GNU Linux-libre 4.19.264-gnu1
[releases.git] / arch / arm / mm / cache-b15-rac.c
1 /*
2  * Broadcom Brahma-B15 CPU read-ahead cache management functions
3  *
4  * Copyright (C) 2015-2016 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/err.h>
12 #include <linux/spinlock.h>
13 #include <linux/io.h>
14 #include <linux/bitops.h>
15 #include <linux/of_address.h>
16 #include <linux/notifier.h>
17 #include <linux/cpu.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/reboot.h>
20
21 #include <asm/cacheflush.h>
22 #include <asm/hardware/cache-b15-rac.h>
23
24 extern void v7_flush_kern_cache_all(void);
25
26 /* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
27 #define RAC_CONFIG0_REG                 (0x78)
28 #define  RACENPREF_MASK                 (0x3)
29 #define  RACPREFINST_SHIFT              (0)
30 #define  RACENINST_SHIFT                (2)
31 #define  RACPREFDATA_SHIFT              (4)
32 #define  RACENDATA_SHIFT                (6)
33 #define  RAC_CPU_SHIFT                  (8)
34 #define  RACCFG_MASK                    (0xff)
35 #define RAC_CONFIG1_REG                 (0x7c)
36 /* Brahma-B15 is a quad-core only design */
37 #define B15_RAC_FLUSH_REG               (0x80)
38 /* Brahma-B53 is an octo-core design */
39 #define B53_RAC_FLUSH_REG               (0x84)
40 #define  FLUSH_RAC                      (1 << 0)
41
42 /* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
43 #define RAC_DATA_INST_EN_MASK           (1 << RACPREFINST_SHIFT | \
44                                          RACENPREF_MASK << RACENINST_SHIFT | \
45                                          1 << RACPREFDATA_SHIFT | \
46                                          RACENPREF_MASK << RACENDATA_SHIFT)
47
48 #define RAC_ENABLED                     0
49 /* Special state where we want to bypass the spinlock and call directly
50  * into the v7 cache maintenance operations during suspend/resume
51  */
52 #define RAC_SUSPENDED                   1
53
54 static void __iomem *b15_rac_base;
55 static DEFINE_SPINLOCK(rac_lock);
56
57 static u32 rac_config0_reg;
58 static u32 rac_flush_offset;
59
60 /* Initialization flag to avoid checking for b15_rac_base, and to prevent
61  * multi-platform kernels from crashing here as well.
62  */
63 static unsigned long b15_rac_flags;
64
65 static inline u32 __b15_rac_disable(void)
66 {
67         u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
68         __raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
69         dmb();
70         return val;
71 }
72
73 static inline void __b15_rac_flush(void)
74 {
75         u32 reg;
76
77         __raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);
78         do {
79                 /* This dmb() is required to force the Bus Interface Unit
80                  * to clean oustanding writes, and forces an idle cycle
81                  * to be inserted.
82                  */
83                 dmb();
84                 reg = __raw_readl(b15_rac_base + rac_flush_offset);
85         } while (reg & FLUSH_RAC);
86 }
87
88 static inline u32 b15_rac_disable_and_flush(void)
89 {
90         u32 reg;
91
92         reg = __b15_rac_disable();
93         __b15_rac_flush();
94         return reg;
95 }
96
97 static inline void __b15_rac_enable(u32 val)
98 {
99         __raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
100         /* dsb() is required here to be consistent with __flush_icache_all() */
101         dsb();
102 }
103
104 #define BUILD_RAC_CACHE_OP(name, bar)                           \
105 void b15_flush_##name(void)                                     \
106 {                                                               \
107         unsigned int do_flush;                                  \
108         u32 val = 0;                                            \
109                                                                 \
110         if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) {          \
111                 v7_flush_##name();                              \
112                 bar;                                            \
113                 return;                                         \
114         }                                                       \
115                                                                 \
116         spin_lock(&rac_lock);                                   \
117         do_flush = test_bit(RAC_ENABLED, &b15_rac_flags);       \
118         if (do_flush)                                           \
119                 val = b15_rac_disable_and_flush();              \
120         v7_flush_##name();                                      \
121         if (!do_flush)                                          \
122                 bar;                                            \
123         else                                                    \
124                 __b15_rac_enable(val);                          \
125         spin_unlock(&rac_lock);                                 \
126 }
127
128 #define nobarrier
129
130 /* The readahead cache present in the Brahma-B15 CPU is a special piece of
131  * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
132  * is to prefetch instruction and/or data with a line size of either 64 bytes
133  * or 256 bytes. The rationale is that the data-bus of the CPU interface is
134  * optimized for 256-bytes transactions, and enabling the readahead cache
135  * provides a significant performance boost we want it enabled (typically
136  * twice the performance for a memcpy benchmark application).
137  *
138  * The readahead cache is transparent for Modified Virtual Addresses
139  * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
140  * DCCIMVAC.
141  *
142  * It is however not transparent for the following cache maintenance
143  * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
144  * what we are patching here with our BUILD_RAC_CACHE_OP here.
145  */
146 BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);
147
148 static void b15_rac_enable(void)
149 {
150         unsigned int cpu;
151         u32 enable = 0;
152
153         for_each_possible_cpu(cpu)
154                 enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));
155
156         b15_rac_disable_and_flush();
157         __b15_rac_enable(enable);
158 }
159
160 static int b15_rac_reboot_notifier(struct notifier_block *nb,
161                                    unsigned long action,
162                                    void *data)
163 {
164         /* During kexec, we are not yet migrated on the boot CPU, so we need to
165          * make sure we are SMP safe here. Once the RAC is disabled, flag it as
166          * suspended such that the hotplug notifier returns early.
167          */
168         if (action == SYS_RESTART) {
169                 spin_lock(&rac_lock);
170                 b15_rac_disable_and_flush();
171                 clear_bit(RAC_ENABLED, &b15_rac_flags);
172                 set_bit(RAC_SUSPENDED, &b15_rac_flags);
173                 spin_unlock(&rac_lock);
174         }
175
176         return NOTIFY_DONE;
177 }
178
179 static struct notifier_block b15_rac_reboot_nb = {
180         .notifier_call  = b15_rac_reboot_notifier,
181 };
182
183 /* The CPU hotplug case is the most interesting one, we basically need to make
184  * sure that the RAC is disabled for the entire system prior to having a CPU
185  * die, in particular prior to this dying CPU having exited the coherency
186  * domain.
187  *
188  * Once this CPU is marked dead, we can safely re-enable the RAC for the
189  * remaining CPUs in the system which are still online.
190  *
191  * Offlining a CPU is the problematic case, onlining a CPU is not much of an
192  * issue since the CPU and its cache-level hierarchy will start filling with
193  * the RAC disabled, so L1 and L2 only.
194  *
195  * In this function, we should NOT have to verify any unsafe setting/condition
196  * b15_rac_base:
197  *
198  *   It is protected by the RAC_ENABLED flag which is cleared by default, and
199  *   being cleared when initial procedure is done. b15_rac_base had been set at
200  *   that time.
201  *
202  * RAC_ENABLED:
203  *   There is a small timing windows, in b15_rac_init(), between
204  *      cpuhp_setup_state_*()
205  *      ...
206  *      set RAC_ENABLED
207  *   However, there is no hotplug activity based on the Linux booting procedure.
208  *
209  * Since we have to disable RAC for all cores, we keep RAC on as long as as
210  * possible (disable it as late as possible) to gain the cache benefit.
211  *
212  * Thus, dying/dead states are chosen here
213  *
214  * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
215  * we would want to consider disabling it as early as possible to benefit the
216  * other active CPUs.
217  */
218
219 /* Running on the dying CPU */
220 static int b15_rac_dying_cpu(unsigned int cpu)
221 {
222         /* During kexec/reboot, the RAC is disabled via the reboot notifier
223          * return early here.
224          */
225         if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
226                 return 0;
227
228         spin_lock(&rac_lock);
229
230         /* Indicate that we are starting a hotplug procedure */
231         __clear_bit(RAC_ENABLED, &b15_rac_flags);
232
233         /* Disable the readahead cache and save its value to a global */
234         rac_config0_reg = b15_rac_disable_and_flush();
235
236         spin_unlock(&rac_lock);
237
238         return 0;
239 }
240
241 /* Running on a non-dying CPU */
242 static int b15_rac_dead_cpu(unsigned int cpu)
243 {
244         /* During kexec/reboot, the RAC is disabled via the reboot notifier
245          * return early here.
246          */
247         if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
248                 return 0;
249
250         spin_lock(&rac_lock);
251
252         /* And enable it */
253         __b15_rac_enable(rac_config0_reg);
254         __set_bit(RAC_ENABLED, &b15_rac_flags);
255
256         spin_unlock(&rac_lock);
257
258         return 0;
259 }
260
261 static int b15_rac_suspend(void)
262 {
263         /* Suspend the read-ahead cache oeprations, forcing our cache
264          * implementation to fallback to the regular ARMv7 calls.
265          *
266          * We are guaranteed to be running on the boot CPU at this point and
267          * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
268          * here.
269          */
270         rac_config0_reg = b15_rac_disable_and_flush();
271         set_bit(RAC_SUSPENDED, &b15_rac_flags);
272
273         return 0;
274 }
275
276 static void b15_rac_resume(void)
277 {
278         /* Coming out of a S3 suspend/resume cycle, the read-ahead cache
279          * register RAC_CONFIG0_REG will be restored to its default value, make
280          * sure we re-enable it and set the enable flag, we are also guaranteed
281          * to run on the boot CPU, so not racy again.
282          */
283         __b15_rac_enable(rac_config0_reg);
284         clear_bit(RAC_SUSPENDED, &b15_rac_flags);
285 }
286
287 static struct syscore_ops b15_rac_syscore_ops = {
288         .suspend        = b15_rac_suspend,
289         .resume         = b15_rac_resume,
290 };
291
292 static int __init b15_rac_init(void)
293 {
294         struct device_node *dn, *cpu_dn;
295         int ret = 0, cpu;
296         u32 reg, en_mask = 0;
297
298         dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
299         if (!dn)
300                 return -ENODEV;
301
302         if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
303                 goto out;
304
305         b15_rac_base = of_iomap(dn, 0);
306         if (!b15_rac_base) {
307                 pr_err("failed to remap BIU control base\n");
308                 ret = -ENOMEM;
309                 goto out;
310         }
311
312         cpu_dn = of_get_cpu_node(0, NULL);
313         if (!cpu_dn) {
314                 ret = -ENODEV;
315                 goto out;
316         }
317
318         if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
319                 rac_flush_offset = B15_RAC_FLUSH_REG;
320         else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
321                 rac_flush_offset = B53_RAC_FLUSH_REG;
322         else {
323                 pr_err("Unsupported CPU\n");
324                 of_node_put(cpu_dn);
325                 ret = -EINVAL;
326                 goto out;
327         }
328         of_node_put(cpu_dn);
329
330         ret = register_reboot_notifier(&b15_rac_reboot_nb);
331         if (ret) {
332                 pr_err("failed to register reboot notifier\n");
333                 iounmap(b15_rac_base);
334                 goto out;
335         }
336
337         if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
338                 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
339                                         "arm/cache-b15-rac:dead",
340                                         NULL, b15_rac_dead_cpu);
341                 if (ret)
342                         goto out_unmap;
343
344                 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
345                                         "arm/cache-b15-rac:dying",
346                                         NULL, b15_rac_dying_cpu);
347                 if (ret)
348                         goto out_cpu_dead;
349         }
350
351         if (IS_ENABLED(CONFIG_PM_SLEEP))
352                 register_syscore_ops(&b15_rac_syscore_ops);
353
354         spin_lock(&rac_lock);
355         reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
356         for_each_possible_cpu(cpu)
357                 en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
358         WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");
359
360         b15_rac_enable();
361         set_bit(RAC_ENABLED, &b15_rac_flags);
362         spin_unlock(&rac_lock);
363
364         pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",
365                 b15_rac_base + RAC_CONFIG0_REG);
366
367         goto out;
368
369 out_cpu_dead:
370         cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
371 out_unmap:
372         unregister_reboot_notifier(&b15_rac_reboot_nb);
373         iounmap(b15_rac_base);
374 out:
375         of_node_put(dn);
376         return ret;
377 }
378 arch_initcall(b15_rac_init);