GNU Linux-libre 4.9.288-gnu1
[releases.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/fixmap.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <asm/smp_plat.h>
29 #include <asm/tlb.h>
30 #include <asm/highmem.h>
31 #include <asm/system_info.h>
32 #include <asm/traps.h>
33 #include <asm/procinfo.h>
34 #include <asm/memory.h>
35
36 #include <asm/mach/arch.h>
37 #include <asm/mach/map.h>
38 #include <asm/mach/pci.h>
39 #include <asm/fixmap.h>
40
41 #include "fault.h"
42 #include "mm.h"
43 #include "tcm.h"
44
45 /*
46  * empty_zero_page is a special page that is used for
47  * zero-initialized data and COW.
48  */
49 struct page *empty_zero_page;
50 EXPORT_SYMBOL(empty_zero_page);
51
52 /*
53  * The pmd table for the upper-most set of pages.
54  */
55 pmd_t *top_pmd;
56
57 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58
59 #define CPOLICY_UNCACHED        0
60 #define CPOLICY_BUFFERED        1
61 #define CPOLICY_WRITETHROUGH    2
62 #define CPOLICY_WRITEBACK       3
63 #define CPOLICY_WRITEALLOC      4
64
65 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66 static unsigned int ecc_mask __initdata = 0;
67 pgprot_t pgprot_user;
68 pgprot_t pgprot_kernel;
69 pgprot_t pgprot_hyp_device;
70 pgprot_t pgprot_s2;
71 pgprot_t pgprot_s2_device;
72
73 EXPORT_SYMBOL(pgprot_user);
74 EXPORT_SYMBOL(pgprot_kernel);
75
76 struct cachepolicy {
77         const char      policy[16];
78         unsigned int    cr_mask;
79         pmdval_t        pmd;
80         pteval_t        pte;
81         pteval_t        pte_s2;
82 };
83
84 #ifdef CONFIG_ARM_LPAE
85 #define s2_policy(policy)       policy
86 #else
87 #define s2_policy(policy)       0
88 #endif
89
90 static struct cachepolicy cache_policies[] __initdata = {
91         {
92                 .policy         = "uncached",
93                 .cr_mask        = CR_W|CR_C,
94                 .pmd            = PMD_SECT_UNCACHED,
95                 .pte            = L_PTE_MT_UNCACHED,
96                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
97         }, {
98                 .policy         = "buffered",
99                 .cr_mask        = CR_C,
100                 .pmd            = PMD_SECT_BUFFERED,
101                 .pte            = L_PTE_MT_BUFFERABLE,
102                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
103         }, {
104                 .policy         = "writethrough",
105                 .cr_mask        = 0,
106                 .pmd            = PMD_SECT_WT,
107                 .pte            = L_PTE_MT_WRITETHROUGH,
108                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
109         }, {
110                 .policy         = "writeback",
111                 .cr_mask        = 0,
112                 .pmd            = PMD_SECT_WB,
113                 .pte            = L_PTE_MT_WRITEBACK,
114                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
115         }, {
116                 .policy         = "writealloc",
117                 .cr_mask        = 0,
118                 .pmd            = PMD_SECT_WBWA,
119                 .pte            = L_PTE_MT_WRITEALLOC,
120                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
121         }
122 };
123
124 #ifdef CONFIG_CPU_CP15
125 static unsigned long initial_pmd_value __initdata = 0;
126
127 /*
128  * Initialise the cache_policy variable with the initial state specified
129  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
130  * the C code sets the page tables up with the same policy as the head
131  * assembly code, which avoids an illegal state where the TLBs can get
132  * confused.  See comments in early_cachepolicy() for more information.
133  */
134 void __init init_default_cache_policy(unsigned long pmd)
135 {
136         int i;
137
138         initial_pmd_value = pmd;
139
140         pmd &= PMD_SECT_CACHE_MASK;
141
142         for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
143                 if (cache_policies[i].pmd == pmd) {
144                         cachepolicy = i;
145                         break;
146                 }
147
148         if (i == ARRAY_SIZE(cache_policies))
149                 pr_err("ERROR: could not find cache policy\n");
150 }
151
152 /*
153  * These are useful for identifying cache coherency problems by allowing
154  * the cache or the cache and writebuffer to be turned off.  (Note: the
155  * write buffer should not be on and the cache off).
156  */
157 static int __init early_cachepolicy(char *p)
158 {
159         int i, selected = -1;
160
161         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
162                 int len = strlen(cache_policies[i].policy);
163
164                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
165                         selected = i;
166                         break;
167                 }
168         }
169
170         if (selected == -1)
171                 pr_err("ERROR: unknown or unsupported cache policy\n");
172
173         /*
174          * This restriction is partly to do with the way we boot; it is
175          * unpredictable to have memory mapped using two different sets of
176          * memory attributes (shared, type, and cache attribs).  We can not
177          * change these attributes once the initial assembly has setup the
178          * page tables.
179          */
180         if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
181                 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
182                         cache_policies[cachepolicy].policy);
183                 return 0;
184         }
185
186         if (selected != cachepolicy) {
187                 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
188                 cachepolicy = selected;
189                 flush_cache_all();
190                 set_cr(cr);
191         }
192         return 0;
193 }
194 early_param("cachepolicy", early_cachepolicy);
195
196 static int __init early_nocache(char *__unused)
197 {
198         char *p = "buffered";
199         pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
200         early_cachepolicy(p);
201         return 0;
202 }
203 early_param("nocache", early_nocache);
204
205 static int __init early_nowrite(char *__unused)
206 {
207         char *p = "uncached";
208         pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
209         early_cachepolicy(p);
210         return 0;
211 }
212 early_param("nowb", early_nowrite);
213
214 #ifndef CONFIG_ARM_LPAE
215 static int __init early_ecc(char *p)
216 {
217         if (memcmp(p, "on", 2) == 0)
218                 ecc_mask = PMD_PROTECTION;
219         else if (memcmp(p, "off", 3) == 0)
220                 ecc_mask = 0;
221         return 0;
222 }
223 early_param("ecc", early_ecc);
224 #endif
225
226 #else /* ifdef CONFIG_CPU_CP15 */
227
228 static int __init early_cachepolicy(char *p)
229 {
230         pr_warn("cachepolicy kernel parameter not supported without cp15\n");
231 }
232 early_param("cachepolicy", early_cachepolicy);
233
234 static int __init noalign_setup(char *__unused)
235 {
236         pr_warn("noalign kernel parameter not supported without cp15\n");
237 }
238 __setup("noalign", noalign_setup);
239
240 #endif /* ifdef CONFIG_CPU_CP15 / else */
241
242 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
243 #define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
244 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
245
246 static struct mem_type mem_types[] __ro_after_init = {
247         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
248                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
249                                   L_PTE_SHARED,
250                 .prot_pte_s2    = s2_policy(PROT_PTE_S2_DEVICE) |
251                                   s2_policy(L_PTE_S2_MT_DEV_SHARED) |
252                                   L_PTE_SHARED,
253                 .prot_l1        = PMD_TYPE_TABLE,
254                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
255                 .domain         = DOMAIN_IO,
256         },
257         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
258                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
259                 .prot_l1        = PMD_TYPE_TABLE,
260                 .prot_sect      = PROT_SECT_DEVICE,
261                 .domain         = DOMAIN_IO,
262         },
263         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
264                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
265                 .prot_l1        = PMD_TYPE_TABLE,
266                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
267                 .domain         = DOMAIN_IO,
268         },
269         [MT_DEVICE_WC] = {      /* ioremap_wc */
270                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
271                 .prot_l1        = PMD_TYPE_TABLE,
272                 .prot_sect      = PROT_SECT_DEVICE,
273                 .domain         = DOMAIN_IO,
274         },
275         [MT_UNCACHED] = {
276                 .prot_pte       = PROT_PTE_DEVICE,
277                 .prot_l1        = PMD_TYPE_TABLE,
278                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
279                 .domain         = DOMAIN_IO,
280         },
281         [MT_CACHECLEAN] = {
282                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
283                 .domain    = DOMAIN_KERNEL,
284         },
285 #ifndef CONFIG_ARM_LPAE
286         [MT_MINICLEAN] = {
287                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
288                 .domain    = DOMAIN_KERNEL,
289         },
290 #endif
291         [MT_LOW_VECTORS] = {
292                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
293                                 L_PTE_RDONLY,
294                 .prot_l1   = PMD_TYPE_TABLE,
295                 .domain    = DOMAIN_VECTORS,
296         },
297         [MT_HIGH_VECTORS] = {
298                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299                                 L_PTE_USER | L_PTE_RDONLY,
300                 .prot_l1   = PMD_TYPE_TABLE,
301                 .domain    = DOMAIN_VECTORS,
302         },
303         [MT_MEMORY_RWX] = {
304                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
305                 .prot_l1   = PMD_TYPE_TABLE,
306                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
307                 .domain    = DOMAIN_KERNEL,
308         },
309         [MT_MEMORY_RW] = {
310                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
311                              L_PTE_XN,
312                 .prot_l1   = PMD_TYPE_TABLE,
313                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
314                 .domain    = DOMAIN_KERNEL,
315         },
316         [MT_ROM] = {
317                 .prot_sect = PMD_TYPE_SECT,
318                 .domain    = DOMAIN_KERNEL,
319         },
320         [MT_MEMORY_RWX_NONCACHED] = {
321                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322                                 L_PTE_MT_BUFFERABLE,
323                 .prot_l1   = PMD_TYPE_TABLE,
324                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
325                 .domain    = DOMAIN_KERNEL,
326         },
327         [MT_MEMORY_RW_DTCM] = {
328                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329                                 L_PTE_XN,
330                 .prot_l1   = PMD_TYPE_TABLE,
331                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
332                 .domain    = DOMAIN_KERNEL,
333         },
334         [MT_MEMORY_RWX_ITCM] = {
335                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
336                 .prot_l1   = PMD_TYPE_TABLE,
337                 .domain    = DOMAIN_KERNEL,
338         },
339         [MT_MEMORY_RW_SO] = {
340                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341                                 L_PTE_MT_UNCACHED | L_PTE_XN,
342                 .prot_l1   = PMD_TYPE_TABLE,
343                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
344                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
345                 .domain    = DOMAIN_KERNEL,
346         },
347         [MT_MEMORY_DMA_READY] = {
348                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
349                                 L_PTE_XN,
350                 .prot_l1   = PMD_TYPE_TABLE,
351                 .domain    = DOMAIN_KERNEL,
352         },
353 };
354
355 const struct mem_type *get_mem_type(unsigned int type)
356 {
357         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
358 }
359 EXPORT_SYMBOL(get_mem_type);
360
361 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
362
363 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
364         __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
365
366 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
367 {
368         return &bm_pte[pte_index(addr)];
369 }
370
371 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
372 {
373         return pte_offset_kernel(dir, addr);
374 }
375
376 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
377 {
378         pgd_t *pgd = pgd_offset_k(addr);
379         pud_t *pud = pud_offset(pgd, addr);
380         pmd_t *pmd = pmd_offset(pud, addr);
381
382         return pmd;
383 }
384
385 void __init early_fixmap_init(void)
386 {
387         pmd_t *pmd;
388
389         /*
390          * The early fixmap range spans multiple pmds, for which
391          * we are not prepared:
392          */
393         BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
394                      != FIXADDR_TOP >> PMD_SHIFT);
395
396         pmd = fixmap_pmd(FIXADDR_TOP);
397         pmd_populate_kernel(&init_mm, pmd, bm_pte);
398
399         pte_offset_fixmap = pte_offset_early_fixmap;
400 }
401
402 /*
403  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
404  * As a result, this can only be called with preemption disabled, as under
405  * stop_machine().
406  */
407 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
408 {
409         unsigned long vaddr = __fix_to_virt(idx);
410         pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
411
412         /* Make sure fixmap region does not exceed available allocation. */
413         BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
414                      FIXADDR_END);
415         BUG_ON(idx >= __end_of_fixed_addresses);
416
417         if (pgprot_val(prot))
418                 set_pte_at(NULL, vaddr, pte,
419                         pfn_pte(phys >> PAGE_SHIFT, prot));
420         else
421                 pte_clear(NULL, vaddr, pte);
422         local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
423 }
424
425 /*
426  * Adjust the PMD section entries according to the CPU in use.
427  */
428 static void __init build_mem_type_table(void)
429 {
430         struct cachepolicy *cp;
431         unsigned int cr = get_cr();
432         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
433         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
434         int cpu_arch = cpu_architecture();
435         int i;
436
437         if (cpu_arch < CPU_ARCH_ARMv6) {
438 #if defined(CONFIG_CPU_DCACHE_DISABLE)
439                 if (cachepolicy > CPOLICY_BUFFERED)
440                         cachepolicy = CPOLICY_BUFFERED;
441 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
442                 if (cachepolicy > CPOLICY_WRITETHROUGH)
443                         cachepolicy = CPOLICY_WRITETHROUGH;
444 #endif
445         }
446         if (cpu_arch < CPU_ARCH_ARMv5) {
447                 if (cachepolicy >= CPOLICY_WRITEALLOC)
448                         cachepolicy = CPOLICY_WRITEBACK;
449                 ecc_mask = 0;
450         }
451
452         if (is_smp()) {
453                 if (cachepolicy != CPOLICY_WRITEALLOC) {
454                         pr_warn("Forcing write-allocate cache policy for SMP\n");
455                         cachepolicy = CPOLICY_WRITEALLOC;
456                 }
457                 if (!(initial_pmd_value & PMD_SECT_S)) {
458                         pr_warn("Forcing shared mappings for SMP\n");
459                         initial_pmd_value |= PMD_SECT_S;
460                 }
461         }
462
463         /*
464          * Strip out features not present on earlier architectures.
465          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
466          * without extended page tables don't have the 'Shared' bit.
467          */
468         if (cpu_arch < CPU_ARCH_ARMv5)
469                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
470                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
471         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
472                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
473                         mem_types[i].prot_sect &= ~PMD_SECT_S;
474
475         /*
476          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
477          * "update-able on write" bit on ARM610).  However, Xscale and
478          * Xscale3 require this bit to be cleared.
479          */
480         if (cpu_is_xscale_family()) {
481                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
482                         mem_types[i].prot_sect &= ~PMD_BIT4;
483                         mem_types[i].prot_l1 &= ~PMD_BIT4;
484                 }
485         } else if (cpu_arch < CPU_ARCH_ARMv6) {
486                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
487                         if (mem_types[i].prot_l1)
488                                 mem_types[i].prot_l1 |= PMD_BIT4;
489                         if (mem_types[i].prot_sect)
490                                 mem_types[i].prot_sect |= PMD_BIT4;
491                 }
492         }
493
494         /*
495          * Mark the device areas according to the CPU/architecture.
496          */
497         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
498                 if (!cpu_is_xsc3()) {
499                         /*
500                          * Mark device regions on ARMv6+ as execute-never
501                          * to prevent speculative instruction fetches.
502                          */
503                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
504                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
505                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
506                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
507
508                         /* Also setup NX memory mapping */
509                         mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
510                 }
511                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
512                         /*
513                          * For ARMv7 with TEX remapping,
514                          * - shared device is SXCB=1100
515                          * - nonshared device is SXCB=0100
516                          * - write combine device mem is SXCB=0001
517                          * (Uncached Normal memory)
518                          */
519                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
520                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
521                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
522                 } else if (cpu_is_xsc3()) {
523                         /*
524                          * For Xscale3,
525                          * - shared device is TEXCB=00101
526                          * - nonshared device is TEXCB=01000
527                          * - write combine device mem is TEXCB=00100
528                          * (Inner/Outer Uncacheable in xsc3 parlance)
529                          */
530                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
531                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
532                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
533                 } else {
534                         /*
535                          * For ARMv6 and ARMv7 without TEX remapping,
536                          * - shared device is TEXCB=00001
537                          * - nonshared device is TEXCB=01000
538                          * - write combine device mem is TEXCB=00100
539                          * (Uncached Normal in ARMv6 parlance).
540                          */
541                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
542                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
543                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
544                 }
545         } else {
546                 /*
547                  * On others, write combining is "Uncached/Buffered"
548                  */
549                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
550         }
551
552         /*
553          * Now deal with the memory-type mappings
554          */
555         cp = &cache_policies[cachepolicy];
556         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
557         s2_pgprot = cp->pte_s2;
558         hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
559         s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
560
561 #ifndef CONFIG_ARM_LPAE
562         /*
563          * We don't use domains on ARMv6 (since this causes problems with
564          * v6/v7 kernels), so we must use a separate memory type for user
565          * r/o, kernel r/w to map the vectors page.
566          */
567         if (cpu_arch == CPU_ARCH_ARMv6)
568                 vecs_pgprot |= L_PTE_MT_VECTORS;
569
570         /*
571          * Check is it with support for the PXN bit
572          * in the Short-descriptor translation table format descriptors.
573          */
574         if (cpu_arch == CPU_ARCH_ARMv7 &&
575                 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
576                 user_pmd_table |= PMD_PXNTABLE;
577         }
578 #endif
579
580         /*
581          * ARMv6 and above have extended page tables.
582          */
583         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
584 #ifndef CONFIG_ARM_LPAE
585                 /*
586                  * Mark cache clean areas and XIP ROM read only
587                  * from SVC mode and no access from userspace.
588                  */
589                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
590                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
591                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
592 #endif
593
594                 /*
595                  * If the initial page tables were created with the S bit
596                  * set, then we need to do the same here for the same
597                  * reasons given in early_cachepolicy().
598                  */
599                 if (initial_pmd_value & PMD_SECT_S) {
600                         user_pgprot |= L_PTE_SHARED;
601                         kern_pgprot |= L_PTE_SHARED;
602                         vecs_pgprot |= L_PTE_SHARED;
603                         s2_pgprot |= L_PTE_SHARED;
604                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
605                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
606                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
607                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
608                         mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
609                         mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
610                         mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
611                         mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
612                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
613                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
614                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
615                 }
616         }
617
618         /*
619          * Non-cacheable Normal - intended for memory areas that must
620          * not cause dirty cache line writebacks when used
621          */
622         if (cpu_arch >= CPU_ARCH_ARMv6) {
623                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
624                         /* Non-cacheable Normal is XCB = 001 */
625                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
626                                 PMD_SECT_BUFFERED;
627                 } else {
628                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
629                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
630                                 PMD_SECT_TEX(1);
631                 }
632         } else {
633                 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
634         }
635
636 #ifdef CONFIG_ARM_LPAE
637         /*
638          * Do not generate access flag faults for the kernel mappings.
639          */
640         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
641                 mem_types[i].prot_pte |= PTE_EXT_AF;
642                 if (mem_types[i].prot_sect)
643                         mem_types[i].prot_sect |= PMD_SECT_AF;
644         }
645         kern_pgprot |= PTE_EXT_AF;
646         vecs_pgprot |= PTE_EXT_AF;
647
648         /*
649          * Set PXN for user mappings
650          */
651         user_pgprot |= PTE_EXT_PXN;
652 #endif
653
654         for (i = 0; i < 16; i++) {
655                 pteval_t v = pgprot_val(protection_map[i]);
656                 protection_map[i] = __pgprot(v | user_pgprot);
657         }
658
659         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
660         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
661
662         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
663         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
664                                  L_PTE_DIRTY | kern_pgprot);
665         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
666         pgprot_s2_device  = __pgprot(s2_device_pgprot);
667         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
668
669         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
670         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
671         mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
672         mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
673         mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
674         mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
675         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
676         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
677         mem_types[MT_ROM].prot_sect |= cp->pmd;
678
679         switch (cp->pmd) {
680         case PMD_SECT_WT:
681                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
682                 break;
683         case PMD_SECT_WB:
684         case PMD_SECT_WBWA:
685                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
686                 break;
687         }
688         pr_info("Memory policy: %sData cache %s\n",
689                 ecc_mask ? "ECC enabled, " : "", cp->policy);
690
691         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
692                 struct mem_type *t = &mem_types[i];
693                 if (t->prot_l1)
694                         t->prot_l1 |= PMD_DOMAIN(t->domain);
695                 if (t->prot_sect)
696                         t->prot_sect |= PMD_DOMAIN(t->domain);
697         }
698 }
699
700 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
701 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
702                               unsigned long size, pgprot_t vma_prot)
703 {
704         if (!pfn_valid(pfn))
705                 return pgprot_noncached(vma_prot);
706         else if (file->f_flags & O_SYNC)
707                 return pgprot_writecombine(vma_prot);
708         return vma_prot;
709 }
710 EXPORT_SYMBOL(phys_mem_access_prot);
711 #endif
712
713 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
714
715 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
716 {
717         void *ptr = __va(memblock_alloc(sz, align));
718         memset(ptr, 0, sz);
719         return ptr;
720 }
721
722 static void __init *early_alloc(unsigned long sz)
723 {
724         return early_alloc_aligned(sz, sz);
725 }
726
727 static void *__init late_alloc(unsigned long sz)
728 {
729         void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
730
731         if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
732                 BUG();
733         return ptr;
734 }
735
736 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
737                                 unsigned long prot,
738                                 void *(*alloc)(unsigned long sz))
739 {
740         if (pmd_none(*pmd)) {
741                 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
742                 __pmd_populate(pmd, __pa(pte), prot);
743         }
744         BUG_ON(pmd_bad(*pmd));
745         return pte_offset_kernel(pmd, addr);
746 }
747
748 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
749                                       unsigned long prot)
750 {
751         return arm_pte_alloc(pmd, addr, prot, early_alloc);
752 }
753
754 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
755                                   unsigned long end, unsigned long pfn,
756                                   const struct mem_type *type,
757                                   void *(*alloc)(unsigned long sz),
758                                   bool ng)
759 {
760         pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
761         do {
762                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
763                             ng ? PTE_EXT_NG : 0);
764                 pfn++;
765         } while (pte++, addr += PAGE_SIZE, addr != end);
766 }
767
768 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
769                         unsigned long end, phys_addr_t phys,
770                         const struct mem_type *type, bool ng)
771 {
772         pmd_t *p = pmd;
773
774 #ifndef CONFIG_ARM_LPAE
775         /*
776          * In classic MMU format, puds and pmds are folded in to
777          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
778          * group of L1 entries making up one logical pointer to
779          * an L2 table (2MB), where as PMDs refer to the individual
780          * L1 entries (1MB). Hence increment to get the correct
781          * offset for odd 1MB sections.
782          * (See arch/arm/include/asm/pgtable-2level.h)
783          */
784         if (addr & SECTION_SIZE)
785                 pmd++;
786 #endif
787         do {
788                 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
789                 phys += SECTION_SIZE;
790         } while (pmd++, addr += SECTION_SIZE, addr != end);
791
792         flush_pmd_entry(p);
793 }
794
795 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
796                                       unsigned long end, phys_addr_t phys,
797                                       const struct mem_type *type,
798                                       void *(*alloc)(unsigned long sz), bool ng)
799 {
800         pmd_t *pmd = pmd_offset(pud, addr);
801         unsigned long next;
802
803         do {
804                 /*
805                  * With LPAE, we must loop over to map
806                  * all the pmds for the given range.
807                  */
808                 next = pmd_addr_end(addr, end);
809
810                 /*
811                  * Try a section mapping - addr, next and phys must all be
812                  * aligned to a section boundary.
813                  */
814                 if (type->prot_sect &&
815                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
816                         __map_init_section(pmd, addr, next, phys, type, ng);
817                 } else {
818                         alloc_init_pte(pmd, addr, next,
819                                        __phys_to_pfn(phys), type, alloc, ng);
820                 }
821
822                 phys += next - addr;
823
824         } while (pmd++, addr = next, addr != end);
825 }
826
827 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
828                                   unsigned long end, phys_addr_t phys,
829                                   const struct mem_type *type,
830                                   void *(*alloc)(unsigned long sz), bool ng)
831 {
832         pud_t *pud = pud_offset(pgd, addr);
833         unsigned long next;
834
835         do {
836                 next = pud_addr_end(addr, end);
837                 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
838                 phys += next - addr;
839         } while (pud++, addr = next, addr != end);
840 }
841
842 #ifndef CONFIG_ARM_LPAE
843 static void __init create_36bit_mapping(struct mm_struct *mm,
844                                         struct map_desc *md,
845                                         const struct mem_type *type,
846                                         bool ng)
847 {
848         unsigned long addr, length, end;
849         phys_addr_t phys;
850         pgd_t *pgd;
851
852         addr = md->virtual;
853         phys = __pfn_to_phys(md->pfn);
854         length = PAGE_ALIGN(md->length);
855
856         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
857                 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
858                        (long long)__pfn_to_phys((u64)md->pfn), addr);
859                 return;
860         }
861
862         /* N.B. ARMv6 supersections are only defined to work with domain 0.
863          *      Since domain assignments can in fact be arbitrary, the
864          *      'domain == 0' check below is required to insure that ARMv6
865          *      supersections are only allocated for domain 0 regardless
866          *      of the actual domain assignments in use.
867          */
868         if (type->domain) {
869                 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
870                        (long long)__pfn_to_phys((u64)md->pfn), addr);
871                 return;
872         }
873
874         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
875                 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
876                        (long long)__pfn_to_phys((u64)md->pfn), addr);
877                 return;
878         }
879
880         /*
881          * Shift bits [35:32] of address into bits [23:20] of PMD
882          * (See ARMv6 spec).
883          */
884         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
885
886         pgd = pgd_offset(mm, addr);
887         end = addr + length;
888         do {
889                 pud_t *pud = pud_offset(pgd, addr);
890                 pmd_t *pmd = pmd_offset(pud, addr);
891                 int i;
892
893                 for (i = 0; i < 16; i++)
894                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
895                                        (ng ? PMD_SECT_nG : 0));
896
897                 addr += SUPERSECTION_SIZE;
898                 phys += SUPERSECTION_SIZE;
899                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
900         } while (addr != end);
901 }
902 #endif  /* !CONFIG_ARM_LPAE */
903
904 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
905                                     void *(*alloc)(unsigned long sz),
906                                     bool ng)
907 {
908         unsigned long addr, length, end;
909         phys_addr_t phys;
910         const struct mem_type *type;
911         pgd_t *pgd;
912
913         type = &mem_types[md->type];
914
915 #ifndef CONFIG_ARM_LPAE
916         /*
917          * Catch 36-bit addresses
918          */
919         if (md->pfn >= 0x100000) {
920                 create_36bit_mapping(mm, md, type, ng);
921                 return;
922         }
923 #endif
924
925         addr = md->virtual & PAGE_MASK;
926         phys = __pfn_to_phys(md->pfn);
927         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
928
929         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
930                 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
931                         (long long)__pfn_to_phys(md->pfn), addr);
932                 return;
933         }
934
935         pgd = pgd_offset(mm, addr);
936         end = addr + length;
937         do {
938                 unsigned long next = pgd_addr_end(addr, end);
939
940                 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
941
942                 phys += next - addr;
943                 addr = next;
944         } while (pgd++, addr != end);
945 }
946
947 /*
948  * Create the page directory entries and any necessary
949  * page tables for the mapping specified by `md'.  We
950  * are able to cope here with varying sizes and address
951  * offsets, and we take full advantage of sections and
952  * supersections.
953  */
954 static void __init create_mapping(struct map_desc *md)
955 {
956         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
957                 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
958                         (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
959                 return;
960         }
961
962         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
963             md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
964             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
965                 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
966                         (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
967         }
968
969         __create_mapping(&init_mm, md, early_alloc, false);
970 }
971
972 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
973                                 bool ng)
974 {
975 #ifdef CONFIG_ARM_LPAE
976         pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
977         if (WARN_ON(!pud))
978                 return;
979         pmd_alloc(mm, pud, 0);
980 #endif
981         __create_mapping(mm, md, late_alloc, ng);
982 }
983
984 /*
985  * Create the architecture specific mappings
986  */
987 void __init iotable_init(struct map_desc *io_desc, int nr)
988 {
989         struct map_desc *md;
990         struct vm_struct *vm;
991         struct static_vm *svm;
992
993         if (!nr)
994                 return;
995
996         svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
997
998         for (md = io_desc; nr; md++, nr--) {
999                 create_mapping(md);
1000
1001                 vm = &svm->vm;
1002                 vm->addr = (void *)(md->virtual & PAGE_MASK);
1003                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1004                 vm->phys_addr = __pfn_to_phys(md->pfn);
1005                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1006                 vm->flags |= VM_ARM_MTYPE(md->type);
1007                 vm->caller = iotable_init;
1008                 add_static_vm_early(svm++);
1009         }
1010 }
1011
1012 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1013                                   void *caller)
1014 {
1015         struct vm_struct *vm;
1016         struct static_vm *svm;
1017
1018         svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1019
1020         vm = &svm->vm;
1021         vm->addr = (void *)addr;
1022         vm->size = size;
1023         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1024         vm->caller = caller;
1025         add_static_vm_early(svm);
1026 }
1027
1028 #ifndef CONFIG_ARM_LPAE
1029
1030 /*
1031  * The Linux PMD is made of two consecutive section entries covering 2MB
1032  * (see definition in include/asm/pgtable-2level.h).  However a call to
1033  * create_mapping() may optimize static mappings by using individual
1034  * 1MB section mappings.  This leaves the actual PMD potentially half
1035  * initialized if the top or bottom section entry isn't used, leaving it
1036  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1037  * the virtual space left free by that unused section entry.
1038  *
1039  * Let's avoid the issue by inserting dummy vm entries covering the unused
1040  * PMD halves once the static mappings are in place.
1041  */
1042
1043 static void __init pmd_empty_section_gap(unsigned long addr)
1044 {
1045         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1046 }
1047
1048 static void __init fill_pmd_gaps(void)
1049 {
1050         struct static_vm *svm;
1051         struct vm_struct *vm;
1052         unsigned long addr, next = 0;
1053         pmd_t *pmd;
1054
1055         list_for_each_entry(svm, &static_vmlist, list) {
1056                 vm = &svm->vm;
1057                 addr = (unsigned long)vm->addr;
1058                 if (addr < next)
1059                         continue;
1060
1061                 /*
1062                  * Check if this vm starts on an odd section boundary.
1063                  * If so and the first section entry for this PMD is free
1064                  * then we block the corresponding virtual address.
1065                  */
1066                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1067                         pmd = pmd_off_k(addr);
1068                         if (pmd_none(*pmd))
1069                                 pmd_empty_section_gap(addr & PMD_MASK);
1070                 }
1071
1072                 /*
1073                  * Then check if this vm ends on an odd section boundary.
1074                  * If so and the second section entry for this PMD is empty
1075                  * then we block the corresponding virtual address.
1076                  */
1077                 addr += vm->size;
1078                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1079                         pmd = pmd_off_k(addr) + 1;
1080                         if (pmd_none(*pmd))
1081                                 pmd_empty_section_gap(addr);
1082                 }
1083
1084                 /* no need to look at any vm entry until we hit the next PMD */
1085                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1086         }
1087 }
1088
1089 #else
1090 #define fill_pmd_gaps() do { } while (0)
1091 #endif
1092
1093 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1094 static void __init pci_reserve_io(void)
1095 {
1096         struct static_vm *svm;
1097
1098         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1099         if (svm)
1100                 return;
1101
1102         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1103 }
1104 #else
1105 #define pci_reserve_io() do { } while (0)
1106 #endif
1107
1108 #ifdef CONFIG_DEBUG_LL
1109 void __init debug_ll_io_init(void)
1110 {
1111         struct map_desc map;
1112
1113         debug_ll_addr(&map.pfn, &map.virtual);
1114         if (!map.pfn || !map.virtual)
1115                 return;
1116         map.pfn = __phys_to_pfn(map.pfn);
1117         map.virtual &= PAGE_MASK;
1118         map.length = PAGE_SIZE;
1119         map.type = MT_DEVICE;
1120         iotable_init(&map, 1);
1121 }
1122 #endif
1123
1124 static void * __initdata vmalloc_min =
1125         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1126
1127 /*
1128  * vmalloc=size forces the vmalloc area to be exactly 'size'
1129  * bytes. This can be used to increase (or decrease) the vmalloc
1130  * area - the default is 240m.
1131  */
1132 static int __init early_vmalloc(char *arg)
1133 {
1134         unsigned long vmalloc_reserve = memparse(arg, NULL);
1135
1136         if (vmalloc_reserve < SZ_16M) {
1137                 vmalloc_reserve = SZ_16M;
1138                 pr_warn("vmalloc area too small, limiting to %luMB\n",
1139                         vmalloc_reserve >> 20);
1140         }
1141
1142         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1143                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1144                 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1145                         vmalloc_reserve >> 20);
1146         }
1147
1148         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1149         return 0;
1150 }
1151 early_param("vmalloc", early_vmalloc);
1152
1153 phys_addr_t arm_lowmem_limit __initdata = 0;
1154
1155 void __init adjust_lowmem_bounds(void)
1156 {
1157         phys_addr_t memblock_limit = 0;
1158         u64 vmalloc_limit;
1159         struct memblock_region *reg;
1160         phys_addr_t lowmem_limit = 0;
1161
1162         /*
1163          * Let's use our own (unoptimized) equivalent of __pa() that is
1164          * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1165          * The result is used as the upper bound on physical memory address
1166          * and may itself be outside the valid range for which phys_addr_t
1167          * and therefore __pa() is defined.
1168          */
1169         vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1170
1171         /*
1172          * The first usable region must be PMD aligned. Mark its start
1173          * as MEMBLOCK_NOMAP if it isn't
1174          */
1175         for_each_memblock(memory, reg) {
1176                 if (!memblock_is_nomap(reg)) {
1177                         if (!IS_ALIGNED(reg->base, PMD_SIZE)) {
1178                                 phys_addr_t len;
1179
1180                                 len = round_up(reg->base, PMD_SIZE) - reg->base;
1181                                 memblock_mark_nomap(reg->base, len);
1182                         }
1183                         break;
1184                 }
1185         }
1186
1187         for_each_memblock(memory, reg) {
1188                 phys_addr_t block_start = reg->base;
1189                 phys_addr_t block_end = reg->base + reg->size;
1190
1191                 if (memblock_is_nomap(reg))
1192                         continue;
1193
1194                 if (reg->base < vmalloc_limit) {
1195                         if (block_end > lowmem_limit)
1196                                 /*
1197                                  * Compare as u64 to ensure vmalloc_limit does
1198                                  * not get truncated. block_end should always
1199                                  * fit in phys_addr_t so there should be no
1200                                  * issue with assignment.
1201                                  */
1202                                 lowmem_limit = min_t(u64,
1203                                                          vmalloc_limit,
1204                                                          block_end);
1205
1206                         /*
1207                          * Find the first non-pmd-aligned page, and point
1208                          * memblock_limit at it. This relies on rounding the
1209                          * limit down to be pmd-aligned, which happens at the
1210                          * end of this function.
1211                          *
1212                          * With this algorithm, the start or end of almost any
1213                          * bank can be non-pmd-aligned. The only exception is
1214                          * that the start of the bank 0 must be section-
1215                          * aligned, since otherwise memory would need to be
1216                          * allocated when mapping the start of bank 0, which
1217                          * occurs before any free memory is mapped.
1218                          */
1219                         if (!memblock_limit) {
1220                                 if (!IS_ALIGNED(block_start, PMD_SIZE))
1221                                         memblock_limit = block_start;
1222                                 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1223                                         memblock_limit = lowmem_limit;
1224                         }
1225
1226                 }
1227         }
1228
1229         arm_lowmem_limit = lowmem_limit;
1230
1231         high_memory = __va(arm_lowmem_limit - 1) + 1;
1232
1233         if (!memblock_limit)
1234                 memblock_limit = arm_lowmem_limit;
1235
1236         /*
1237          * Round the memblock limit down to a pmd size.  This
1238          * helps to ensure that we will allocate memory from the
1239          * last full pmd, which should be mapped.
1240          */
1241         memblock_limit = round_down(memblock_limit, PMD_SIZE);
1242
1243         if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1244                 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1245                         phys_addr_t end = memblock_end_of_DRAM();
1246
1247                         pr_notice("Ignoring RAM at %pa-%pa\n",
1248                                   &memblock_limit, &end);
1249                         pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1250
1251                         memblock_remove(memblock_limit, end - memblock_limit);
1252                 }
1253         }
1254
1255         memblock_set_current_limit(memblock_limit);
1256 }
1257
1258 static inline void prepare_page_table(void)
1259 {
1260         unsigned long addr;
1261         phys_addr_t end;
1262
1263         /*
1264          * Clear out all the mappings below the kernel image.
1265          */
1266         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1267                 pmd_clear(pmd_off_k(addr));
1268
1269 #ifdef CONFIG_XIP_KERNEL
1270         /* The XIP kernel is mapped in the module area -- skip over it */
1271         addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1272 #endif
1273         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1274                 pmd_clear(pmd_off_k(addr));
1275
1276         /*
1277          * Find the end of the first block of lowmem.
1278          */
1279         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1280         if (end >= arm_lowmem_limit)
1281                 end = arm_lowmem_limit;
1282
1283         /*
1284          * Clear out all the kernel space mappings, except for the first
1285          * memory bank, up to the vmalloc region.
1286          */
1287         for (addr = __phys_to_virt(end);
1288              addr < VMALLOC_START; addr += PMD_SIZE)
1289                 pmd_clear(pmd_off_k(addr));
1290 }
1291
1292 #ifdef CONFIG_ARM_LPAE
1293 /* the first page is reserved for pgd */
1294 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1295                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1296 #else
1297 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1298 #endif
1299
1300 /*
1301  * Reserve the special regions of memory
1302  */
1303 void __init arm_mm_memblock_reserve(void)
1304 {
1305         /*
1306          * Reserve the page tables.  These are already in use,
1307          * and can only be in node 0.
1308          */
1309         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1310
1311 #ifdef CONFIG_SA1111
1312         /*
1313          * Because of the SA1111 DMA bug, we want to preserve our
1314          * precious DMA-able memory...
1315          */
1316         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1317 #endif
1318 }
1319
1320 /*
1321  * Set up the device mappings.  Since we clear out the page tables for all
1322  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1323  * device mappings.  This means earlycon can be used to debug this function
1324  * Any other function or debugging method which may touch any device _will_
1325  * crash the kernel.
1326  */
1327 static void __init devicemaps_init(const struct machine_desc *mdesc)
1328 {
1329         struct map_desc map;
1330         unsigned long addr;
1331         void *vectors;
1332
1333         /*
1334          * Allocate the vector page early.
1335          */
1336         vectors = early_alloc(PAGE_SIZE * 2);
1337
1338         early_trap_init(vectors);
1339
1340         /*
1341          * Clear page table except top pmd used by early fixmaps
1342          */
1343         for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1344                 pmd_clear(pmd_off_k(addr));
1345
1346         /*
1347          * Map the kernel if it is XIP.
1348          * It is always first in the modulearea.
1349          */
1350 #ifdef CONFIG_XIP_KERNEL
1351         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1352         map.virtual = MODULES_VADDR;
1353         map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1354         map.type = MT_ROM;
1355         create_mapping(&map);
1356 #endif
1357
1358         /*
1359          * Map the cache flushing regions.
1360          */
1361 #ifdef FLUSH_BASE
1362         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1363         map.virtual = FLUSH_BASE;
1364         map.length = SZ_1M;
1365         map.type = MT_CACHECLEAN;
1366         create_mapping(&map);
1367 #endif
1368 #ifdef FLUSH_BASE_MINICACHE
1369         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1370         map.virtual = FLUSH_BASE_MINICACHE;
1371         map.length = SZ_1M;
1372         map.type = MT_MINICLEAN;
1373         create_mapping(&map);
1374 #endif
1375
1376         /*
1377          * Create a mapping for the machine vectors at the high-vectors
1378          * location (0xffff0000).  If we aren't using high-vectors, also
1379          * create a mapping at the low-vectors virtual address.
1380          */
1381         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1382         map.virtual = 0xffff0000;
1383         map.length = PAGE_SIZE;
1384 #ifdef CONFIG_KUSER_HELPERS
1385         map.type = MT_HIGH_VECTORS;
1386 #else
1387         map.type = MT_LOW_VECTORS;
1388 #endif
1389         create_mapping(&map);
1390
1391         if (!vectors_high()) {
1392                 map.virtual = 0;
1393                 map.length = PAGE_SIZE * 2;
1394                 map.type = MT_LOW_VECTORS;
1395                 create_mapping(&map);
1396         }
1397
1398         /* Now create a kernel read-only mapping */
1399         map.pfn += 1;
1400         map.virtual = 0xffff0000 + PAGE_SIZE;
1401         map.length = PAGE_SIZE;
1402         map.type = MT_LOW_VECTORS;
1403         create_mapping(&map);
1404
1405         /*
1406          * Ask the machine support to map in the statically mapped devices.
1407          */
1408         if (mdesc->map_io)
1409                 mdesc->map_io();
1410         else
1411                 debug_ll_io_init();
1412         fill_pmd_gaps();
1413
1414         /* Reserve fixed i/o space in VMALLOC region */
1415         pci_reserve_io();
1416
1417         /*
1418          * Finally flush the caches and tlb to ensure that we're in a
1419          * consistent state wrt the writebuffer.  This also ensures that
1420          * any write-allocated cache lines in the vector page are written
1421          * back.  After this point, we can start to touch devices again.
1422          */
1423         local_flush_tlb_all();
1424         flush_cache_all();
1425
1426         /* Enable asynchronous aborts */
1427         early_abt_enable();
1428 }
1429
1430 static void __init kmap_init(void)
1431 {
1432 #ifdef CONFIG_HIGHMEM
1433         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1434                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1435 #endif
1436
1437         early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1438                         _PAGE_KERNEL_TABLE);
1439 }
1440
1441 static void __init map_lowmem(void)
1442 {
1443         struct memblock_region *reg;
1444 #ifdef CONFIG_XIP_KERNEL
1445         phys_addr_t kernel_x_start = round_down(__pa(_sdata), SECTION_SIZE);
1446 #else
1447         phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1448 #endif
1449         phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1450
1451         /* Map all the lowmem memory banks. */
1452         for_each_memblock(memory, reg) {
1453                 phys_addr_t start = reg->base;
1454                 phys_addr_t end = start + reg->size;
1455                 struct map_desc map;
1456
1457                 if (memblock_is_nomap(reg))
1458                         continue;
1459
1460                 if (end > arm_lowmem_limit)
1461                         end = arm_lowmem_limit;
1462                 if (start >= end)
1463                         break;
1464
1465                 if (end < kernel_x_start) {
1466                         map.pfn = __phys_to_pfn(start);
1467                         map.virtual = __phys_to_virt(start);
1468                         map.length = end - start;
1469                         map.type = MT_MEMORY_RWX;
1470
1471                         create_mapping(&map);
1472                 } else if (start >= kernel_x_end) {
1473                         map.pfn = __phys_to_pfn(start);
1474                         map.virtual = __phys_to_virt(start);
1475                         map.length = end - start;
1476                         map.type = MT_MEMORY_RW;
1477
1478                         create_mapping(&map);
1479                 } else {
1480                         /* This better cover the entire kernel */
1481                         if (start < kernel_x_start) {
1482                                 map.pfn = __phys_to_pfn(start);
1483                                 map.virtual = __phys_to_virt(start);
1484                                 map.length = kernel_x_start - start;
1485                                 map.type = MT_MEMORY_RW;
1486
1487                                 create_mapping(&map);
1488                         }
1489
1490                         map.pfn = __phys_to_pfn(kernel_x_start);
1491                         map.virtual = __phys_to_virt(kernel_x_start);
1492                         map.length = kernel_x_end - kernel_x_start;
1493                         map.type = MT_MEMORY_RWX;
1494
1495                         create_mapping(&map);
1496
1497                         if (kernel_x_end < end) {
1498                                 map.pfn = __phys_to_pfn(kernel_x_end);
1499                                 map.virtual = __phys_to_virt(kernel_x_end);
1500                                 map.length = end - kernel_x_end;
1501                                 map.type = MT_MEMORY_RW;
1502
1503                                 create_mapping(&map);
1504                         }
1505                 }
1506         }
1507 }
1508
1509 #ifdef CONFIG_ARM_PV_FIXUP
1510 extern unsigned long __atags_pointer;
1511 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1512 pgtables_remap lpae_pgtables_remap_asm;
1513
1514 /*
1515  * early_paging_init() recreates boot time page table setup, allowing machines
1516  * to switch over to a high (>4G) address space on LPAE systems
1517  */
1518 void __init early_paging_init(const struct machine_desc *mdesc)
1519 {
1520         pgtables_remap *lpae_pgtables_remap;
1521         unsigned long pa_pgd;
1522         unsigned int cr, ttbcr;
1523         long long offset;
1524         void *boot_data;
1525
1526         if (!mdesc->pv_fixup)
1527                 return;
1528
1529         offset = mdesc->pv_fixup();
1530         if (offset == 0)
1531                 return;
1532
1533         /*
1534          * Get the address of the remap function in the 1:1 identity
1535          * mapping setup by the early page table assembly code.  We
1536          * must get this prior to the pv update.  The following barrier
1537          * ensures that this is complete before we fixup any P:V offsets.
1538          */
1539         lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1540         pa_pgd = __pa(swapper_pg_dir);
1541         boot_data = __va(__atags_pointer);
1542         barrier();
1543
1544         pr_info("Switching physical address space to 0x%08llx\n",
1545                 (u64)PHYS_OFFSET + offset);
1546
1547         /* Re-set the phys pfn offset, and the pv offset */
1548         __pv_offset += offset;
1549         __pv_phys_pfn_offset += PFN_DOWN(offset);
1550
1551         /* Run the patch stub to update the constants */
1552         fixup_pv_table(&__pv_table_begin,
1553                 (&__pv_table_end - &__pv_table_begin) << 2);
1554
1555         /*
1556          * We changing not only the virtual to physical mapping, but also
1557          * the physical addresses used to access memory.  We need to flush
1558          * all levels of cache in the system with caching disabled to
1559          * ensure that all data is written back, and nothing is prefetched
1560          * into the caches.  We also need to prevent the TLB walkers
1561          * allocating into the caches too.  Note that this is ARMv7 LPAE
1562          * specific.
1563          */
1564         cr = get_cr();
1565         set_cr(cr & ~(CR_I | CR_C));
1566         asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1567         asm volatile("mcr p15, 0, %0, c2, c0, 2"
1568                 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1569         flush_cache_all();
1570
1571         /*
1572          * Fixup the page tables - this must be in the idmap region as
1573          * we need to disable the MMU to do this safely, and hence it
1574          * needs to be assembly.  It's fairly simple, as we're using the
1575          * temporary tables setup by the initial assembly code.
1576          */
1577         lpae_pgtables_remap(offset, pa_pgd, boot_data);
1578
1579         /* Re-enable the caches and cacheable TLB walks */
1580         asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1581         set_cr(cr);
1582 }
1583
1584 #else
1585
1586 void __init early_paging_init(const struct machine_desc *mdesc)
1587 {
1588         long long offset;
1589
1590         if (!mdesc->pv_fixup)
1591                 return;
1592
1593         offset = mdesc->pv_fixup();
1594         if (offset == 0)
1595                 return;
1596
1597         pr_crit("Physical address space modification is only to support Keystone2.\n");
1598         pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1599         pr_crit("feature. Your kernel may crash now, have a good day.\n");
1600         add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1601 }
1602
1603 #endif
1604
1605 static void __init early_fixmap_shutdown(void)
1606 {
1607         int i;
1608         unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1609
1610         pte_offset_fixmap = pte_offset_late_fixmap;
1611         pmd_clear(fixmap_pmd(va));
1612         local_flush_tlb_kernel_page(va);
1613
1614         for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1615                 pte_t *pte;
1616                 struct map_desc map;
1617
1618                 map.virtual = fix_to_virt(i);
1619                 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1620
1621                 /* Only i/o device mappings are supported ATM */
1622                 if (pte_none(*pte) ||
1623                     (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1624                         continue;
1625
1626                 map.pfn = pte_pfn(*pte);
1627                 map.type = MT_DEVICE;
1628                 map.length = PAGE_SIZE;
1629
1630                 create_mapping(&map);
1631         }
1632 }
1633
1634 /*
1635  * paging_init() sets up the page tables, initialises the zone memory
1636  * maps, and sets up the zero page, bad page and bad page tables.
1637  */
1638 void __init paging_init(const struct machine_desc *mdesc)
1639 {
1640         void *zero_page;
1641
1642         build_mem_type_table();
1643         prepare_page_table();
1644         map_lowmem();
1645         memblock_set_current_limit(arm_lowmem_limit);
1646         dma_contiguous_remap();
1647         early_fixmap_shutdown();
1648         devicemaps_init(mdesc);
1649         kmap_init();
1650         tcm_init();
1651
1652         top_pmd = pmd_off_k(0xffff0000);
1653
1654         /* allocate the zero page. */
1655         zero_page = early_alloc(PAGE_SIZE);
1656
1657         bootmem_init();
1658
1659         empty_zero_page = virt_to_page(zero_page);
1660         __flush_dcache_page(NULL, empty_zero_page);
1661 }