be64(ctx->digest[0], dst + 8);
209
210         *ctx = (struct ghash_desc_ctx){};
211         return 0;
212 }
213
214 static void ghash_reflect(u64 h[], const be128 *k)
215 {
216         u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
217
218         h[0] = (be64_to_cpu(k->b) << 1) | carry;
219         h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
220
221         if (carry)
222                 h[1] ^= 0xc200000000000000UL;
223 }
224
225 static int __ghash_setkey(struct ghash_key *key,
226                           const u8 *inkey, unsigned int keylen)
227 {
228         be128 h;
229
230         /* needed for the fallback */
231         memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
232
233         ghash_reflect(key->h, &key->k);
234
235         h = key->k;
236         gf128mul_lle(&h, &key->k);
237         ghash_reflect(key->h2, &h);
238
239         gf128mul_lle(&h, &key->k);
240         ghash_reflect(key->h3, &h);
241
242         gf128mul_lle(&h, &key->k);
243         ghash_reflect(key->h4, &h);
244
245         return 0;
246 }
247
248 static int ghash_setkey(struct crypto_shash *tfm,
249                         const u8 *inkey, unsigned int keylen)
250 {
251         struct ghash_key *key = crypto_shash_ctx(tfm);
252
253         if (keylen != GHASH_BLOCK_SIZE) {
254                 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
255                 return -EINVAL;
256         }
257
258         return __ghash_setkey(key, inkey, keylen);
259 }
260
261 static struct shash_alg ghash_alg[] = {{
262         .base.cra_name          = "ghash",
263         .base.cra_driver_name   = "ghash-neon",
264         .base.cra_priority      = 150,
265         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
266         .base.cra_ctxsize       = sizeof(struct ghash_key),
267         .base.cra_module        = THIS_MODULE,
268
269         .digestsize             = GHASH_DIGEST_SIZE,
270         .init                   = ghash_init,
271         .update                 = ghash_update_p8,
272         .final                  = ghash_final_p8,
273         .setkey                 = ghash_setkey,
274         .descsize               = sizeof(struct ghash_desc_ctx),
275 }, {
276         .base.cra_name          = "ghash",
277         .base.cra_driver_name   = "ghash-ce",
278         .base.cra_priority      = 200,
279         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
280         .base.cra_ctxsize       = sizeof(struct ghash_key),
281         .base.cra_module        = THIS_MODULE,
282
283         .digestsize             = GHASH_DIGEST_SIZE,
284         .init                   = ghash_init,
285         .update                 = ghash_update_p64,
286         .final                  = ghash_final_p64,
287         .setkey                 = ghash_setkey,
288         .descsize               = sizeof(struct ghash_desc_ctx),
289 }};
290
291 static int num_rounds(struct crypto_aes_ctx *ctx)
292 {
293         /*
294          * # of rounds specified by AES:
295          * 128 bit key          10 rounds
296          * 192 bit key          12 rounds
297          * 256 bit key          14 rounds
298          * => n byte key        => 6 + (n/4) rounds
299          */
300         return 6 + ctx->key_length / 4;
301 }
302
303 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
304                       unsigned int keylen)
305 {
306         struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
307         u8 key[GHASH_BLOCK_SIZE];
308         int ret;
309
310         ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
311         if (ret) {
312                 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
313                 return -EINVAL;
314         }
315
316         aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
317
318         return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
319 }
320
321 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
322 {
323         switch (authsize) {
324         case 4:
325         case 8:
326         case 12 ... 16:
327                 break;
328         default:
329                 return -EINVAL;
330         }
331         return 0;
332 }
333
334 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
335                            int *buf_count, struct gcm_aes_ctx *ctx)
336 {
337         if (*buf_count > 0) {
338                 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
339
340                 memcpy(&buf[*buf_count], src, buf_added);
341
342                 *buf_count += buf_added;
343                 src += buf_added;
344                 count -= buf_added;
345         }
346
347         if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
348                 int blocks = count / GHASH_BLOCK_SIZE;
349
350                 ghash_do_update(blocks, dg, src, &ctx->ghash_key,
351                                 *buf_count ? buf : NULL,
352                                 pmull_ghash_update_p64);
353
354                 src += blocks * GHASH_BLOCK_SIZE;
355                 count %= GHASH_BLOCK_SIZE;
356                 *buf_count = 0;
357         }
358
359         if (count > 0) {
360                 memcpy(buf, src, count);
361                 *buf_count = count;
362         }
363 }
364
365 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
366 {
367         struct crypto_aead *aead = crypto_aead_reqtfm(req);
368         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
369         u8 buf[GHASH_BLOCK_SIZE];
370         struct scatter_walk walk;
371         u32 len = req->assoclen;
372         int buf_count = 0;
373
374         scatterwalk_start(&walk, req->src);
375
376         do {
377                 u32 n = scatterwalk_clamp(&walk, len);
378                 u8 *p;
379
380                 if (!n) {
381                         scatterwalk_start(&walk, sg_next(walk.sg));
382                         n = scatterwalk_clamp(&walk, len);
383                 }
384                 p = scatterwalk_map(&walk);
385
386                 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
387                 len -= n;
388
389                 scatterwalk_unmap(p);
390                 scatterwalk_advance(&walk, n);
391                 scatterwalk_done(&walk, 0, len);
392         } while (len);
393
394         if (buf_count) {
395                 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
396                 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL,
397                                 pmull_ghash_update_p64);
398         }
399 }
400
401 static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
402                       u64 dg[], u8 tag[], int cryptlen)
403 {
404         u8 mac[AES_BLOCK_SIZE];
405         u128 lengths;
406
407         lengths.a = cpu_to_be64(req->assoclen * 8);
408         lengths.b = cpu_to_be64(cryptlen * 8);
409
410         ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL,
411                         pmull_ghash_update_p64);
412
413         put_unaligned_be64(dg[1], mac);
414         put_unaligned_be64(dg[0], mac + 8);
415
416         crypto_xor(tag, mac, AES_BLOCK_SIZE);
417 }
418
419 static int gcm_encrypt(struct aead_request *req)
420 {
421         struct crypto_aead *aead = crypto_aead_reqtfm(req);
422         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
423         struct skcipher_walk walk;
424         u8 iv[AES_BLOCK_SIZE];
425         u8 ks[2 * AES_BLOCK_SIZE];
426         u8 tag[AES_BLOCK_SIZE];
427         u64 dg[2] = {};
428         int nrounds = num_rounds(&ctx->aes_key);
429         int err;
430
431         if (req->assoclen)
432                 gcm_calculate_auth_mac(req, dg);
433
434         memcpy(iv, req->iv, GCM_IV_SIZE);
435         put_unaligned_be32(1, iv + GCM_IV_SIZE);
436
437         err = skcipher_walk_aead_encrypt(&walk, req, false);
438
439         if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
440                 u32 const *rk = NULL;
441
442                 kernel_neon_begin();
443                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
444                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
445                 pmull_gcm_encrypt_block(ks, iv, NULL, nrounds);
446                 put_unaligned_be32(3, iv + GCM_IV_SIZE);
447                 pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds);
448                 put_unaligned_be32(4, iv + GCM_IV_SIZE);
449
450                 do {
451                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
452
453                         if (rk)
454                                 kernel_neon_begin();
455
456                         pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
457                                           walk.src.virt.addr, &ctx->ghash_key,
458                                           iv, rk, nrounds, ks);
459                         kernel_neon_end();
460
461                         err = skcipher_walk_done(&walk,
462                                         walk.nbytes % (2 * AES_BLOCK_SIZE));
463
464                         rk = ctx->aes_key.key_enc;
465                 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
466         } else {
467                 aes_encrypt(&ctx->aes_key, tag, iv);
468                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
469
470                 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
471                         const int blocks =
472                                 walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
473                         u8 *dst = walk.dst.virt.addr;
474                         u8 *src = walk.src.virt.addr;
475                         int remaining = blocks;
476
477                         do {
478                                 aes_encrypt(&ctx->aes_key, ks, iv);
479                                 crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
480                                 crypto_inc(iv, AES_BLOCK_SIZE);
481
482                                 dst += AES_BLOCK_SIZE;
483                                 src += AES_BLOCK_SIZE;
484                         } while (--remaining > 0);
485
486                         ghash_do_update(blocks, dg,
487                                         walk.dst.virt.addr, &ctx->ghash_key,
488                                         NULL, pmull_ghash_update_p64);
489
490                         err = skcipher_walk_done(&walk,
491                                                  walk.nbytes % (2 * AES_BLOCK_SIZE));
492                 }
493                 if (walk.nbytes) {
494                         aes_encrypt(&ctx->aes_key, ks, iv);
495                         if (walk.nbytes > AES_BLOCK_SIZE) {
496                                 crypto_inc(iv, AES_BLOCK_SIZE);
497                                 aes_encrypt(&ctx->aes_key, ks + AES_BLOCK_SIZE, iv);
498                         }
499                 }
500         }
501
502         /* handle the tail */
503         if (walk.nbytes) {
504                 u8 buf[GHASH_BLOCK_SIZE];
505                 unsigned int nbytes = walk.nbytes;
506                 u8 *dst = walk.dst.virt.addr;
507                 u8 *head = NULL;
508
509                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
510                                walk.nbytes);
511
512                 if (walk.nbytes > GHASH_BLOCK_SIZE) {
513                         head = dst;
514                         dst += GHASH_BLOCK_SIZE;
515                         nbytes %= GHASH_BLOCK_SIZE;
516                 }
517
518                 memcpy(buf, dst, nbytes);
519                 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
520                 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
521                                 pmull_ghash_update_p64);
522
523                 err = skcipher_walk_done(&walk, 0);
524         }
525
526         if (err)
527                 return err;
528
529         gcm_final(req, ctx, dg, tag, req->cryptlen);
530
531         /* copy authtag to end of dst */
532         scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
533                                  crypto_aead_authsize(aead), 1);
534
535         return 0;
536 }
537
538 static int gcm_decrypt(struct aead_request *req)
539 {
540         struct crypto_aead *aead = crypto_aead_reqtfm(req);
541         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
542         unsigned int authsize = crypto_aead_authsize(aead);
543         struct skcipher_walk walk;
544         u8 iv[2 * AES_BLOCK_SIZE];
545         u8 tag[AES_BLOCK_SIZE];
546         u8 buf[2 * GHASH_BLOCK_SIZE];
547         u64 dg[2] = {};
548         int nrounds = num_rounds(&ctx->aes_key);
549         int err;
550
551         if (req->assoclen)
552                 gcm_calculate_auth_mac(req, dg);
553
554         memcpy(iv, req->iv, GCM_IV_SIZE);
555         put_unaligned_be32(1, iv + GCM_IV_SIZE);
556
557         err = skcipher_walk_aead_decrypt(&walk, req, false);
558
559         if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
560                 u32 const *rk = NULL;
561
562                 kernel_neon_begin();
563                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
564                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
565
566                 do {
567                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
568                         int rem = walk.total - blocks * AES_BLOCK_SIZE;
569
570                         if (rk)
571                                 kernel_neon_begin();
572
573                         pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
574                                           walk.src.virt.addr, &ctx->ghash_key,
575                                           iv, rk, nrounds);
576
577                         /* check if this is the final iteration of the loop */
578                         if (rem < (2 * AES_BLOCK_SIZE)) {
579                                 u8 *iv2 = iv + AES_BLOCK_SIZE;
580
581                                 if (rem > AES_BLOCK_SIZE) {
582                                         memcpy(iv2, iv, AES_BLOCK_SIZE);
583                                         crypto_inc(iv2, AES_BLOCK_SIZE);
584                                 }
585
586                                 pmull_gcm_encrypt_block(iv, iv, NULL, nrounds);
587
588                                 if (rem > AES_BLOCK_SIZE)
589                                         pmull_gcm_encrypt_block(iv2, iv2, NULL,
590                                                                 nrounds);
591                         }
592
593                         kernel_neon_end();
594
595                         err = skcipher_walk_done(&walk,
596                                         walk.nbytes % (2 * AES_BLOCK_SIZE));
597
598                         rk = ctx->aes_key.key_enc;
599                 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
600         } else {
601                 aes_encrypt(&ctx->aes_key, tag, iv);
602                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
603
604                 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
605                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
606                         u8 *dst = walk.dst.virt.addr;
607                         u8 *src = walk.src.virt.addr;
608
609                         ghash_do_update(blocks, dg, walk.src.virt.addr,
610                                         &ctx->ghash_key, NULL,
611                                         pmull_ghash_update_p64);
612
613                         do {
614                                 aes_encrypt(&ctx->aes_key, buf, iv);
615                                 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
616                                 crypto_inc(iv, AES_BLOCK_SIZE);
617
618                                 dst += AES_BLOCK_SIZE;
619                                 src += AES_BLOCK_SIZE;
620                         } while (--blocks > 0);
621
622                         err = skcipher_walk_done(&walk,
623                                                  walk.nbytes % (2 * AES_BLOCK_SIZE));
624                 }
625                 if (walk.nbytes) {
626                         if (walk.nbytes > AES_BLOCK_SIZE) {
627                                 u8 *iv2 = iv + AES_BLOCK_SIZE;
628
629                                 memcpy(iv2, iv, AES_BLOCK_SIZE);
630                                 crypto_inc(iv2, AES_BLOCK_SIZE);
631
632                                 aes_encrypt(&ctx->aes_key, iv2, iv2);
633                         }
634                         aes_encrypt(&ctx->aes_key, iv, iv);
635                 }
636         }
637
638         /* handle the tail */
639         if (walk.nbytes) {
640                 const u8 *src = walk.src.virt.addr;
641                 const u8 *head = NULL;
642                 unsigned int nbytes = walk.nbytes;
643
644                 if (walk.nbytes > GHASH_BLOCK_SIZE) {
645                         head = src;
646                         src += GHASH_BLOCK_SIZE;
647                         nbytes %= GHASH_BLOCK_SIZE;
648                 }
649
650                 memcpy(buf, src, nbytes);
651                 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
652                 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
653                                 pmull_ghash_update_p64);
654
655                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
656                                walk.nbytes);
657
658                 err = skcipher_walk_done(&walk, 0);
659         }
660
661         if (err)
662                 return err;
663
664         gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
665
666         /* compare calculated auth tag with the stored one */
667         scatterwalk_map_and_copy(buf, req->src,
668                                  req->assoclen + req->cryptlen - authsize,
669                                  authsize, 0);
670
671         if (crypto_memneq(tag, buf, authsize))
672                 return -EBADMSG;
673         return 0;
674 }
675
676 static struct aead_alg gcm_aes_alg = {
677         .ivsize                 = GCM_IV_SIZE,
678         .chunksize              = 2 * AES_BLOCK_SIZE,
679         .maxauthsize            = AES_BLOCK_SIZE,
680         .setkey                 = gcm_setkey,
681         .setauthsize            = gcm_setauthsize,
682         .encrypt                = gcm_encrypt,
683         .decrypt                = gcm_decrypt,
684
685         .base.cra_name          = "gcm(aes)",
686         .base.cra_driver_name   = "gcm-aes-ce",
687         .base.cra_priority      = 300,
688         .base.cra_blocksize     = 1,
689         .base.cra_ctxsize       = sizeof(struct gcm_aes_ctx),
690         .base.cra_module        = THIS_MODULE,
691 };
692
693 static int __init ghash_ce_mod_init(void)
694 {
695         int ret;
696
697         if (!cpu_have_named_feature(ASIMD))
698                 return -ENODEV;
699
700         if (cpu_have_named_feature(PMULL))
701                 ret = crypto_register_shashes(ghash_alg,
702                                               ARRAY_SIZE(ghash_alg));
703         else
704                 /* only register the first array element */
705                 ret = crypto_register_shash(ghash_alg);
706
707         if (ret)
708                 return ret;
709
710         if (cpu_have_named_feature(PMULL)) {
711                 ret = crypto_register_aead(&gcm_aes_alg);
712                 if (ret)
713                         crypto_unregister_shashes(ghash_alg,
714                                                   ARRAY_SIZE(ghash_alg));
715         }
716         return ret;
717 }
718
719 static void __exit ghash_ce_mod_exit(void)
720 {
721         if (cpu_have_named_feature(PMULL))
722                 crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg));
723         else
724                 crypto_unregister_shash(ghash_alg);
725         crypto_unregister_aead(&gcm_aes_alg);
726 }
727
728 static const struct cpu_feature ghash_cpu_feature[] = {
729         { cpu_feature(PMULL) }, { }
730 };
731 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
732
733 module_init(ghash_ce_mod_init);
734 module_exit(ghash_ce_mod_exit);