GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / arm / mm / ioremap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/ioremap.c
4  *
5  * Re-map IO memory to kernel address space so that we can access it.
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  *
9  * Hacked for ARM by Phil Blundell <philb@gnu.org>
10  * Hacked to allow all architectures to build, and various cleanups
11  * by Russell King
12  *
13  * This allows a driver to remap an arbitrary region of bus memory into
14  * virtual space.  One should *only* use readl, writel, memcpy_toio and
15  * so on with such remapped areas.
16  *
17  * Because the ARM only has a 32-bit address space we can't address the
18  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
19  * allows us to circumvent this restriction by splitting PCI space into
20  * two 2GB chunks and mapping only one at a time into processor memory.
21  * We use MMU protection domains to trap any attempt to access the bank
22  * that is not currently mapped.  (This isn't fully implemented yet.)
23  */
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/mm.h>
27 #include <linux/vmalloc.h>
28 #include <linux/io.h>
29 #include <linux/sizes.h>
30 #include <linux/memblock.h>
31
32 #include <asm/cp15.h>
33 #include <asm/cputype.h>
34 #include <asm/cacheflush.h>
35 #include <asm/early_ioremap.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlbflush.h>
39 #include <asm/system_info.h>
40
41 #include <asm/mach/map.h>
42 #include <asm/mach/pci.h>
43 #include "mm.h"
44
45
46 LIST_HEAD(static_vmlist);
47
48 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
49                         size_t size, unsigned int mtype)
50 {
51         struct static_vm *svm;
52         struct vm_struct *vm;
53
54         list_for_each_entry(svm, &static_vmlist, list) {
55                 vm = &svm->vm;
56                 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
57                         continue;
58                 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
59                         continue;
60
61                 if (vm->phys_addr > paddr ||
62                         paddr + size - 1 > vm->phys_addr + vm->size - 1)
63                         continue;
64
65                 return svm;
66         }
67
68         return NULL;
69 }
70
71 struct static_vm *find_static_vm_vaddr(void *vaddr)
72 {
73         struct static_vm *svm;
74         struct vm_struct *vm;
75
76         list_for_each_entry(svm, &static_vmlist, list) {
77                 vm = &svm->vm;
78
79                 /* static_vmlist is ascending order */
80                 if (vm->addr > vaddr)
81                         break;
82
83                 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
84                         return svm;
85         }
86
87         return NULL;
88 }
89
90 void __init add_static_vm_early(struct static_vm *svm)
91 {
92         struct static_vm *curr_svm;
93         struct vm_struct *vm;
94         void *vaddr;
95
96         vm = &svm->vm;
97         vm_area_add_early(vm);
98         vaddr = vm->addr;
99
100         list_for_each_entry(curr_svm, &static_vmlist, list) {
101                 vm = &curr_svm->vm;
102
103                 if (vm->addr > vaddr)
104                         break;
105         }
106         list_add_tail(&svm->list, &curr_svm->list);
107 }
108
109 int ioremap_page(unsigned long virt, unsigned long phys,
110                  const struct mem_type *mtype)
111 {
112         return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
113                                   __pgprot(mtype->prot_pte));
114 }
115 EXPORT_SYMBOL(ioremap_page);
116
117 void __check_vmalloc_seq(struct mm_struct *mm)
118 {
119         unsigned int seq;
120
121         do {
122                 seq = init_mm.context.vmalloc_seq;
123                 memcpy(pgd_offset(mm, VMALLOC_START),
124                        pgd_offset_k(VMALLOC_START),
125                        sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
126                                         pgd_index(VMALLOC_START)));
127                 mm->context.vmalloc_seq = seq;
128         } while (seq != init_mm.context.vmalloc_seq);
129 }
130
131 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
132 /*
133  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
134  * the other CPUs will not see this change until their next context switch.
135  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
136  * which requires the new ioremap'd region to be referenced, the CPU will
137  * reference the _old_ region.
138  *
139  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
140  * mask the size back to 1MB aligned or we will overflow in the loop below.
141  */
142 static void unmap_area_sections(unsigned long virt, unsigned long size)
143 {
144         unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
145         pgd_t *pgd;
146         pud_t *pud;
147         pmd_t *pmdp;
148
149         flush_cache_vunmap(addr, end);
150         pgd = pgd_offset_k(addr);
151         pud = pud_offset(pgd, addr);
152         pmdp = pmd_offset(pud, addr);
153         do {
154                 pmd_t pmd = *pmdp;
155
156                 if (!pmd_none(pmd)) {
157                         /*
158                          * Clear the PMD from the page table, and
159                          * increment the vmalloc sequence so others
160                          * notice this change.
161                          *
162                          * Note: this is still racy on SMP machines.
163                          */
164                         pmd_clear(pmdp);
165                         init_mm.context.vmalloc_seq++;
166
167                         /*
168                          * Free the page table, if there was one.
169                          */
170                         if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
171                                 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
172                 }
173
174                 addr += PMD_SIZE;
175                 pmdp += 2;
176         } while (addr < end);
177
178         /*
179          * Ensure that the active_mm is up to date - we want to
180          * catch any use-after-iounmap cases.
181          */
182         if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
183                 __check_vmalloc_seq(current->active_mm);
184
185         flush_tlb_kernel_range(virt, end);
186 }
187
188 static int
189 remap_area_sections(unsigned long virt, unsigned long pfn,
190                     size_t size, const struct mem_type *type)
191 {
192         unsigned long addr = virt, end = virt + size;
193         pgd_t *pgd;
194         pud_t *pud;
195         pmd_t *pmd;
196
197         /*
198          * Remove and free any PTE-based mapping, and
199          * sync the current kernel mapping.
200          */
201         unmap_area_sections(virt, size);
202
203         pgd = pgd_offset_k(addr);
204         pud = pud_offset(pgd, addr);
205         pmd = pmd_offset(pud, addr);
206         do {
207                 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
208                 pfn += SZ_1M >> PAGE_SHIFT;
209                 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
210                 pfn += SZ_1M >> PAGE_SHIFT;
211                 flush_pmd_entry(pmd);
212
213                 addr += PMD_SIZE;
214                 pmd += 2;
215         } while (addr < end);
216
217         return 0;
218 }
219
220 static int
221 remap_area_supersections(unsigned long virt, unsigned long pfn,
222                          size_t size, const struct mem_type *type)
223 {
224         unsigned long addr = virt, end = virt + size;
225         pgd_t *pgd;
226         pud_t *pud;
227         pmd_t *pmd;
228
229         /*
230          * Remove and free any PTE-based mapping, and
231          * sync the current kernel mapping.
232          */
233         unmap_area_sections(virt, size);
234
235         pgd = pgd_offset_k(virt);
236         pud = pud_offset(pgd, addr);
237         pmd = pmd_offset(pud, addr);
238         do {
239                 unsigned long super_pmd_val, i;
240
241                 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
242                                 PMD_SECT_SUPER;
243                 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
244
245                 for (i = 0; i < 8; i++) {
246                         pmd[0] = __pmd(super_pmd_val);
247                         pmd[1] = __pmd(super_pmd_val);
248                         flush_pmd_entry(pmd);
249
250                         addr += PMD_SIZE;
251                         pmd += 2;
252                 }
253
254                 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
255         } while (addr < end);
256
257         return 0;
258 }
259 #endif
260
261 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
262         unsigned long offset, size_t size, unsigned int mtype, void *caller)
263 {
264         const struct mem_type *type;
265         int err;
266         unsigned long addr;
267         struct vm_struct *area;
268         phys_addr_t paddr = __pfn_to_phys(pfn);
269
270 #ifndef CONFIG_ARM_LPAE
271         /*
272          * High mappings must be supersection aligned
273          */
274         if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
275                 return NULL;
276 #endif
277
278         type = get_mem_type(mtype);
279         if (!type)
280                 return NULL;
281
282         /*
283          * Page align the mapping size, taking account of any offset.
284          */
285         size = PAGE_ALIGN(offset + size);
286
287         /*
288          * Try to reuse one of the static mapping whenever possible.
289          */
290         if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
291                 struct static_vm *svm;
292
293                 svm = find_static_vm_paddr(paddr, size, mtype);
294                 if (svm) {
295                         addr = (unsigned long)svm->vm.addr;
296                         addr += paddr - svm->vm.phys_addr;
297                         return (void __iomem *) (offset + addr);
298                 }
299         }
300
301         /*
302          * Don't allow RAM to be mapped with mismatched attributes - this
303          * causes problems with ARMv6+
304          */
305         if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
306                     mtype != MT_MEMORY_RW))
307                 return NULL;
308
309         area = get_vm_area_caller(size, VM_IOREMAP, caller);
310         if (!area)
311                 return NULL;
312         addr = (unsigned long)area->addr;
313         area->phys_addr = paddr;
314
315 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
316         if (DOMAIN_IO == 0 &&
317             (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
318                cpu_is_xsc3()) && pfn >= 0x100000 &&
319                !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
320                 area->flags |= VM_ARM_SECTION_MAPPING;
321                 err = remap_area_supersections(addr, pfn, size, type);
322         } else if (!((paddr | size | addr) & ~PMD_MASK)) {
323                 area->flags |= VM_ARM_SECTION_MAPPING;
324                 err = remap_area_sections(addr, pfn, size, type);
325         } else
326 #endif
327                 err = ioremap_page_range(addr, addr + size, paddr,
328                                          __pgprot(type->prot_pte));
329
330         if (err) {
331                 vunmap((void *)addr);
332                 return NULL;
333         }
334
335         flush_cache_vmap(addr, addr + size);
336         return (void __iomem *) (offset + addr);
337 }
338
339 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
340         unsigned int mtype, void *caller)
341 {
342         phys_addr_t last_addr;
343         unsigned long offset = phys_addr & ~PAGE_MASK;
344         unsigned long pfn = __phys_to_pfn(phys_addr);
345
346         /*
347          * Don't allow wraparound or zero size
348          */
349         last_addr = phys_addr + size - 1;
350         if (!size || last_addr < phys_addr)
351                 return NULL;
352
353         return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
354                         caller);
355 }
356
357 /*
358  * Remap an arbitrary physical address space into the kernel virtual
359  * address space. Needed when the kernel wants to access high addresses
360  * directly.
361  *
362  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
363  * have to convert them into an offset in a page-aligned mapping, but the
364  * caller shouldn't need to know that small detail.
365  */
366 void __iomem *
367 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
368                   unsigned int mtype)
369 {
370         return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
371                                         __builtin_return_address(0));
372 }
373 EXPORT_SYMBOL(__arm_ioremap_pfn);
374
375 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
376                                       unsigned int, void *) =
377         __arm_ioremap_caller;
378
379 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
380 {
381         return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
382                                    __builtin_return_address(0));
383 }
384 EXPORT_SYMBOL(ioremap);
385
386 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
387         __alias(ioremap_cached);
388
389 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
390 {
391         return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
392                                    __builtin_return_address(0));
393 }
394 EXPORT_SYMBOL(ioremap_cache);
395 EXPORT_SYMBOL(ioremap_cached);
396
397 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
398 {
399         return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
400                                    __builtin_return_address(0));
401 }
402 EXPORT_SYMBOL(ioremap_wc);
403
404 /*
405  * Remap an arbitrary physical address space into the kernel virtual
406  * address space as memory. Needed when the kernel wants to execute
407  * code in external memory. This is needed for reprogramming source
408  * clocks that would affect normal memory for example. Please see
409  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
410  */
411 void __iomem *
412 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
413 {
414         unsigned int mtype;
415
416         if (cached)
417                 mtype = MT_MEMORY_RWX;
418         else
419                 mtype = MT_MEMORY_RWX_NONCACHED;
420
421         return __arm_ioremap_caller(phys_addr, size, mtype,
422                         __builtin_return_address(0));
423 }
424
425 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
426 {
427         return (__force void *)arch_ioremap_caller(phys_addr, size,
428                                                    MT_MEMORY_RW,
429                                                    __builtin_return_address(0));
430 }
431
432 void __iounmap(volatile void __iomem *io_addr)
433 {
434         void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
435         struct static_vm *svm;
436
437         /* If this is a static mapping, we must leave it alone */
438         svm = find_static_vm_vaddr(addr);
439         if (svm)
440                 return;
441
442 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
443         {
444                 struct vm_struct *vm;
445
446                 vm = find_vm_area(addr);
447
448                 /*
449                  * If this is a section based mapping we need to handle it
450                  * specially as the VM subsystem does not know how to handle
451                  * such a beast.
452                  */
453                 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
454                         unmap_area_sections((unsigned long)vm->addr, vm->size);
455         }
456 #endif
457
458         vunmap(addr);
459 }
460
461 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
462
463 void iounmap(volatile void __iomem *cookie)
464 {
465         arch_iounmap(cookie);
466 }
467 EXPORT_SYMBOL(iounmap);
468
469 #ifdef CONFIG_PCI
470 static int pci_ioremap_mem_type = MT_DEVICE;
471
472 void pci_ioremap_set_mem_type(int mem_type)
473 {
474         pci_ioremap_mem_type = mem_type;
475 }
476
477 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
478 {
479         BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT);
480
481         return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
482                                   PCI_IO_VIRT_BASE + offset + SZ_64K,
483                                   phys_addr,
484                                   __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
485 }
486 EXPORT_SYMBOL_GPL(pci_ioremap_io);
487
488 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
489 {
490         return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
491                                    __builtin_return_address(0));
492 }
493 EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
494 #endif
495
496 /*
497  * Must be called after early_fixmap_init
498  */
499 void __init early_ioremap_init(void)
500 {
501         early_ioremap_setup();
502 }
503
504 bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
505                                  unsigned long flags)
506 {
507         unsigned long pfn = PHYS_PFN(offset);
508
509         return memblock_is_map_memory(pfn);
510 }