GNU Linux-libre 6.1.90-gnu
[releases.git] / arch / arm / probes / kprobes / test-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm/kernel/kprobes-test.c
4  *
5  * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
6  */
7
8 /*
9  * This file contains test code for ARM kprobes.
10  *
11  * The top level function run_all_tests() executes tests for all of the
12  * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
13  * fall into two categories; run_api_tests() checks basic functionality of the
14  * kprobes API, and run_test_cases() is a comprehensive test for kprobes
15  * instruction decoding and simulation.
16  *
17  * run_test_cases() first checks the kprobes decoding table for self consistency
18  * (using table_test()) then executes a series of test cases for each of the CPU
19  * instruction forms. coverage_start() and coverage_end() are used to verify
20  * that these test cases cover all of the possible combinations of instructions
21  * described by the kprobes decoding tables.
22  *
23  * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
24  * which use the macros defined in kprobes-test.h. The rest of this
25  * documentation will describe the operation of the framework used by these
26  * test cases.
27  */
28
29 /*
30  * TESTING METHODOLOGY
31  * -------------------
32  *
33  * The methodology used to test an ARM instruction 'test_insn' is to use
34  * inline assembler like:
35  *
36  * test_before: nop
37  * test_case:   test_insn
38  * test_after:  nop
39  *
40  * When the test case is run a kprobe is placed of each nop. The
41  * post-handler of the test_before probe is used to modify the saved CPU
42  * register context to that which we require for the test case. The
43  * pre-handler of the of the test_after probe saves a copy of the CPU
44  * register context. In this way we can execute test_insn with a specific
45  * register context and see the results afterwards.
46  *
47  * To actually test the kprobes instruction emulation we perform the above
48  * step a second time but with an additional kprobe on the test_case
49  * instruction itself. If the emulation is accurate then the results seen
50  * by the test_after probe will be identical to the first run which didn't
51  * have a probe on test_case.
52  *
53  * Each test case is run several times with a variety of variations in the
54  * flags value of stored in CPSR, and for Thumb code, different ITState.
55  *
56  * For instructions which can modify PC, a second test_after probe is used
57  * like this:
58  *
59  * test_before: nop
60  * test_case:   test_insn
61  * test_after:  nop
62  *              b test_done
63  * test_after2: nop
64  * test_done:
65  *
66  * The test case is constructed such that test_insn branches to
67  * test_after2, or, if testing a conditional instruction, it may just
68  * continue to test_after. The probes inserted at both locations let us
69  * determine which happened. A similar approach is used for testing
70  * backwards branches...
71  *
72  *              b test_before
73  *              b test_done  @ helps to cope with off by 1 branches
74  * test_after2: nop
75  *              b test_done
76  * test_before: nop
77  * test_case:   test_insn
78  * test_after:  nop
79  * test_done:
80  *
81  * The macros used to generate the assembler instructions describe above
82  * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
83  * (branch backwards). In these, the local variables numbered 1, 50, 2 and
84  * 99 represent: test_before, test_case, test_after2 and test_done.
85  *
86  * FRAMEWORK
87  * ---------
88  *
89  * Each test case is wrapped between the pair of macros TESTCASE_START and
90  * TESTCASE_END. As well as performing the inline assembler boilerplate,
91  * these call out to the kprobes_test_case_start() and
92  * kprobes_test_case_end() functions which drive the execution of the test
93  * case. The specific arguments to use for each test case are stored as
94  * inline data constructed using the various TEST_ARG_* macros. Putting
95  * this all together, a simple test case may look like:
96  *
97  *      TESTCASE_START("Testing mov r0, r7")
98  *      TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
99  *      TEST_ARG_END("")
100  *      TEST_INSTRUCTION("mov r0, r7")
101  *      TESTCASE_END
102  *
103  * Note, in practice the single convenience macro TEST_R would be used for this
104  * instead.
105  *
106  * The above would expand to assembler looking something like:
107  *
108  *      @ TESTCASE_START
109  *      bl      __kprobes_test_case_start
110  *      .pushsection .rodata
111  *      "10:
112  *      .ascii "mov r0, r7"     @ text title for test case
113  *      .byte   0
114  *      .popsection
115  *      @ start of inline data...
116  *      .word   10b             @ pointer to title in .rodata section
117  *
118  *      @ TEST_ARG_REG
119  *      .byte   ARG_TYPE_REG
120  *      .byte   7
121  *      .short  0
122  *      .word   0x1234567
123  *
124  *      @ TEST_ARG_END
125  *      .byte   ARG_TYPE_END
126  *      .byte   TEST_ISA        @ flags, including ISA being tested
127  *      .short  50f-0f          @ offset of 'test_before'
128  *      .short  2f-0f           @ offset of 'test_after2' (if relevent)
129  *      .short  99f-0f          @ offset of 'test_done'
130  *      @ start of test case code...
131  *      0:
132  *      .code   TEST_ISA        @ switch to ISA being tested
133  *
134  *      @ TEST_INSTRUCTION
135  *      50:     nop             @ location for 'test_before' probe
136  *      1:      mov r0, r7      @ the test case instruction 'test_insn'
137  *              nop             @ location for 'test_after' probe
138  *
139  *      // TESTCASE_END
140  *      2:
141  *      99:     bl __kprobes_test_case_end_##TEST_ISA
142  *      .code   NONMAL_ISA
143  *
144  * When the above is execute the following happens...
145  *
146  * __kprobes_test_case_start() is an assembler wrapper which sets up space
147  * for a stack buffer and calls the C function kprobes_test_case_start().
148  * This C function will do some initial processing of the inline data and
149  * setup some global state. It then inserts the test_before and test_after
150  * kprobes and returns a value which causes the assembler wrapper to jump
151  * to the start of the test case code, (local label '0').
152  *
153  * When the test case code executes, the test_before probe will be hit and
154  * test_before_post_handler will call setup_test_context(). This fills the
155  * stack buffer and CPU registers with a test pattern and then processes
156  * the test case arguments. In our example there is one TEST_ARG_REG which
157  * indicates that R7 should be loaded with the value 0x12345678.
158  *
159  * When the test_before probe ends, the test case continues and executes
160  * the "mov r0, r7" instruction. It then hits the test_after probe and the
161  * pre-handler for this (test_after_pre_handler) will save a copy of the
162  * CPU register context. This should now have R0 holding the same value as
163  * R7.
164  *
165  * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
166  * an assembler wrapper which switches back to the ISA used by the test
167  * code and calls the C function kprobes_test_case_end().
168  *
169  * For each run through the test case, test_case_run_count is incremented
170  * by one. For even runs, kprobes_test_case_end() saves a copy of the
171  * register and stack buffer contents from the test case just run. It then
172  * inserts a kprobe on the test case instruction 'test_insn' and returns a
173  * value to cause the test case code to be re-run.
174  *
175  * For odd numbered runs, kprobes_test_case_end() compares the register and
176  * stack buffer contents to those that were saved on the previous even
177  * numbered run (the one without the kprobe on test_insn). These should be
178  * the same if the kprobe instruction simulation routine is correct.
179  *
180  * The pair of test case runs is repeated with different combinations of
181  * flag values in CPSR and, for Thumb, different ITState. This is
182  * controlled by test_context_cpsr().
183  *
184  * BUILDING TEST CASES
185  * -------------------
186  *
187  *
188  * As an aid to building test cases, the stack buffer is initialised with
189  * some special values:
190  *
191  *   [SP+13*4]  Contains SP+120. This can be used to test instructions
192  *              which load a value into SP.
193  *
194  *   [SP+15*4]  When testing branching instructions using TEST_BRANCH_{F,B},
195  *              this holds the target address of the branch, 'test_after2'.
196  *              This can be used to test instructions which load a PC value
197  *              from memory.
198  */
199
200 #include <linux/kernel.h>
201 #include <linux/module.h>
202 #include <linux/slab.h>
203 #include <linux/sched/clock.h>
204 #include <linux/kprobes.h>
205 #include <linux/errno.h>
206 #include <linux/stddef.h>
207 #include <linux/bug.h>
208 #include <asm/opcodes.h>
209
210 #include "core.h"
211 #include "test-core.h"
212 #include "../decode-arm.h"
213 #include "../decode-thumb.h"
214
215
216 #define BENCHMARKING    1
217
218
219 /*
220  * Test basic API
221  */
222
223 static bool test_regs_ok;
224 static int test_func_instance;
225 static int pre_handler_called;
226 static int post_handler_called;
227 static int kretprobe_handler_called;
228 static int tests_failed;
229
230 #define FUNC_ARG1 0x12345678
231 #define FUNC_ARG2 0xabcdef
232
233
234 #ifndef CONFIG_THUMB2_KERNEL
235
236 #define RET(reg)        "mov    pc, "#reg
237
238 long arm_func(long r0, long r1);
239
240 static void __used __naked __arm_kprobes_test_func(void)
241 {
242         __asm__ __volatile__ (
243                 ".arm                                   \n\t"
244                 ".type arm_func, %%function             \n\t"
245                 "arm_func:                              \n\t"
246                 "adds   r0, r0, r1                      \n\t"
247                 "mov    pc, lr                          \n\t"
248                 ".code "NORMAL_ISA       /* Back to Thumb if necessary */
249                 : : : "r0", "r1", "cc"
250         );
251 }
252
253 #else /* CONFIG_THUMB2_KERNEL */
254
255 #define RET(reg)        "bx     "#reg
256
257 long thumb16_func(long r0, long r1);
258 long thumb32even_func(long r0, long r1);
259 long thumb32odd_func(long r0, long r1);
260
261 static void __used __naked __thumb_kprobes_test_funcs(void)
262 {
263         __asm__ __volatile__ (
264                 ".type thumb16_func, %%function         \n\t"
265                 "thumb16_func:                          \n\t"
266                 "adds.n r0, r0, r1                      \n\t"
267                 "bx     lr                              \n\t"
268
269                 ".align                                 \n\t"
270                 ".type thumb32even_func, %%function     \n\t"
271                 "thumb32even_func:                      \n\t"
272                 "adds.w r0, r0, r1                      \n\t"
273                 "bx     lr                              \n\t"
274
275                 ".align                                 \n\t"
276                 "nop.n                                  \n\t"
277                 ".type thumb32odd_func, %%function      \n\t"
278                 "thumb32odd_func:                       \n\t"
279                 "adds.w r0, r0, r1                      \n\t"
280                 "bx     lr                              \n\t"
281
282                 : : : "r0", "r1", "cc"
283         );
284 }
285
286 #endif /* CONFIG_THUMB2_KERNEL */
287
288
289 static int call_test_func(long (*func)(long, long), bool check_test_regs)
290 {
291         long ret;
292
293         ++test_func_instance;
294         test_regs_ok = false;
295
296         ret = (*func)(FUNC_ARG1, FUNC_ARG2);
297         if (ret != FUNC_ARG1 + FUNC_ARG2) {
298                 pr_err("FAIL: call_test_func: func returned %lx\n", ret);
299                 return false;
300         }
301
302         if (check_test_regs && !test_regs_ok) {
303                 pr_err("FAIL: test regs not OK\n");
304                 return false;
305         }
306
307         return true;
308 }
309
310 static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
311 {
312         pre_handler_called = test_func_instance;
313         if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
314                 test_regs_ok = true;
315         return 0;
316 }
317
318 static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
319                                 unsigned long flags)
320 {
321         post_handler_called = test_func_instance;
322         if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
323                 test_regs_ok = false;
324 }
325
326 static struct kprobe the_kprobe = {
327         .addr           = 0,
328         .pre_handler    = pre_handler,
329         .post_handler   = post_handler
330 };
331
332 static int test_kprobe(long (*func)(long, long))
333 {
334         int ret;
335
336         the_kprobe.addr = (kprobe_opcode_t *)func;
337         ret = register_kprobe(&the_kprobe);
338         if (ret < 0) {
339                 pr_err("FAIL: register_kprobe failed with %d\n", ret);
340                 return ret;
341         }
342
343         ret = call_test_func(func, true);
344
345         unregister_kprobe(&the_kprobe);
346         the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
347
348         if (!ret)
349                 return -EINVAL;
350         if (pre_handler_called != test_func_instance) {
351                 pr_err("FAIL: kprobe pre_handler not called\n");
352                 return -EINVAL;
353         }
354         if (post_handler_called != test_func_instance) {
355                 pr_err("FAIL: kprobe post_handler not called\n");
356                 return -EINVAL;
357         }
358         if (!call_test_func(func, false))
359                 return -EINVAL;
360         if (pre_handler_called == test_func_instance ||
361                                 post_handler_called == test_func_instance) {
362                 pr_err("FAIL: probe called after unregistering\n");
363                 return -EINVAL;
364         }
365
366         return 0;
367 }
368
369 static int __kprobes
370 kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
371 {
372         kretprobe_handler_called = test_func_instance;
373         if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
374                 test_regs_ok = true;
375         return 0;
376 }
377
378 static struct kretprobe the_kretprobe = {
379         .handler        = kretprobe_handler,
380 };
381
382 static int test_kretprobe(long (*func)(long, long))
383 {
384         int ret;
385
386         the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
387         ret = register_kretprobe(&the_kretprobe);
388         if (ret < 0) {
389                 pr_err("FAIL: register_kretprobe failed with %d\n", ret);
390                 return ret;
391         }
392
393         ret = call_test_func(func, true);
394
395         unregister_kretprobe(&the_kretprobe);
396         the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
397
398         if (!ret)
399                 return -EINVAL;
400         if (kretprobe_handler_called != test_func_instance) {
401                 pr_err("FAIL: kretprobe handler not called\n");
402                 return -EINVAL;
403         }
404         if (!call_test_func(func, false))
405                 return -EINVAL;
406         if (kretprobe_handler_called == test_func_instance) {
407                 pr_err("FAIL: kretprobe called after unregistering\n");
408                 return -EINVAL;
409         }
410
411         return 0;
412 }
413
414 static int run_api_tests(long (*func)(long, long))
415 {
416         int ret;
417
418         pr_info("    kprobe\n");
419         ret = test_kprobe(func);
420         if (ret < 0)
421                 return ret;
422
423         pr_info("    kretprobe\n");
424         ret = test_kretprobe(func);
425         if (ret < 0)
426                 return ret;
427
428         return 0;
429 }
430
431
432 /*
433  * Benchmarking
434  */
435
436 #if BENCHMARKING
437
438 static void __naked benchmark_nop(void)
439 {
440         __asm__ __volatile__ (
441                 "nop            \n\t"
442                 RET(lr)"        \n\t"
443         );
444 }
445
446 #ifdef CONFIG_THUMB2_KERNEL
447 #define wide ".w"
448 #else
449 #define wide
450 #endif
451
452 static void __naked benchmark_pushpop1(void)
453 {
454         __asm__ __volatile__ (
455                 "stmdb"wide"    sp!, {r3-r11,lr}  \n\t"
456                 "ldmia"wide"    sp!, {r3-r11,pc}"
457         );
458 }
459
460 static void __naked benchmark_pushpop2(void)
461 {
462         __asm__ __volatile__ (
463                 "stmdb"wide"    sp!, {r0-r8,lr}  \n\t"
464                 "ldmia"wide"    sp!, {r0-r8,pc}"
465         );
466 }
467
468 static void __naked benchmark_pushpop3(void)
469 {
470         __asm__ __volatile__ (
471                 "stmdb"wide"    sp!, {r4,lr}  \n\t"
472                 "ldmia"wide"    sp!, {r4,pc}"
473         );
474 }
475
476 static void __naked benchmark_pushpop4(void)
477 {
478         __asm__ __volatile__ (
479                 "stmdb"wide"    sp!, {r0,lr}  \n\t"
480                 "ldmia"wide"    sp!, {r0,pc}"
481         );
482 }
483
484
485 #ifdef CONFIG_THUMB2_KERNEL
486
487 static void __naked benchmark_pushpop_thumb(void)
488 {
489         __asm__ __volatile__ (
490                 "push.n {r0-r7,lr}  \n\t"
491                 "pop.n  {r0-r7,pc}"
492         );
493 }
494
495 #endif
496
497 static int __kprobes
498 benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
499 {
500         return 0;
501 }
502
503 static int benchmark(void(*fn)(void))
504 {
505         unsigned n, i, t, t0;
506
507         for (n = 1000; ; n *= 2) {
508                 t0 = sched_clock();
509                 for (i = n; i > 0; --i)
510                         fn();
511                 t = sched_clock() - t0;
512                 if (t >= 250000000)
513                         break; /* Stop once we took more than 0.25 seconds */
514         }
515         return t / n; /* Time for one iteration in nanoseconds */
516 };
517
518 static int kprobe_benchmark(void(*fn)(void), unsigned offset)
519 {
520         struct kprobe k = {
521                 .addr           = (kprobe_opcode_t *)((uintptr_t)fn + offset),
522                 .pre_handler    = benchmark_pre_handler,
523         };
524
525         int ret = register_kprobe(&k);
526         if (ret < 0) {
527                 pr_err("FAIL: register_kprobe failed with %d\n", ret);
528                 return ret;
529         }
530
531         ret = benchmark(fn);
532
533         unregister_kprobe(&k);
534         return ret;
535 };
536
537 struct benchmarks {
538         void            (*fn)(void);
539         unsigned        offset;
540         const char      *title;
541 };
542
543 static int run_benchmarks(void)
544 {
545         int ret;
546         struct benchmarks list[] = {
547                 {&benchmark_nop, 0, "nop"},
548                 /*
549                  * benchmark_pushpop{1,3} will have the optimised
550                  * instruction emulation, whilst benchmark_pushpop{2,4} will
551                  * be the equivalent unoptimised instructions.
552                  */
553                 {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
554                 {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
555                 {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
556                 {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
557                 {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
558                 {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
559                 {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
560                 {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
561 #ifdef CONFIG_THUMB2_KERNEL
562                 {&benchmark_pushpop_thumb, 0, "push.n   {r0-r7,lr}"},
563                 {&benchmark_pushpop_thumb, 2, "pop.n    {r0-r7,pc}"},
564 #endif
565                 {0}
566         };
567
568         struct benchmarks *b;
569         for (b = list; b->fn; ++b) {
570                 ret = kprobe_benchmark(b->fn, b->offset);
571                 if (ret < 0)
572                         return ret;
573                 pr_info("    %dns for kprobe %s\n", ret, b->title);
574         }
575
576         pr_info("\n");
577         return 0;
578 }
579
580 #endif /* BENCHMARKING */
581
582
583 /*
584  * Decoding table self-consistency tests
585  */
586
587 static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
588         [DECODE_TYPE_TABLE]     = sizeof(struct decode_table),
589         [DECODE_TYPE_CUSTOM]    = sizeof(struct decode_custom),
590         [DECODE_TYPE_SIMULATE]  = sizeof(struct decode_simulate),
591         [DECODE_TYPE_EMULATE]   = sizeof(struct decode_emulate),
592         [DECODE_TYPE_OR]        = sizeof(struct decode_or),
593         [DECODE_TYPE_REJECT]    = sizeof(struct decode_reject)
594 };
595
596 static int table_iter(const union decode_item *table,
597                         int (*fn)(const struct decode_header *, void *),
598                         void *args)
599 {
600         const struct decode_header *h = (struct decode_header *)table;
601         int result;
602
603         for (;;) {
604                 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
605
606                 if (type == DECODE_TYPE_END)
607                         return 0;
608
609                 result = fn(h, args);
610                 if (result)
611                         return result;
612
613                 h = (struct decode_header *)
614                         ((uintptr_t)h + decode_struct_sizes[type]);
615
616         }
617 }
618
619 static int table_test_fail(const struct decode_header *h, const char* message)
620 {
621
622         pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
623                                         message, h->mask.bits, h->value.bits);
624         return -EINVAL;
625 }
626
627 struct table_test_args {
628         const union decode_item *root_table;
629         u32                     parent_mask;
630         u32                     parent_value;
631 };
632
633 static int table_test_fn(const struct decode_header *h, void *args)
634 {
635         struct table_test_args *a = (struct table_test_args *)args;
636         enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
637
638         if (h->value.bits & ~h->mask.bits)
639                 return table_test_fail(h, "Match value has bits not in mask");
640
641         if ((h->mask.bits & a->parent_mask) != a->parent_mask)
642                 return table_test_fail(h, "Mask has bits not in parent mask");
643
644         if ((h->value.bits ^ a->parent_value) & a->parent_mask)
645                 return table_test_fail(h, "Value is inconsistent with parent");
646
647         if (type == DECODE_TYPE_TABLE) {
648                 struct decode_table *d = (struct decode_table *)h;
649                 struct table_test_args args2 = *a;
650                 args2.parent_mask = h->mask.bits;
651                 args2.parent_value = h->value.bits;
652                 return table_iter(d->table.table, table_test_fn, &args2);
653         }
654
655         return 0;
656 }
657
658 static int table_test(const union decode_item *table)
659 {
660         struct table_test_args args = {
661                 .root_table     = table,
662                 .parent_mask    = 0,
663                 .parent_value   = 0
664         };
665         return table_iter(args.root_table, table_test_fn, &args);
666 }
667
668
669 /*
670  * Decoding table test coverage analysis
671  *
672  * coverage_start() builds a coverage_table which contains a list of
673  * coverage_entry's to match each entry in the specified kprobes instruction
674  * decoding table.
675  *
676  * When test cases are run, coverage_add() is called to process each case.
677  * This looks up the corresponding entry in the coverage_table and sets it as
678  * being matched, as well as clearing the regs flag appropriate for the test.
679  *
680  * After all test cases have been run, coverage_end() is called to check that
681  * all entries in coverage_table have been matched and that all regs flags are
682  * cleared. I.e. that all possible combinations of instructions described by
683  * the kprobes decoding tables have had a test case executed for them.
684  */
685
686 bool coverage_fail;
687
688 #define MAX_COVERAGE_ENTRIES 256
689
690 struct coverage_entry {
691         const struct decode_header      *header;
692         unsigned                        regs;
693         unsigned                        nesting;
694         char                            matched;
695 };
696
697 struct coverage_table {
698         struct coverage_entry   *base;
699         unsigned                num_entries;
700         unsigned                nesting;
701 };
702
703 struct coverage_table coverage;
704
705 #define COVERAGE_ANY_REG        (1<<0)
706 #define COVERAGE_SP             (1<<1)
707 #define COVERAGE_PC             (1<<2)
708 #define COVERAGE_PCWB           (1<<3)
709
710 static const char coverage_register_lookup[16] = {
711         [REG_TYPE_ANY]          = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
712         [REG_TYPE_SAMEAS16]     = COVERAGE_ANY_REG,
713         [REG_TYPE_SP]           = COVERAGE_SP,
714         [REG_TYPE_PC]           = COVERAGE_PC,
715         [REG_TYPE_NOSP]         = COVERAGE_ANY_REG | COVERAGE_SP,
716         [REG_TYPE_NOSPPC]       = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
717         [REG_TYPE_NOPC]         = COVERAGE_ANY_REG | COVERAGE_PC,
718         [REG_TYPE_NOPCWB]       = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
719         [REG_TYPE_NOPCX]        = COVERAGE_ANY_REG,
720         [REG_TYPE_NOSPPCX]      = COVERAGE_ANY_REG | COVERAGE_SP,
721 };
722
723 static unsigned coverage_start_registers(const struct decode_header *h)
724 {
725         unsigned regs = 0;
726         int i;
727         for (i = 0; i < 20; i += 4) {
728                 int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
729                 regs |= coverage_register_lookup[r] << i;
730         }
731         return regs;
732 }
733
734 static int coverage_start_fn(const struct decode_header *h, void *args)
735 {
736         struct coverage_table *coverage = (struct coverage_table *)args;
737         enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
738         struct coverage_entry *entry = coverage->base + coverage->num_entries;
739
740         if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
741                 pr_err("FAIL: Out of space for test coverage data");
742                 return -ENOMEM;
743         }
744
745         ++coverage->num_entries;
746
747         entry->header = h;
748         entry->regs = coverage_start_registers(h);
749         entry->nesting = coverage->nesting;
750         entry->matched = false;
751
752         if (type == DECODE_TYPE_TABLE) {
753                 struct decode_table *d = (struct decode_table *)h;
754                 int ret;
755                 ++coverage->nesting;
756                 ret = table_iter(d->table.table, coverage_start_fn, coverage);
757                 --coverage->nesting;
758                 return ret;
759         }
760
761         return 0;
762 }
763
764 static int coverage_start(const union decode_item *table)
765 {
766         coverage.base = kmalloc_array(MAX_COVERAGE_ENTRIES,
767                                       sizeof(struct coverage_entry),
768                                       GFP_KERNEL);
769         coverage.num_entries = 0;
770         coverage.nesting = 0;
771         return table_iter(table, coverage_start_fn, &coverage);
772 }
773
774 static void
775 coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
776 {
777         int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
778         int i;
779         for (i = 0; i < 20; i += 4) {
780                 enum decode_reg_type reg_type = (regs >> i) & 0xf;
781                 int reg = (insn >> i) & 0xf;
782                 int flag;
783
784                 if (!reg_type)
785                         continue;
786
787                 if (reg == 13)
788                         flag = COVERAGE_SP;
789                 else if (reg == 15)
790                         flag = COVERAGE_PC;
791                 else
792                         flag = COVERAGE_ANY_REG;
793                 entry->regs &= ~(flag << i);
794
795                 switch (reg_type) {
796
797                 case REG_TYPE_NONE:
798                 case REG_TYPE_ANY:
799                 case REG_TYPE_SAMEAS16:
800                         break;
801
802                 case REG_TYPE_SP:
803                         if (reg != 13)
804                                 return;
805                         break;
806
807                 case REG_TYPE_PC:
808                         if (reg != 15)
809                                 return;
810                         break;
811
812                 case REG_TYPE_NOSP:
813                         if (reg == 13)
814                                 return;
815                         break;
816
817                 case REG_TYPE_NOSPPC:
818                 case REG_TYPE_NOSPPCX:
819                         if (reg == 13 || reg == 15)
820                                 return;
821                         break;
822
823                 case REG_TYPE_NOPCWB:
824                         if (!is_writeback(insn))
825                                 break;
826                         if (reg == 15) {
827                                 entry->regs &= ~(COVERAGE_PCWB << i);
828                                 return;
829                         }
830                         break;
831
832                 case REG_TYPE_NOPC:
833                 case REG_TYPE_NOPCX:
834                         if (reg == 15)
835                                 return;
836                         break;
837                 }
838
839         }
840 }
841
842 static void coverage_add(kprobe_opcode_t insn)
843 {
844         struct coverage_entry *entry = coverage.base;
845         struct coverage_entry *end = coverage.base + coverage.num_entries;
846         bool matched = false;
847         unsigned nesting = 0;
848
849         for (; entry < end; ++entry) {
850                 const struct decode_header *h = entry->header;
851                 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
852
853                 if (entry->nesting > nesting)
854                         continue; /* Skip sub-table we didn't match */
855
856                 if (entry->nesting < nesting)
857                         break; /* End of sub-table we were scanning */
858
859                 if (!matched) {
860                         if ((insn & h->mask.bits) != h->value.bits)
861                                 continue;
862                         entry->matched = true;
863                 }
864
865                 switch (type) {
866
867                 case DECODE_TYPE_TABLE:
868                         ++nesting;
869                         break;
870
871                 case DECODE_TYPE_CUSTOM:
872                 case DECODE_TYPE_SIMULATE:
873                 case DECODE_TYPE_EMULATE:
874                         coverage_add_registers(entry, insn);
875                         return;
876
877                 case DECODE_TYPE_OR:
878                         matched = true;
879                         break;
880
881                 case DECODE_TYPE_REJECT:
882                 default:
883                         return;
884                 }
885
886         }
887 }
888
889 static void coverage_end(void)
890 {
891         struct coverage_entry *entry = coverage.base;
892         struct coverage_entry *end = coverage.base + coverage.num_entries;
893
894         for (; entry < end; ++entry) {
895                 u32 mask = entry->header->mask.bits;
896                 u32 value = entry->header->value.bits;
897
898                 if (entry->regs) {
899                         pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
900                                 mask, value, entry->regs);
901                         coverage_fail = true;
902                 }
903                 if (!entry->matched) {
904                         pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
905                                 mask, value);
906                         coverage_fail = true;
907                 }
908         }
909
910         kfree(coverage.base);
911 }
912
913
914 /*
915  * Framework for instruction set test cases
916  */
917
918 void __naked __kprobes_test_case_start(void)
919 {
920         __asm__ __volatile__ (
921                 "mov    r2, sp                                  \n\t"
922                 "bic    r3, r2, #7                              \n\t"
923                 "mov    sp, r3                                  \n\t"
924                 "stmdb  sp!, {r2-r11}                           \n\t"
925                 "sub    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
926                 "bic    r0, lr, #1  @ r0 = inline data          \n\t"
927                 "mov    r1, sp                                  \n\t"
928                 "bl     kprobes_test_case_start                 \n\t"
929                 RET(r0)"                                        \n\t"
930         );
931 }
932
933 #ifndef CONFIG_THUMB2_KERNEL
934
935 void __naked __kprobes_test_case_end_32(void)
936 {
937         __asm__ __volatile__ (
938                 "mov    r4, lr                                  \n\t"
939                 "bl     kprobes_test_case_end                   \n\t"
940                 "cmp    r0, #0                                  \n\t"
941                 "movne  pc, r0                                  \n\t"
942                 "mov    r0, r4                                  \n\t"
943                 "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
944                 "ldmia  sp!, {r2-r11}                           \n\t"
945                 "mov    sp, r2                                  \n\t"
946                 "mov    pc, r0                                  \n\t"
947         );
948 }
949
950 #else /* CONFIG_THUMB2_KERNEL */
951
952 void __naked __kprobes_test_case_end_16(void)
953 {
954         __asm__ __volatile__ (
955                 "mov    r4, lr                                  \n\t"
956                 "bl     kprobes_test_case_end                   \n\t"
957                 "cmp    r0, #0                                  \n\t"
958                 "bxne   r0                                      \n\t"
959                 "mov    r0, r4                                  \n\t"
960                 "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
961                 "ldmia  sp!, {r2-r11}                           \n\t"
962                 "mov    sp, r2                                  \n\t"
963                 "bx     r0                                      \n\t"
964         );
965 }
966
967 void __naked __kprobes_test_case_end_32(void)
968 {
969         __asm__ __volatile__ (
970                 ".arm                                           \n\t"
971                 "orr    lr, lr, #1  @ will return to Thumb code \n\t"
972                 "ldr    pc, 1f                                  \n\t"
973                 "1:                                             \n\t"
974                 ".word  __kprobes_test_case_end_16              \n\t"
975         );
976 }
977
978 #endif
979
980
981 int kprobe_test_flags;
982 int kprobe_test_cc_position;
983
984 static int test_try_count;
985 static int test_pass_count;
986 static int test_fail_count;
987
988 static struct pt_regs initial_regs;
989 static struct pt_regs expected_regs;
990 static struct pt_regs result_regs;
991
992 static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
993
994 static const char *current_title;
995 static struct test_arg *current_args;
996 static u32 *current_stack;
997 static uintptr_t current_branch_target;
998
999 static uintptr_t current_code_start;
1000 static kprobe_opcode_t current_instruction;
1001
1002
1003 #define TEST_CASE_PASSED -1
1004 #define TEST_CASE_FAILED -2
1005
1006 static int test_case_run_count;
1007 static bool test_case_is_thumb;
1008 static int test_instance;
1009
1010 static unsigned long test_check_cc(int cc, unsigned long cpsr)
1011 {
1012         int ret = arm_check_condition(cc << 28, cpsr);
1013
1014         return (ret != ARM_OPCODE_CONDTEST_FAIL);
1015 }
1016
1017 static int is_last_scenario;
1018 static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1019 static int memory_needs_checking;
1020
1021 static unsigned long test_context_cpsr(int scenario)
1022 {
1023         unsigned long cpsr;
1024
1025         probe_should_run = 1;
1026
1027         /* Default case is that we cycle through 16 combinations of flags */
1028         cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1029         cpsr |= (scenario & 0xf) << 16; /* GE flags */
1030         cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1031
1032         if (!test_case_is_thumb) {
1033                 /* Testing ARM code */
1034                 int cc = current_instruction >> 28;
1035
1036                 probe_should_run = test_check_cc(cc, cpsr) != 0;
1037                 if (scenario == 15)
1038                         is_last_scenario = true;
1039
1040         } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1041                 /* Testing Thumb code without setting ITSTATE */
1042                 if (kprobe_test_cc_position) {
1043                         int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1044                         probe_should_run = test_check_cc(cc, cpsr) != 0;
1045                 }
1046
1047                 if (scenario == 15)
1048                         is_last_scenario = true;
1049
1050         } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1051                 /* Testing Thumb code with all combinations of ITSTATE */
1052                 unsigned x = (scenario >> 4);
1053                 unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1054                 unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1055
1056                 if (mask > 0x1f) {
1057                         /* Finish by testing state from instruction 'itt al' */
1058                         cond_base = 7;
1059                         mask = 0x4;
1060                         if ((scenario & 0xf) == 0xf)
1061                                 is_last_scenario = true;
1062                 }
1063
1064                 cpsr |= cond_base << 13;        /* ITSTATE<7:5> */
1065                 cpsr |= (mask & 0x1) << 12;     /* ITSTATE<4> */
1066                 cpsr |= (mask & 0x2) << 10;     /* ITSTATE<3> */
1067                 cpsr |= (mask & 0x4) << 8;      /* ITSTATE<2> */
1068                 cpsr |= (mask & 0x8) << 23;     /* ITSTATE<1> */
1069                 cpsr |= (mask & 0x10) << 21;    /* ITSTATE<0> */
1070
1071                 probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1072
1073         } else {
1074                 /* Testing Thumb code with several combinations of ITSTATE */
1075                 switch (scenario) {
1076                 case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1077                         cpsr = 0x00000800;
1078                         probe_should_run = 0;
1079                         break;
1080                 case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1081                         cpsr = 0xf0007800;
1082                         probe_should_run = 0;
1083                         break;
1084                 case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1085                         cpsr = 0x00009800;
1086                         break;
1087                 case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1088                         cpsr = 0xf0002800;
1089                         is_last_scenario = true;
1090                         break;
1091                 }
1092         }
1093
1094         return cpsr;
1095 }
1096
1097 static void setup_test_context(struct pt_regs *regs)
1098 {
1099         int scenario = test_case_run_count>>1;
1100         unsigned long val;
1101         struct test_arg *args;
1102         int i;
1103
1104         is_last_scenario = false;
1105         memory_needs_checking = false;
1106
1107         /* Initialise test memory on stack */
1108         val = (scenario & 1) ? VALM : ~VALM;
1109         for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1110                 current_stack[i] = val + (i << 8);
1111         /* Put target of branch on stack for tests which load PC from memory */
1112         if (current_branch_target)
1113                 current_stack[15] = current_branch_target;
1114         /* Put a value for SP on stack for tests which load SP from memory */
1115         current_stack[13] = (u32)current_stack + 120;
1116
1117         /* Initialise register values to their default state */
1118         val = (scenario & 2) ? VALR : ~VALR;
1119         for (i = 0; i < 13; ++i)
1120                 regs->uregs[i] = val ^ (i << 8);
1121         regs->ARM_lr = val ^ (14 << 8);
1122         regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1123         regs->ARM_cpsr |= test_context_cpsr(scenario);
1124
1125         /* Perform testcase specific register setup  */
1126         args = current_args;
1127         for (; args[0].type != ARG_TYPE_END; ++args)
1128                 switch (args[0].type) {
1129                 case ARG_TYPE_REG: {
1130                         struct test_arg_regptr *arg =
1131                                 (struct test_arg_regptr *)args;
1132                         regs->uregs[arg->reg] = arg->val;
1133                         break;
1134                 }
1135                 case ARG_TYPE_PTR: {
1136                         struct test_arg_regptr *arg =
1137                                 (struct test_arg_regptr *)args;
1138                         regs->uregs[arg->reg] =
1139                                 (unsigned long)current_stack + arg->val;
1140                         memory_needs_checking = true;
1141                         /*
1142                          * Test memory at an address below SP is in danger of
1143                          * being altered by an interrupt occurring and pushing
1144                          * data onto the stack. Disable interrupts to stop this.
1145                          */
1146                         if (arg->reg == 13)
1147                                 regs->ARM_cpsr |= PSR_I_BIT;
1148                         break;
1149                 }
1150                 case ARG_TYPE_MEM: {
1151                         struct test_arg_mem *arg = (struct test_arg_mem *)args;
1152                         current_stack[arg->index] = arg->val;
1153                         break;
1154                 }
1155                 default:
1156                         break;
1157                 }
1158 }
1159
1160 struct test_probe {
1161         struct kprobe   kprobe;
1162         bool            registered;
1163         int             hit;
1164 };
1165
1166 static void unregister_test_probe(struct test_probe *probe)
1167 {
1168         if (probe->registered) {
1169                 unregister_kprobe(&probe->kprobe);
1170                 probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1171         }
1172         probe->registered = false;
1173 }
1174
1175 static int register_test_probe(struct test_probe *probe)
1176 {
1177         int ret;
1178
1179         if (probe->registered)
1180                 BUG();
1181
1182         ret = register_kprobe(&probe->kprobe);
1183         if (ret >= 0) {
1184                 probe->registered = true;
1185                 probe->hit = -1;
1186         }
1187         return ret;
1188 }
1189
1190 static int __kprobes
1191 test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1192 {
1193         container_of(p, struct test_probe, kprobe)->hit = test_instance;
1194         return 0;
1195 }
1196
1197 static void __kprobes
1198 test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1199                                                         unsigned long flags)
1200 {
1201         setup_test_context(regs);
1202         initial_regs = *regs;
1203         initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1204 }
1205
1206 static int __kprobes
1207 test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1208 {
1209         container_of(p, struct test_probe, kprobe)->hit = test_instance;
1210         return 0;
1211 }
1212
1213 static int __kprobes
1214 test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1215 {
1216         struct test_arg *args;
1217
1218         if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1219                 return 0; /* Already run for this test instance */
1220
1221         result_regs = *regs;
1222
1223         /* Mask out results which are indeterminate */
1224         result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1225         for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
1226                 if (args[0].type == ARG_TYPE_REG_MASKED) {
1227                         struct test_arg_regptr *arg =
1228                                 (struct test_arg_regptr *)args;
1229                         result_regs.uregs[arg->reg] &= arg->val;
1230                 }
1231
1232         /* Undo any changes done to SP by the test case */
1233         regs->ARM_sp = (unsigned long)current_stack;
1234         /* Enable interrupts in case setup_test_context disabled them */
1235         regs->ARM_cpsr &= ~PSR_I_BIT;
1236
1237         container_of(p, struct test_probe, kprobe)->hit = test_instance;
1238         return 0;
1239 }
1240
1241 static struct test_probe test_before_probe = {
1242         .kprobe.pre_handler     = test_before_pre_handler,
1243         .kprobe.post_handler    = test_before_post_handler,
1244 };
1245
1246 static struct test_probe test_case_probe = {
1247         .kprobe.pre_handler     = test_case_pre_handler,
1248 };
1249
1250 static struct test_probe test_after_probe = {
1251         .kprobe.pre_handler     = test_after_pre_handler,
1252 };
1253
1254 static struct test_probe test_after2_probe = {
1255         .kprobe.pre_handler     = test_after_pre_handler,
1256 };
1257
1258 static void test_case_cleanup(void)
1259 {
1260         unregister_test_probe(&test_before_probe);
1261         unregister_test_probe(&test_case_probe);
1262         unregister_test_probe(&test_after_probe);
1263         unregister_test_probe(&test_after2_probe);
1264 }
1265
1266 static void print_registers(struct pt_regs *regs)
1267 {
1268         pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1269                 regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1270         pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1271                 regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1272         pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1273                 regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1274         pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1275                 regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1276         pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1277 }
1278
1279 static void print_memory(u32 *mem, size_t size)
1280 {
1281         int i;
1282         for (i = 0; i < size / sizeof(u32); i += 4)
1283                 pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1284                                                 mem[i+2], mem[i+3]);
1285 }
1286
1287 static size_t expected_memory_size(u32 *sp)
1288 {
1289         size_t size = sizeof(expected_memory);
1290         int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1291         if (offset > 0)
1292                 size -= offset;
1293         return size;
1294 }
1295
1296 static void test_case_failed(const char *message)
1297 {
1298         test_case_cleanup();
1299
1300         pr_err("FAIL: %s\n", message);
1301         pr_err("FAIL: Test %s\n", current_title);
1302         pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1303 }
1304
1305 static unsigned long next_instruction(unsigned long pc)
1306 {
1307 #ifdef CONFIG_THUMB2_KERNEL
1308         if ((pc & 1) &&
1309             !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1310                 return pc + 2;
1311         else
1312 #endif
1313         return pc + 4;
1314 }
1315
1316 static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
1317 {
1318         struct test_arg *args;
1319         struct test_arg_end *end_arg;
1320         unsigned long test_code;
1321
1322         current_title = *title++;
1323         args = (struct test_arg *)title;
1324         current_args = args;
1325         current_stack = stack;
1326
1327         ++test_try_count;
1328
1329         while (args->type != ARG_TYPE_END)
1330                 ++args;
1331         end_arg = (struct test_arg_end *)args;
1332
1333         test_code = (unsigned long)(args + 1); /* Code starts after args */
1334
1335         test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1336         if (test_case_is_thumb)
1337                 test_code |= 1;
1338
1339         current_code_start = test_code;
1340
1341         current_branch_target = 0;
1342         if (end_arg->branch_offset != end_arg->end_offset)
1343                 current_branch_target = test_code + end_arg->branch_offset;
1344
1345         test_code += end_arg->code_offset;
1346         test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1347
1348         test_code = next_instruction(test_code);
1349         test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1350
1351         if (test_case_is_thumb) {
1352                 u16 *p = (u16 *)(test_code & ~1);
1353                 current_instruction = __mem_to_opcode_thumb16(p[0]);
1354                 if (is_wide_instruction(current_instruction)) {
1355                         u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1356                         current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1357                 }
1358         } else {
1359                 current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1360         }
1361
1362         if (current_title[0] == '.')
1363                 verbose("%s\n", current_title);
1364         else
1365                 verbose("%s\t@ %0*x\n", current_title,
1366                                         test_case_is_thumb ? 4 : 8,
1367                                         current_instruction);
1368
1369         test_code = next_instruction(test_code);
1370         test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1371
1372         if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1373                 if (!test_case_is_thumb ||
1374                         is_wide_instruction(current_instruction)) {
1375                                 test_case_failed("expected 16-bit instruction");
1376                                 goto fail;
1377                 }
1378         } else {
1379                 if (test_case_is_thumb &&
1380                         !is_wide_instruction(current_instruction)) {
1381                                 test_case_failed("expected 32-bit instruction");
1382                                 goto fail;
1383                 }
1384         }
1385
1386         coverage_add(current_instruction);
1387
1388         if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1389                 if (register_test_probe(&test_case_probe) < 0)
1390                         goto pass;
1391                 test_case_failed("registered probe for unsupported instruction");
1392                 goto fail;
1393         }
1394
1395         if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1396                 if (register_test_probe(&test_case_probe) >= 0)
1397                         goto pass;
1398                 test_case_failed("couldn't register probe for supported instruction");
1399                 goto fail;
1400         }
1401
1402         if (register_test_probe(&test_before_probe) < 0) {
1403                 test_case_failed("register test_before_probe failed");
1404                 goto fail;
1405         }
1406         if (register_test_probe(&test_after_probe) < 0) {
1407                 test_case_failed("register test_after_probe failed");
1408                 goto fail;
1409         }
1410         if (current_branch_target) {
1411                 test_after2_probe.kprobe.addr =
1412                                 (kprobe_opcode_t *)current_branch_target;
1413                 if (register_test_probe(&test_after2_probe) < 0) {
1414                         test_case_failed("register test_after2_probe failed");
1415                         goto fail;
1416                 }
1417         }
1418
1419         /* Start first run of test case */
1420         test_case_run_count = 0;
1421         ++test_instance;
1422         return current_code_start;
1423 pass:
1424         test_case_run_count = TEST_CASE_PASSED;
1425         return (uintptr_t)test_after_probe.kprobe.addr;
1426 fail:
1427         test_case_run_count = TEST_CASE_FAILED;
1428         return (uintptr_t)test_after_probe.kprobe.addr;
1429 }
1430
1431 static bool check_test_results(void)
1432 {
1433         size_t mem_size = 0;
1434         u32 *mem = 0;
1435
1436         if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1437                 test_case_failed("registers differ");
1438                 goto fail;
1439         }
1440
1441         if (memory_needs_checking) {
1442                 mem = (u32 *)result_regs.ARM_sp;
1443                 mem_size = expected_memory_size(mem);
1444                 if (memcmp(expected_memory, mem, mem_size)) {
1445                         test_case_failed("test memory differs");
1446                         goto fail;
1447                 }
1448         }
1449
1450         return true;
1451
1452 fail:
1453         pr_err("initial_regs:\n");
1454         print_registers(&initial_regs);
1455         pr_err("expected_regs:\n");
1456         print_registers(&expected_regs);
1457         pr_err("result_regs:\n");
1458         print_registers(&result_regs);
1459
1460         if (mem) {
1461                 pr_err("expected_memory:\n");
1462                 print_memory(expected_memory, mem_size);
1463                 pr_err("result_memory:\n");
1464                 print_memory(mem, mem_size);
1465         }
1466
1467         return false;
1468 }
1469
1470 static uintptr_t __used kprobes_test_case_end(void)
1471 {
1472         if (test_case_run_count < 0) {
1473                 if (test_case_run_count == TEST_CASE_PASSED)
1474                         /* kprobes_test_case_start did all the needed testing */
1475                         goto pass;
1476                 else
1477                         /* kprobes_test_case_start failed */
1478                         goto fail;
1479         }
1480
1481         if (test_before_probe.hit != test_instance) {
1482                 test_case_failed("test_before_handler not run");
1483                 goto fail;
1484         }
1485
1486         if (test_after_probe.hit != test_instance &&
1487                                 test_after2_probe.hit != test_instance) {
1488                 test_case_failed("test_after_handler not run");
1489                 goto fail;
1490         }
1491
1492         /*
1493          * Even numbered test runs ran without a probe on the test case so
1494          * we can gather reference results. The subsequent odd numbered run
1495          * will have the probe inserted.
1496         */
1497         if ((test_case_run_count & 1) == 0) {
1498                 /* Save results from run without probe */
1499                 u32 *mem = (u32 *)result_regs.ARM_sp;
1500                 expected_regs = result_regs;
1501                 memcpy(expected_memory, mem, expected_memory_size(mem));
1502
1503                 /* Insert probe onto test case instruction */
1504                 if (register_test_probe(&test_case_probe) < 0) {
1505                         test_case_failed("register test_case_probe failed");
1506                         goto fail;
1507                 }
1508         } else {
1509                 /* Check probe ran as expected */
1510                 if (probe_should_run == 1) {
1511                         if (test_case_probe.hit != test_instance) {
1512                                 test_case_failed("test_case_handler not run");
1513                                 goto fail;
1514                         }
1515                 } else if (probe_should_run == 0) {
1516                         if (test_case_probe.hit == test_instance) {
1517                                 test_case_failed("test_case_handler ran");
1518                                 goto fail;
1519                         }
1520                 }
1521
1522                 /* Remove probe for any subsequent reference run */
1523                 unregister_test_probe(&test_case_probe);
1524
1525                 if (!check_test_results())
1526                         goto fail;
1527
1528                 if (is_last_scenario)
1529                         goto pass;
1530         }
1531
1532         /* Do next test run */
1533         ++test_case_run_count;
1534         ++test_instance;
1535         return current_code_start;
1536 fail:
1537         ++test_fail_count;
1538         goto end;
1539 pass:
1540         ++test_pass_count;
1541 end:
1542         test_case_cleanup();
1543         return 0;
1544 }
1545
1546
1547 /*
1548  * Top level test functions
1549  */
1550
1551 static int run_test_cases(void (*tests)(void), const union decode_item *table)
1552 {
1553         int ret;
1554
1555         pr_info("    Check decoding tables\n");
1556         ret = table_test(table);
1557         if (ret)
1558                 return ret;
1559
1560         pr_info("    Run test cases\n");
1561         ret = coverage_start(table);
1562         if (ret)
1563                 return ret;
1564
1565         tests();
1566
1567         coverage_end();
1568         return 0;
1569 }
1570
1571
1572 static int __init run_all_tests(void)
1573 {
1574         int ret = 0;
1575
1576         pr_info("Beginning kprobe tests...\n");
1577
1578 #ifndef CONFIG_THUMB2_KERNEL
1579
1580         pr_info("Probe ARM code\n");
1581         ret = run_api_tests(arm_func);
1582         if (ret)
1583                 goto out;
1584
1585         pr_info("ARM instruction simulation\n");
1586         ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1587         if (ret)
1588                 goto out;
1589
1590 #else /* CONFIG_THUMB2_KERNEL */
1591
1592         pr_info("Probe 16-bit Thumb code\n");
1593         ret = run_api_tests(thumb16_func);
1594         if (ret)
1595                 goto out;
1596
1597         pr_info("Probe 32-bit Thumb code, even halfword\n");
1598         ret = run_api_tests(thumb32even_func);
1599         if (ret)
1600                 goto out;
1601
1602         pr_info("Probe 32-bit Thumb code, odd halfword\n");
1603         ret = run_api_tests(thumb32odd_func);
1604         if (ret)
1605                 goto out;
1606
1607         pr_info("16-bit Thumb instruction simulation\n");
1608         ret = run_test_cases(kprobe_thumb16_test_cases,
1609                                 probes_decode_thumb16_table);
1610         if (ret)
1611                 goto out;
1612
1613         pr_info("32-bit Thumb instruction simulation\n");
1614         ret = run_test_cases(kprobe_thumb32_test_cases,
1615                                 probes_decode_thumb32_table);
1616         if (ret)
1617                 goto out;
1618 #endif
1619
1620         pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1621                 test_try_count, test_pass_count, test_fail_count);
1622         if (test_fail_count) {
1623                 ret = -EINVAL;
1624                 goto out;
1625         }
1626
1627 #if BENCHMARKING
1628         pr_info("Benchmarks\n");
1629         ret = run_benchmarks();
1630         if (ret)
1631                 goto out;
1632 #endif
1633
1634 #if __LINUX_ARM_ARCH__ >= 7
1635         /* We are able to run all test cases so coverage should be complete */
1636         if (coverage_fail) {
1637                 pr_err("FAIL: Test coverage checks failed\n");
1638                 ret = -EINVAL;
1639                 goto out;
1640         }
1641 #endif
1642
1643 out:
1644         if (ret == 0)
1645                 ret = tests_failed;
1646         if (ret == 0)
1647                 pr_info("Finished kprobe tests OK\n");
1648         else
1649                 pr_err("kprobe tests failed\n");
1650
1651         return ret;
1652 }
1653
1654
1655 /*
1656  * Module setup
1657  */
1658
1659 #ifdef MODULE
1660
1661 static void __exit kprobe_test_exit(void)
1662 {
1663 }
1664
1665 module_init(run_all_tests)
1666 module_exit(kprobe_test_exit)
1667 MODULE_LICENSE("GPL");
1668
1669 #else /* !MODULE */
1670
1671 late_initcall(run_all_tests);
1672
1673 #endif