2 * arch/arm/probes/decode.h
4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
7 * Copyright (C) 2006, 2007 Motorola Inc.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
19 #ifndef _ARM_KERNEL_PROBES_H
20 #define _ARM_KERNEL_PROBES_H
22 #include <linux/types.h>
23 #include <linux/stddef.h>
24 #include <asm/probes.h>
25 #include <asm/ptrace.h>
26 #include <asm/kprobes.h>
28 void __init arm_probes_decode_init(void);
30 extern probes_check_cc * const probes_condition_checks[16];
32 #if __LINUX_ARM_ARCH__ >= 7
34 /* str_pc_offset is architecturally defined from ARMv7 onwards */
35 #define str_pc_offset 8
36 #define find_str_pc_offset()
38 #else /* __LINUX_ARM_ARCH__ < 7 */
40 /* We need a run-time check to determine str_pc_offset */
41 extern int str_pc_offset;
42 void __init find_str_pc_offset(void);
47 static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
49 long cpsr = regs->ARM_cpsr;
55 pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */
57 regs->ARM_cpsr = cpsr;
62 #if __LINUX_ARM_ARCH__ >= 6
64 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
65 #define load_write_pc_interworks true
66 #define test_load_write_pc_interworking()
68 #else /* __LINUX_ARM_ARCH__ < 6 */
70 /* We need run-time testing to determine if load_write_pc() should interwork. */
71 extern bool load_write_pc_interworks;
72 void __init test_load_write_pc_interworking(void);
76 static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
78 if (load_write_pc_interworks)
79 bx_write_pc(pcv, regs);
85 #if __LINUX_ARM_ARCH__ >= 7
87 #define alu_write_pc_interworks true
88 #define test_alu_write_pc_interworking()
90 #elif __LINUX_ARM_ARCH__ <= 5
92 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
93 #define alu_write_pc_interworks false
94 #define test_alu_write_pc_interworking()
96 #else /* __LINUX_ARM_ARCH__ == 6 */
98 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
99 extern bool alu_write_pc_interworks;
100 void __init test_alu_write_pc_interworking(void);
102 #endif /* __LINUX_ARM_ARCH__ == 6 */
104 static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
106 if (alu_write_pc_interworks)
107 bx_write_pc(pcv, regs);
114 * Test if load/store instructions writeback the address register.
115 * if P (bit 24) == 0 or W (bit 21) == 1
117 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
120 * The following definitions and macros are used to build instruction
121 * decoding tables for use by probes_decode_insn.
123 * These tables are a concatenation of entries each of which consist of one of
124 * the decode_* structs. All of the fields in every type of decode structure
125 * are of the union type decode_item, therefore the entire decode table can be
126 * viewed as an array of these and declared like:
128 * static const union decode_item table_name[] = {};
130 * In order to construct each entry in the table, macros are used to
131 * initialise a number of sequential decode_item values in a layout which
132 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
133 * decode_simulate by initialising four decode_item objects like this...
138 * {.action = _handler},
140 * Initialising a specified member of the union means that the compiler
141 * will produce a warning if the argument is of an incorrect type.
143 * Below is a list of each of the macros used to initialise entries and a
144 * description of the action performed when that entry is matched to an
145 * instruction. A match is found when (instruction & mask) == value.
147 * DECODE_TABLE(mask, value, table)
148 * Instruction decoding jumps to parsing the new sub-table 'table'.
150 * DECODE_CUSTOM(mask, value, decoder)
151 * The value of 'decoder' is used as an index into the array of
152 * action functions, and the retrieved decoder function is invoked
153 * to complete decoding of the instruction.
155 * DECODE_SIMULATE(mask, value, handler)
156 * The probes instruction handler is set to the value found by
157 * indexing into the action array using the value of 'handler'. This
158 * will be used to simulate the instruction when the probe is hit.
159 * Decoding returns with INSN_GOOD_NO_SLOT.
161 * DECODE_EMULATE(mask, value, handler)
162 * The probes instruction handler is set to the value found by
163 * indexing into the action array using the value of 'handler'. This
164 * will be used to emulate the instruction when the probe is hit. The
165 * modified instruction (see below) is placed in the probes instruction
166 * slot so it may be called by the emulation code. Decoding returns
169 * DECODE_REJECT(mask, value)
170 * Instruction decoding fails with INSN_REJECTED
172 * DECODE_OR(mask, value)
173 * This allows the mask/value test of multiple table entries to be
174 * logically ORed. Once an 'or' entry is matched the decoding action to
175 * be performed is that of the next entry which isn't an 'or'. E.g.
177 * DECODE_OR (mask1, value1)
178 * DECODE_OR (mask2, value2)
179 * DECODE_SIMULATE (mask3, value3, simulation_handler)
181 * This means that if any of the three mask/value pairs match the
182 * instruction being decoded, then 'simulation_handler' will be used
185 * Both the SIMULATE and EMULATE macros have a second form which take an
186 * additional 'regs' argument.
188 * DECODE_SIMULATEX(mask, value, handler, regs)
189 * DECODE_EMULATEX (mask, value, handler, regs)
191 * These are used to specify what kind of CPU register is encoded in each of the
192 * least significant 5 nibbles of the instruction being decoded. The regs value
193 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
194 * from enum decode_reg_type as arguments; only the '*' part of the name is
197 * REGS(0, ANY, NOPC, 0, ANY)
199 * This indicates an instruction is encoded like:
202 * bits 15..12 any register allowed here
203 * bits 11.. 8 any register except PC allowed here
205 * bits 3.. 0 any register allowed here
207 * This register specification is checked after a decode table entry is found to
208 * match an instruction (through the mask/value test). Any invalid register then
209 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
210 * the above example this would happen if bits 11..8 of the instruction were
211 * 1111, indicating R15 or PC.
213 * As well as checking for legal combinations of registers, this data is also
214 * used to modify the registers encoded in the instructions so that an
215 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
217 * Here is a real example which matches ARM instructions of the form
218 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
220 * DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
221 * REGS(ANY, ANY, NOPC, 0, ANY)),
225 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
228 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
229 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
230 * the kprobes instruction slot. This can then be called later by the handler
231 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
232 * the indicated slot in the action array), in order to simulate the instruction.
239 DECODE_TYPE_SIMULATE,
243 NUM_DECODE_TYPES /* Must be last enum */
246 #define DECODE_TYPE_BITS 4
247 #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1)
249 enum decode_reg_type {
250 REG_TYPE_NONE = 0, /* Not a register, ignore */
251 REG_TYPE_ANY, /* Any register allowed */
252 REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
253 REG_TYPE_SP, /* Register must be SP */
254 REG_TYPE_PC, /* Register must be PC */
255 REG_TYPE_NOSP, /* Register must not be SP */
256 REG_TYPE_NOSPPC, /* Register must not be SP or PC */
257 REG_TYPE_NOPC, /* Register must not be PC */
258 REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */
260 /* The following types are used when the encoding for PC indicates
261 * another instruction form. This distiction only matters for test
262 * case coverage checks.
264 REG_TYPE_NOPCX, /* Register must not be PC */
265 REG_TYPE_NOSPPCX, /* Register must not be SP or PC */
267 /* Alias to allow '0' arg to be used in REGS macro. */
268 REG_TYPE_0 = REG_TYPE_NONE
271 #define REGS(r16, r12, r8, r4, r0) \
272 (((REG_TYPE_##r16) << 16) + \
273 ((REG_TYPE_##r12) << 12) + \
274 ((REG_TYPE_##r8) << 8) + \
275 ((REG_TYPE_##r4) << 4) + \
280 const union decode_item *table;
284 struct decode_header;
285 typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
286 struct arch_probes_insn *,
287 const struct decode_header *);
289 union decode_action {
290 probes_insn_handler_t *handler;
291 probes_custom_decode_t *decoder;
294 typedef enum probes_insn (probes_check_t)(probes_opcode_t,
295 struct arch_probes_insn *,
296 const struct decode_header *);
298 struct decode_checker {
299 probes_check_t *checker;
303 {.bits = DECODE_TYPE_END}
306 struct decode_header {
307 union decode_item type_regs;
308 union decode_item mask;
309 union decode_item value;
312 #define DECODE_HEADER(_type, _mask, _value, _regs) \
313 {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \
318 struct decode_table {
319 struct decode_header header;
320 union decode_item table;
323 #define DECODE_TABLE(_mask, _value, _table) \
324 DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \
328 struct decode_custom {
329 struct decode_header header;
330 union decode_item decoder;
333 #define DECODE_CUSTOM(_mask, _value, _decoder) \
334 DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \
335 {.action = (_decoder)}
338 struct decode_simulate {
339 struct decode_header header;
340 union decode_item handler;
343 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \
344 DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \
345 {.action = (_handler)}
347 #define DECODE_SIMULATE(_mask, _value, _handler) \
348 DECODE_SIMULATEX(_mask, _value, _handler, 0)
351 struct decode_emulate {
352 struct decode_header header;
353 union decode_item handler;
356 #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \
357 DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \
358 {.action = (_handler)}
360 #define DECODE_EMULATE(_mask, _value, _handler) \
361 DECODE_EMULATEX(_mask, _value, _handler, 0)
365 struct decode_header header;
368 #define DECODE_OR(_mask, _value) \
369 DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
377 struct decode_reject {
378 struct decode_header header;
381 #define DECODE_REJECT(_mask, _value) \
382 DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
384 probes_insn_handler_t probes_simulate_nop;
385 probes_insn_handler_t probes_emulate_none;
388 probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
389 const union decode_item *table, bool thumb, bool emulate,
390 const union decode_action *actions,
391 const struct decode_checker **checkers);