2 * Broadcom Brahma-B15 CPU read-ahead cache management functions
4 * Copyright (C) 2015-2016 Broadcom
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/err.h>
12 #include <linux/spinlock.h>
14 #include <linux/bitops.h>
15 #include <linux/of_address.h>
16 #include <linux/notifier.h>
17 #include <linux/cpu.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/reboot.h>
21 #include <asm/cacheflush.h>
22 #include <asm/hardware/cache-b15-rac.h>
24 extern void v7_flush_kern_cache_all(void);
26 /* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
27 #define RAC_CONFIG0_REG (0x78)
28 #define RACENPREF_MASK (0x3)
29 #define RACPREFINST_SHIFT (0)
30 #define RACENINST_SHIFT (2)
31 #define RACPREFDATA_SHIFT (4)
32 #define RACENDATA_SHIFT (6)
33 #define RAC_CPU_SHIFT (8)
34 #define RACCFG_MASK (0xff)
35 #define RAC_CONFIG1_REG (0x7c)
36 /* Brahma-B15 is a quad-core only design */
37 #define B15_RAC_FLUSH_REG (0x80)
38 /* Brahma-B53 is an octo-core design */
39 #define B53_RAC_FLUSH_REG (0x84)
40 #define FLUSH_RAC (1 << 0)
42 /* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
43 #define RAC_DATA_INST_EN_MASK (1 << RACPREFINST_SHIFT | \
44 RACENPREF_MASK << RACENINST_SHIFT | \
45 1 << RACPREFDATA_SHIFT | \
46 RACENPREF_MASK << RACENDATA_SHIFT)
49 /* Special state where we want to bypass the spinlock and call directly
50 * into the v7 cache maintenance operations during suspend/resume
52 #define RAC_SUSPENDED 1
54 static void __iomem *b15_rac_base;
55 static DEFINE_SPINLOCK(rac_lock);
57 static u32 rac_config0_reg;
58 static u32 rac_flush_offset;
60 /* Initialization flag to avoid checking for b15_rac_base, and to prevent
61 * multi-platform kernels from crashing here as well.
63 static unsigned long b15_rac_flags;
65 static inline u32 __b15_rac_disable(void)
67 u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
68 __raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
73 static inline void __b15_rac_flush(void)
77 __raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);
79 /* This dmb() is required to force the Bus Interface Unit
80 * to clean oustanding writes, and forces an idle cycle
84 reg = __raw_readl(b15_rac_base + rac_flush_offset);
85 } while (reg & FLUSH_RAC);
88 static inline u32 b15_rac_disable_and_flush(void)
92 reg = __b15_rac_disable();
97 static inline void __b15_rac_enable(u32 val)
99 __raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
100 /* dsb() is required here to be consistent with __flush_icache_all() */
104 #define BUILD_RAC_CACHE_OP(name, bar) \
105 void b15_flush_##name(void) \
107 unsigned int do_flush; \
110 if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) { \
116 spin_lock(&rac_lock); \
117 do_flush = test_bit(RAC_ENABLED, &b15_rac_flags); \
119 val = b15_rac_disable_and_flush(); \
124 __b15_rac_enable(val); \
125 spin_unlock(&rac_lock); \
130 /* The readahead cache present in the Brahma-B15 CPU is a special piece of
131 * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
132 * is to prefetch instruction and/or data with a line size of either 64 bytes
133 * or 256 bytes. The rationale is that the data-bus of the CPU interface is
134 * optimized for 256-bytes transactions, and enabling the readahead cache
135 * provides a significant performance boost we want it enabled (typically
136 * twice the performance for a memcpy benchmark application).
138 * The readahead cache is transparent for Modified Virtual Addresses
139 * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
142 * It is however not transparent for the following cache maintenance
143 * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
144 * what we are patching here with our BUILD_RAC_CACHE_OP here.
146 BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);
148 static void b15_rac_enable(void)
153 for_each_possible_cpu(cpu)
154 enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));
156 b15_rac_disable_and_flush();
157 __b15_rac_enable(enable);
160 static int b15_rac_reboot_notifier(struct notifier_block *nb,
161 unsigned long action,
164 /* During kexec, we are not yet migrated on the boot CPU, so we need to
165 * make sure we are SMP safe here. Once the RAC is disabled, flag it as
166 * suspended such that the hotplug notifier returns early.
168 if (action == SYS_RESTART) {
169 spin_lock(&rac_lock);
170 b15_rac_disable_and_flush();
171 clear_bit(RAC_ENABLED, &b15_rac_flags);
172 set_bit(RAC_SUSPENDED, &b15_rac_flags);
173 spin_unlock(&rac_lock);
179 static struct notifier_block b15_rac_reboot_nb = {
180 .notifier_call = b15_rac_reboot_notifier,
183 /* The CPU hotplug case is the most interesting one, we basically need to make
184 * sure that the RAC is disabled for the entire system prior to having a CPU
185 * die, in particular prior to this dying CPU having exited the coherency
188 * Once this CPU is marked dead, we can safely re-enable the RAC for the
189 * remaining CPUs in the system which are still online.
191 * Offlining a CPU is the problematic case, onlining a CPU is not much of an
192 * issue since the CPU and its cache-level hierarchy will start filling with
193 * the RAC disabled, so L1 and L2 only.
195 * In this function, we should NOT have to verify any unsafe setting/condition
198 * It is protected by the RAC_ENABLED flag which is cleared by default, and
199 * being cleared when initial procedure is done. b15_rac_base had been set at
203 * There is a small timing windows, in b15_rac_init(), between
204 * cpuhp_setup_state_*()
207 * However, there is no hotplug activity based on the Linux booting procedure.
209 * Since we have to disable RAC for all cores, we keep RAC on as long as as
210 * possible (disable it as late as possible) to gain the cache benefit.
212 * Thus, dying/dead states are chosen here
214 * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
215 * we would want to consider disabling it as early as possible to benefit the
219 /* Running on the dying CPU */
220 static int b15_rac_dying_cpu(unsigned int cpu)
222 /* During kexec/reboot, the RAC is disabled via the reboot notifier
225 if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
228 spin_lock(&rac_lock);
230 /* Indicate that we are starting a hotplug procedure */
231 __clear_bit(RAC_ENABLED, &b15_rac_flags);
233 /* Disable the readahead cache and save its value to a global */
234 rac_config0_reg = b15_rac_disable_and_flush();
236 spin_unlock(&rac_lock);
241 /* Running on a non-dying CPU */
242 static int b15_rac_dead_cpu(unsigned int cpu)
244 /* During kexec/reboot, the RAC is disabled via the reboot notifier
247 if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
250 spin_lock(&rac_lock);
253 __b15_rac_enable(rac_config0_reg);
254 __set_bit(RAC_ENABLED, &b15_rac_flags);
256 spin_unlock(&rac_lock);
261 static int b15_rac_suspend(void)
263 /* Suspend the read-ahead cache oeprations, forcing our cache
264 * implementation to fallback to the regular ARMv7 calls.
266 * We are guaranteed to be running on the boot CPU at this point and
267 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
270 rac_config0_reg = b15_rac_disable_and_flush();
271 set_bit(RAC_SUSPENDED, &b15_rac_flags);
276 static void b15_rac_resume(void)
278 /* Coming out of a S3 suspend/resume cycle, the read-ahead cache
279 * register RAC_CONFIG0_REG will be restored to its default value, make
280 * sure we re-enable it and set the enable flag, we are also guaranteed
281 * to run on the boot CPU, so not racy again.
283 __b15_rac_enable(rac_config0_reg);
284 clear_bit(RAC_SUSPENDED, &b15_rac_flags);
287 static struct syscore_ops b15_rac_syscore_ops = {
288 .suspend = b15_rac_suspend,
289 .resume = b15_rac_resume,
292 static int __init b15_rac_init(void)
294 struct device_node *dn, *cpu_dn;
296 u32 reg, en_mask = 0;
298 dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
302 if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
305 b15_rac_base = of_iomap(dn, 0);
307 pr_err("failed to remap BIU control base\n");
312 cpu_dn = of_get_cpu_node(0, NULL);
318 if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
319 rac_flush_offset = B15_RAC_FLUSH_REG;
320 else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
321 rac_flush_offset = B53_RAC_FLUSH_REG;
323 pr_err("Unsupported CPU\n");
330 ret = register_reboot_notifier(&b15_rac_reboot_nb);
332 pr_err("failed to register reboot notifier\n");
333 iounmap(b15_rac_base);
337 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
338 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
339 "arm/cache-b15-rac:dead",
340 NULL, b15_rac_dead_cpu);
344 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
345 "arm/cache-b15-rac:dying",
346 NULL, b15_rac_dying_cpu);
351 if (IS_ENABLED(CONFIG_PM_SLEEP))
352 register_syscore_ops(&b15_rac_syscore_ops);
354 spin_lock(&rac_lock);
355 reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
356 for_each_possible_cpu(cpu)
357 en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
358 WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");
361 set_bit(RAC_ENABLED, &b15_rac_flags);
362 spin_unlock(&rac_lock);
364 pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",
365 b15_rac_base + RAC_CONFIG0_REG);
370 cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
372 unregister_reboot_notifier(&b15_rac_reboot_nb);
373 iounmap(b15_rac_base);
378 arch_initcall(b15_rac_init);