GNU Linux-libre 4.19.264-gnu1
[releases.git] / arch / arm / mm / nommu.c
1 /*
2  *  linux/arch/arm/mm/nommu.c
3  *
4  * ARM uCLinux supporting functions.
5  */
6 #include <linux/module.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/kernel.h>
12
13 #include <asm/cacheflush.h>
14 #include <asm/cp15.h>
15 #include <asm/sections.h>
16 #include <asm/page.h>
17 #include <asm/setup.h>
18 #include <asm/traps.h>
19 #include <asm/mach/arch.h>
20 #include <asm/cputype.h>
21 #include <asm/mpu.h>
22 #include <asm/procinfo.h>
23
24 #include "mm.h"
25
26 unsigned long vectors_base;
27
28 #ifdef CONFIG_ARM_MPU
29 struct mpu_rgn_info mpu_rgn_info;
30 #endif
31
32 #ifdef CONFIG_CPU_CP15
33 #ifdef CONFIG_CPU_HIGH_VECTOR
34 unsigned long setup_vectors_base(void)
35 {
36         unsigned long reg = get_cr();
37
38         set_cr(reg | CR_V);
39         return 0xffff0000;
40 }
41 #else /* CONFIG_CPU_HIGH_VECTOR */
42 /* Write exception base address to VBAR */
43 static inline void set_vbar(unsigned long val)
44 {
45         asm("mcr p15, 0, %0, c12, c0, 0" : : "r" (val) : "cc");
46 }
47
48 /*
49  * Security extensions, bits[7:4], permitted values,
50  * 0b0000 - not implemented, 0b0001/0b0010 - implemented
51  */
52 static inline bool security_extensions_enabled(void)
53 {
54         /* Check CPUID Identification Scheme before ID_PFR1 read */
55         if ((read_cpuid_id() & 0x000f0000) == 0x000f0000)
56                 return cpuid_feature_extract(CPUID_EXT_PFR1, 4) ||
57                         cpuid_feature_extract(CPUID_EXT_PFR1, 20);
58         return 0;
59 }
60
61 unsigned long setup_vectors_base(void)
62 {
63         unsigned long base = 0, reg = get_cr();
64
65         set_cr(reg & ~CR_V);
66         if (security_extensions_enabled()) {
67                 if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM))
68                         base = CONFIG_DRAM_BASE;
69                 set_vbar(base);
70         } else if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM)) {
71                 if (CONFIG_DRAM_BASE != 0)
72                         pr_err("Security extensions not enabled, vectors cannot be remapped to RAM, vectors base will be 0x00000000\n");
73         }
74
75         return base;
76 }
77 #endif /* CONFIG_CPU_HIGH_VECTOR */
78 #endif /* CONFIG_CPU_CP15 */
79
80 void __init arm_mm_memblock_reserve(void)
81 {
82 #ifndef CONFIG_CPU_V7M
83         vectors_base = IS_ENABLED(CONFIG_CPU_CP15) ? setup_vectors_base() : 0;
84         /*
85          * Register the exception vector page.
86          * some architectures which the DRAM is the exception vector to trap,
87          * alloc_page breaks with error, although it is not NULL, but "0."
88          */
89         memblock_reserve(vectors_base, 2 * PAGE_SIZE);
90 #else /* ifndef CONFIG_CPU_V7M */
91         /*
92          * There is no dedicated vector page on V7-M. So nothing needs to be
93          * reserved here.
94          */
95 #endif
96         /*
97          * In any case, always ensure address 0 is never used as many things
98          * get very confused if 0 is returned as a legitimate address.
99          */
100         memblock_reserve(0, 1);
101 }
102
103 static void __init adjust_lowmem_bounds_mpu(void)
104 {
105         unsigned long pmsa = read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA;
106
107         switch (pmsa) {
108         case MMFR0_PMSAv7:
109                 pmsav7_adjust_lowmem_bounds();
110                 break;
111         case MMFR0_PMSAv8:
112                 pmsav8_adjust_lowmem_bounds();
113                 break;
114         default:
115                 break;
116         }
117 }
118
119 static void __init mpu_setup(void)
120 {
121         unsigned long pmsa = read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA;
122
123         switch (pmsa) {
124         case MMFR0_PMSAv7:
125                 pmsav7_setup();
126                 break;
127         case MMFR0_PMSAv8:
128                 pmsav8_setup();
129                 break;
130         default:
131                 break;
132         }
133 }
134
135 void __init adjust_lowmem_bounds(void)
136 {
137         phys_addr_t end;
138         adjust_lowmem_bounds_mpu();
139         end = memblock_end_of_DRAM();
140         high_memory = __va(end - 1) + 1;
141         memblock_set_current_limit(end);
142 }
143
144 /*
145  * paging_init() sets up the page tables, initialises the zone memory
146  * maps, and sets up the zero page, bad page and bad page tables.
147  */
148 void __init paging_init(const struct machine_desc *mdesc)
149 {
150         early_trap_init((void *)vectors_base);
151         mpu_setup();
152         bootmem_init();
153 }
154
155 /*
156  * We don't need to do anything here for nommu machines.
157  */
158 void setup_mm_for_reboot(void)
159 {
160 }
161
162 void flush_dcache_page(struct page *page)
163 {
164         __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
165 }
166 EXPORT_SYMBOL(flush_dcache_page);
167
168 void flush_kernel_dcache_page(struct page *page)
169 {
170         __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
171 }
172 EXPORT_SYMBOL(flush_kernel_dcache_page);
173
174 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
175                        unsigned long uaddr, void *dst, const void *src,
176                        unsigned long len)
177 {
178         memcpy(dst, src, len);
179         if (vma->vm_flags & VM_EXEC)
180                 __cpuc_coherent_user_range(uaddr, uaddr + len);
181 }
182
183 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
184                                 size_t size, unsigned int mtype)
185 {
186         if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
187                 return NULL;
188         return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
189 }
190 EXPORT_SYMBOL(__arm_ioremap_pfn);
191
192 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
193                                    unsigned int mtype, void *caller)
194 {
195         return (void __iomem *)phys_addr;
196 }
197
198 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
199
200 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
201 {
202         return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
203                                     __builtin_return_address(0));
204 }
205 EXPORT_SYMBOL(ioremap);
206
207 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
208         __alias(ioremap_cached);
209
210 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
211 {
212         return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
213                                     __builtin_return_address(0));
214 }
215 EXPORT_SYMBOL(ioremap_cache);
216 EXPORT_SYMBOL(ioremap_cached);
217
218 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
219 {
220         return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
221                                     __builtin_return_address(0));
222 }
223 EXPORT_SYMBOL(ioremap_wc);
224
225 #ifdef CONFIG_PCI
226
227 #include <asm/mach/map.h>
228
229 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
230 {
231         return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
232                                    __builtin_return_address(0));
233 }
234 EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
235 #endif
236
237 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
238 {
239         return (void *)phys_addr;
240 }
241
242 void __iounmap(volatile void __iomem *addr)
243 {
244 }
245 EXPORT_SYMBOL(__iounmap);
246
247 void (*arch_iounmap)(volatile void __iomem *);
248
249 void iounmap(volatile void __iomem *addr)
250 {
251 }
252 EXPORT_SYMBOL(iounmap);