GNU Linux-libre 4.9.318-gnu1
[releases.git] / arch / arm / kvm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
32
33 #include "trace.h"
34
35 static pgd_t *boot_hyp_pgd;
36 static pgd_t *hyp_pgd;
37 static pgd_t *merged_hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static unsigned long hyp_idmap_start;
41 static unsigned long hyp_idmap_end;
42 static phys_addr_t hyp_idmap_vector;
43
44 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
48 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
49
50 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
51 {
52         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
53 }
54
55 /**
56  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57  * @kvm:        pointer to kvm structure.
58  *
59  * Interface to HYP function to flush all VM TLB entries
60  */
61 void kvm_flush_remote_tlbs(struct kvm *kvm)
62 {
63         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
64 }
65
66 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
67 {
68         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
69 }
70
71 /*
72  * D-Cache management functions. They take the page table entries by
73  * value, as they are flushing the cache using the kernel mapping (or
74  * kmap on 32bit).
75  */
76 static void kvm_flush_dcache_pte(pte_t pte)
77 {
78         __kvm_flush_dcache_pte(pte);
79 }
80
81 static void kvm_flush_dcache_pmd(pmd_t pmd)
82 {
83         __kvm_flush_dcache_pmd(pmd);
84 }
85
86 static void kvm_flush_dcache_pud(pud_t pud)
87 {
88         __kvm_flush_dcache_pud(pud);
89 }
90
91 static bool kvm_is_device_pfn(unsigned long pfn)
92 {
93         return !pfn_valid(pfn);
94 }
95
96 /**
97  * stage2_dissolve_pmd() - clear and flush huge PMD entry
98  * @kvm:        pointer to kvm structure.
99  * @addr:       IPA
100  * @pmd:        pmd pointer for IPA
101  *
102  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103  * pages in the range dirty.
104  */
105 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
106 {
107         if (!pmd_thp_or_huge(*pmd))
108                 return;
109
110         pmd_clear(pmd);
111         kvm_tlb_flush_vmid_ipa(kvm, addr);
112         put_page(virt_to_page(pmd));
113 }
114
115 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
116                                   int min, int max)
117 {
118         void *page;
119
120         BUG_ON(max > KVM_NR_MEM_OBJS);
121         if (cache->nobjs >= min)
122                 return 0;
123         while (cache->nobjs < max) {
124                 page = (void *)__get_free_page(PGALLOC_GFP);
125                 if (!page)
126                         return -ENOMEM;
127                 cache->objects[cache->nobjs++] = page;
128         }
129         return 0;
130 }
131
132 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
133 {
134         while (mc->nobjs)
135                 free_page((unsigned long)mc->objects[--mc->nobjs]);
136 }
137
138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
139 {
140         void *p;
141
142         BUG_ON(!mc || !mc->nobjs);
143         p = mc->objects[--mc->nobjs];
144         return p;
145 }
146
147 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
148 {
149         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
150         stage2_pgd_clear(pgd);
151         kvm_tlb_flush_vmid_ipa(kvm, addr);
152         stage2_pud_free(pud_table);
153         put_page(virt_to_page(pgd));
154 }
155
156 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
157 {
158         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
159         VM_BUG_ON(stage2_pud_huge(*pud));
160         stage2_pud_clear(pud);
161         kvm_tlb_flush_vmid_ipa(kvm, addr);
162         stage2_pmd_free(pmd_table);
163         put_page(virt_to_page(pud));
164 }
165
166 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
167 {
168         pte_t *pte_table = pte_offset_kernel(pmd, 0);
169         VM_BUG_ON(pmd_thp_or_huge(*pmd));
170         pmd_clear(pmd);
171         kvm_tlb_flush_vmid_ipa(kvm, addr);
172         pte_free_kernel(NULL, pte_table);
173         put_page(virt_to_page(pmd));
174 }
175
176 /*
177  * Unmapping vs dcache management:
178  *
179  * If a guest maps certain memory pages as uncached, all writes will
180  * bypass the data cache and go directly to RAM.  However, the CPUs
181  * can still speculate reads (not writes) and fill cache lines with
182  * data.
183  *
184  * Those cache lines will be *clean* cache lines though, so a
185  * clean+invalidate operation is equivalent to an invalidate
186  * operation, because no cache lines are marked dirty.
187  *
188  * Those clean cache lines could be filled prior to an uncached write
189  * by the guest, and the cache coherent IO subsystem would therefore
190  * end up writing old data to disk.
191  *
192  * This is why right after unmapping a page/section and invalidating
193  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194  * the IO subsystem will never hit in the cache.
195  */
196 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
197                        phys_addr_t addr, phys_addr_t end)
198 {
199         phys_addr_t start_addr = addr;
200         pte_t *pte, *start_pte;
201
202         start_pte = pte = pte_offset_kernel(pmd, addr);
203         do {
204                 if (!pte_none(*pte)) {
205                         pte_t old_pte = *pte;
206
207                         kvm_set_pte(pte, __pte(0));
208                         kvm_tlb_flush_vmid_ipa(kvm, addr);
209
210                         /* No need to invalidate the cache for device mappings */
211                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
212                                 kvm_flush_dcache_pte(old_pte);
213
214                         put_page(virt_to_page(pte));
215                 }
216         } while (pte++, addr += PAGE_SIZE, addr != end);
217
218         if (stage2_pte_table_empty(start_pte))
219                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
220 }
221
222 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
223                        phys_addr_t addr, phys_addr_t end)
224 {
225         phys_addr_t next, start_addr = addr;
226         pmd_t *pmd, *start_pmd;
227
228         start_pmd = pmd = stage2_pmd_offset(pud, addr);
229         do {
230                 next = stage2_pmd_addr_end(addr, end);
231                 if (!pmd_none(*pmd)) {
232                         if (pmd_thp_or_huge(*pmd)) {
233                                 pmd_t old_pmd = *pmd;
234
235                                 pmd_clear(pmd);
236                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
237
238                                 kvm_flush_dcache_pmd(old_pmd);
239
240                                 put_page(virt_to_page(pmd));
241                         } else {
242                                 unmap_stage2_ptes(kvm, pmd, addr, next);
243                         }
244                 }
245         } while (pmd++, addr = next, addr != end);
246
247         if (stage2_pmd_table_empty(start_pmd))
248                 clear_stage2_pud_entry(kvm, pud, start_addr);
249 }
250
251 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
252                        phys_addr_t addr, phys_addr_t end)
253 {
254         phys_addr_t next, start_addr = addr;
255         pud_t *pud, *start_pud;
256
257         start_pud = pud = stage2_pud_offset(pgd, addr);
258         do {
259                 next = stage2_pud_addr_end(addr, end);
260                 if (!stage2_pud_none(*pud)) {
261                         if (stage2_pud_huge(*pud)) {
262                                 pud_t old_pud = *pud;
263
264                                 stage2_pud_clear(pud);
265                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
266                                 kvm_flush_dcache_pud(old_pud);
267                                 put_page(virt_to_page(pud));
268                         } else {
269                                 unmap_stage2_pmds(kvm, pud, addr, next);
270                         }
271                 }
272         } while (pud++, addr = next, addr != end);
273
274         if (stage2_pud_table_empty(start_pud))
275                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
276 }
277
278 /**
279  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280  * @kvm:   The VM pointer
281  * @start: The intermediate physical base address of the range to unmap
282  * @size:  The size of the area to unmap
283  *
284  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
285  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286  * destroying the VM), otherwise another faulting VCPU may come in and mess
287  * with things behind our backs.
288  */
289 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
290 {
291         pgd_t *pgd;
292         phys_addr_t addr = start, end = start + size;
293         phys_addr_t next;
294
295         assert_spin_locked(&kvm->mmu_lock);
296         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
297         do {
298                 next = stage2_pgd_addr_end(addr, end);
299                 if (!stage2_pgd_none(*pgd))
300                         unmap_stage2_puds(kvm, pgd, addr, next);
301         } while (pgd++, addr = next, addr != end);
302 }
303
304 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
305                               phys_addr_t addr, phys_addr_t end)
306 {
307         pte_t *pte;
308
309         pte = pte_offset_kernel(pmd, addr);
310         do {
311                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
312                         kvm_flush_dcache_pte(*pte);
313         } while (pte++, addr += PAGE_SIZE, addr != end);
314 }
315
316 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
317                               phys_addr_t addr, phys_addr_t end)
318 {
319         pmd_t *pmd;
320         phys_addr_t next;
321
322         pmd = stage2_pmd_offset(pud, addr);
323         do {
324                 next = stage2_pmd_addr_end(addr, end);
325                 if (!pmd_none(*pmd)) {
326                         if (pmd_thp_or_huge(*pmd))
327                                 kvm_flush_dcache_pmd(*pmd);
328                         else
329                                 stage2_flush_ptes(kvm, pmd, addr, next);
330                 }
331         } while (pmd++, addr = next, addr != end);
332 }
333
334 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
335                               phys_addr_t addr, phys_addr_t end)
336 {
337         pud_t *pud;
338         phys_addr_t next;
339
340         pud = stage2_pud_offset(pgd, addr);
341         do {
342                 next = stage2_pud_addr_end(addr, end);
343                 if (!stage2_pud_none(*pud)) {
344                         if (stage2_pud_huge(*pud))
345                                 kvm_flush_dcache_pud(*pud);
346                         else
347                                 stage2_flush_pmds(kvm, pud, addr, next);
348                 }
349         } while (pud++, addr = next, addr != end);
350 }
351
352 static void stage2_flush_memslot(struct kvm *kvm,
353                                  struct kvm_memory_slot *memslot)
354 {
355         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
356         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
357         phys_addr_t next;
358         pgd_t *pgd;
359
360         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
361         do {
362                 next = stage2_pgd_addr_end(addr, end);
363                 if (!stage2_pgd_none(*pgd))
364                         stage2_flush_puds(kvm, pgd, addr, next);
365         } while (pgd++, addr = next, addr != end);
366 }
367
368 /**
369  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
370  * @kvm: The struct kvm pointer
371  *
372  * Go through the stage 2 page tables and invalidate any cache lines
373  * backing memory already mapped to the VM.
374  */
375 static void stage2_flush_vm(struct kvm *kvm)
376 {
377         struct kvm_memslots *slots;
378         struct kvm_memory_slot *memslot;
379         int idx;
380
381         idx = srcu_read_lock(&kvm->srcu);
382         spin_lock(&kvm->mmu_lock);
383
384         slots = kvm_memslots(kvm);
385         kvm_for_each_memslot(memslot, slots)
386                 stage2_flush_memslot(kvm, memslot);
387
388         spin_unlock(&kvm->mmu_lock);
389         srcu_read_unlock(&kvm->srcu, idx);
390 }
391
392 static void clear_hyp_pgd_entry(pgd_t *pgd)
393 {
394         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
395         pgd_clear(pgd);
396         pud_free(NULL, pud_table);
397         put_page(virt_to_page(pgd));
398 }
399
400 static void clear_hyp_pud_entry(pud_t *pud)
401 {
402         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
403         VM_BUG_ON(pud_huge(*pud));
404         pud_clear(pud);
405         pmd_free(NULL, pmd_table);
406         put_page(virt_to_page(pud));
407 }
408
409 static void clear_hyp_pmd_entry(pmd_t *pmd)
410 {
411         pte_t *pte_table = pte_offset_kernel(pmd, 0);
412         VM_BUG_ON(pmd_thp_or_huge(*pmd));
413         pmd_clear(pmd);
414         pte_free_kernel(NULL, pte_table);
415         put_page(virt_to_page(pmd));
416 }
417
418 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
419 {
420         pte_t *pte, *start_pte;
421
422         start_pte = pte = pte_offset_kernel(pmd, addr);
423         do {
424                 if (!pte_none(*pte)) {
425                         kvm_set_pte(pte, __pte(0));
426                         put_page(virt_to_page(pte));
427                 }
428         } while (pte++, addr += PAGE_SIZE, addr != end);
429
430         if (hyp_pte_table_empty(start_pte))
431                 clear_hyp_pmd_entry(pmd);
432 }
433
434 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
435 {
436         phys_addr_t next;
437         pmd_t *pmd, *start_pmd;
438
439         start_pmd = pmd = pmd_offset(pud, addr);
440         do {
441                 next = pmd_addr_end(addr, end);
442                 /* Hyp doesn't use huge pmds */
443                 if (!pmd_none(*pmd))
444                         unmap_hyp_ptes(pmd, addr, next);
445         } while (pmd++, addr = next, addr != end);
446
447         if (hyp_pmd_table_empty(start_pmd))
448                 clear_hyp_pud_entry(pud);
449 }
450
451 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
452 {
453         phys_addr_t next;
454         pud_t *pud, *start_pud;
455
456         start_pud = pud = pud_offset(pgd, addr);
457         do {
458                 next = pud_addr_end(addr, end);
459                 /* Hyp doesn't use huge puds */
460                 if (!pud_none(*pud))
461                         unmap_hyp_pmds(pud, addr, next);
462         } while (pud++, addr = next, addr != end);
463
464         if (hyp_pud_table_empty(start_pud))
465                 clear_hyp_pgd_entry(pgd);
466 }
467
468 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
469 {
470         pgd_t *pgd;
471         phys_addr_t addr = start, end = start + size;
472         phys_addr_t next;
473
474         /*
475          * We don't unmap anything from HYP, except at the hyp tear down.
476          * Hence, we don't have to invalidate the TLBs here.
477          */
478         pgd = pgdp + pgd_index(addr);
479         do {
480                 next = pgd_addr_end(addr, end);
481                 if (!pgd_none(*pgd))
482                         unmap_hyp_puds(pgd, addr, next);
483         } while (pgd++, addr = next, addr != end);
484 }
485
486 /**
487  * free_hyp_pgds - free Hyp-mode page tables
488  *
489  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
490  * therefore contains either mappings in the kernel memory area (above
491  * PAGE_OFFSET), or device mappings in the vmalloc range (from
492  * VMALLOC_START to VMALLOC_END).
493  *
494  * boot_hyp_pgd should only map two pages for the init code.
495  */
496 void free_hyp_pgds(void)
497 {
498         unsigned long addr;
499
500         mutex_lock(&kvm_hyp_pgd_mutex);
501
502         if (boot_hyp_pgd) {
503                 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
504                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
505                 boot_hyp_pgd = NULL;
506         }
507
508         if (hyp_pgd) {
509                 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
510                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
511                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
512                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
513                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
514
515                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
516                 hyp_pgd = NULL;
517         }
518         if (merged_hyp_pgd) {
519                 clear_page(merged_hyp_pgd);
520                 free_page((unsigned long)merged_hyp_pgd);
521                 merged_hyp_pgd = NULL;
522         }
523
524         mutex_unlock(&kvm_hyp_pgd_mutex);
525 }
526
527 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
528                                     unsigned long end, unsigned long pfn,
529                                     pgprot_t prot)
530 {
531         pte_t *pte;
532         unsigned long addr;
533
534         addr = start;
535         do {
536                 pte = pte_offset_kernel(pmd, addr);
537                 kvm_set_pte(pte, pfn_pte(pfn, prot));
538                 get_page(virt_to_page(pte));
539                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
540                 pfn++;
541         } while (addr += PAGE_SIZE, addr != end);
542 }
543
544 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
545                                    unsigned long end, unsigned long pfn,
546                                    pgprot_t prot)
547 {
548         pmd_t *pmd;
549         pte_t *pte;
550         unsigned long addr, next;
551
552         addr = start;
553         do {
554                 pmd = pmd_offset(pud, addr);
555
556                 BUG_ON(pmd_sect(*pmd));
557
558                 if (pmd_none(*pmd)) {
559                         pte = pte_alloc_one_kernel(NULL, addr);
560                         if (!pte) {
561                                 kvm_err("Cannot allocate Hyp pte\n");
562                                 return -ENOMEM;
563                         }
564                         pmd_populate_kernel(NULL, pmd, pte);
565                         get_page(virt_to_page(pmd));
566                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
567                 }
568
569                 next = pmd_addr_end(addr, end);
570
571                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
572                 pfn += (next - addr) >> PAGE_SHIFT;
573         } while (addr = next, addr != end);
574
575         return 0;
576 }
577
578 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
579                                    unsigned long end, unsigned long pfn,
580                                    pgprot_t prot)
581 {
582         pud_t *pud;
583         pmd_t *pmd;
584         unsigned long addr, next;
585         int ret;
586
587         addr = start;
588         do {
589                 pud = pud_offset(pgd, addr);
590
591                 if (pud_none_or_clear_bad(pud)) {
592                         pmd = pmd_alloc_one(NULL, addr);
593                         if (!pmd) {
594                                 kvm_err("Cannot allocate Hyp pmd\n");
595                                 return -ENOMEM;
596                         }
597                         pud_populate(NULL, pud, pmd);
598                         get_page(virt_to_page(pud));
599                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
600                 }
601
602                 next = pud_addr_end(addr, end);
603                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
604                 if (ret)
605                         return ret;
606                 pfn += (next - addr) >> PAGE_SHIFT;
607         } while (addr = next, addr != end);
608
609         return 0;
610 }
611
612 static int __create_hyp_mappings(pgd_t *pgdp,
613                                  unsigned long start, unsigned long end,
614                                  unsigned long pfn, pgprot_t prot)
615 {
616         pgd_t *pgd;
617         pud_t *pud;
618         unsigned long addr, next;
619         int err = 0;
620
621         mutex_lock(&kvm_hyp_pgd_mutex);
622         addr = start & PAGE_MASK;
623         end = PAGE_ALIGN(end);
624         do {
625                 pgd = pgdp + pgd_index(addr);
626
627                 if (pgd_none(*pgd)) {
628                         pud = pud_alloc_one(NULL, addr);
629                         if (!pud) {
630                                 kvm_err("Cannot allocate Hyp pud\n");
631                                 err = -ENOMEM;
632                                 goto out;
633                         }
634                         pgd_populate(NULL, pgd, pud);
635                         get_page(virt_to_page(pgd));
636                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
637                 }
638
639                 next = pgd_addr_end(addr, end);
640                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
641                 if (err)
642                         goto out;
643                 pfn += (next - addr) >> PAGE_SHIFT;
644         } while (addr = next, addr != end);
645 out:
646         mutex_unlock(&kvm_hyp_pgd_mutex);
647         return err;
648 }
649
650 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
651 {
652         if (!is_vmalloc_addr(kaddr)) {
653                 BUG_ON(!virt_addr_valid(kaddr));
654                 return __pa(kaddr);
655         } else {
656                 return page_to_phys(vmalloc_to_page(kaddr)) +
657                        offset_in_page(kaddr);
658         }
659 }
660
661 /**
662  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
663  * @from:       The virtual kernel start address of the range
664  * @to:         The virtual kernel end address of the range (exclusive)
665  * @prot:       The protection to be applied to this range
666  *
667  * The same virtual address as the kernel virtual address is also used
668  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
669  * physical pages.
670  */
671 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
672 {
673         phys_addr_t phys_addr;
674         unsigned long virt_addr;
675         unsigned long start = kern_hyp_va((unsigned long)from);
676         unsigned long end = kern_hyp_va((unsigned long)to);
677
678         if (is_kernel_in_hyp_mode())
679                 return 0;
680
681         start = start & PAGE_MASK;
682         end = PAGE_ALIGN(end);
683
684         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
685                 int err;
686
687                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
688                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
689                                             virt_addr + PAGE_SIZE,
690                                             __phys_to_pfn(phys_addr),
691                                             prot);
692                 if (err)
693                         return err;
694         }
695
696         return 0;
697 }
698
699 /**
700  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
701  * @from:       The kernel start VA of the range
702  * @to:         The kernel end VA of the range (exclusive)
703  * @phys_addr:  The physical start address which gets mapped
704  *
705  * The resulting HYP VA is the same as the kernel VA, modulo
706  * HYP_PAGE_OFFSET.
707  */
708 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
709 {
710         unsigned long start = kern_hyp_va((unsigned long)from);
711         unsigned long end = kern_hyp_va((unsigned long)to);
712
713         if (is_kernel_in_hyp_mode())
714                 return 0;
715
716         /* Check for a valid kernel IO mapping */
717         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
718                 return -EINVAL;
719
720         return __create_hyp_mappings(hyp_pgd, start, end,
721                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
722 }
723
724 /**
725  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
726  * @kvm:        The KVM struct pointer for the VM.
727  *
728  * Allocates only the stage-2 HW PGD level table(s) (can support either full
729  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
730  * allocated pages.
731  *
732  * Note we don't need locking here as this is only called when the VM is
733  * created, which can only be done once.
734  */
735 int kvm_alloc_stage2_pgd(struct kvm *kvm)
736 {
737         pgd_t *pgd;
738
739         if (kvm->arch.pgd != NULL) {
740                 kvm_err("kvm_arch already initialized?\n");
741                 return -EINVAL;
742         }
743
744         /* Allocate the HW PGD, making sure that each page gets its own refcount */
745         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
746         if (!pgd)
747                 return -ENOMEM;
748
749         kvm->arch.pgd = pgd;
750         return 0;
751 }
752
753 static void stage2_unmap_memslot(struct kvm *kvm,
754                                  struct kvm_memory_slot *memslot)
755 {
756         hva_t hva = memslot->userspace_addr;
757         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
758         phys_addr_t size = PAGE_SIZE * memslot->npages;
759         hva_t reg_end = hva + size;
760
761         /*
762          * A memory region could potentially cover multiple VMAs, and any holes
763          * between them, so iterate over all of them to find out if we should
764          * unmap any of them.
765          *
766          *     +--------------------------------------------+
767          * +---------------+----------------+   +----------------+
768          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
769          * +---------------+----------------+   +----------------+
770          *     |               memory region                |
771          *     +--------------------------------------------+
772          */
773         do {
774                 struct vm_area_struct *vma = find_vma(current->mm, hva);
775                 hva_t vm_start, vm_end;
776
777                 if (!vma || vma->vm_start >= reg_end)
778                         break;
779
780                 /*
781                  * Take the intersection of this VMA with the memory region
782                  */
783                 vm_start = max(hva, vma->vm_start);
784                 vm_end = min(reg_end, vma->vm_end);
785
786                 if (!(vma->vm_flags & VM_PFNMAP)) {
787                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
788                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
789                 }
790                 hva = vm_end;
791         } while (hva < reg_end);
792 }
793
794 /**
795  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
796  * @kvm: The struct kvm pointer
797  *
798  * Go through the memregions and unmap any reguler RAM
799  * backing memory already mapped to the VM.
800  */
801 void stage2_unmap_vm(struct kvm *kvm)
802 {
803         struct kvm_memslots *slots;
804         struct kvm_memory_slot *memslot;
805         int idx;
806
807         idx = srcu_read_lock(&kvm->srcu);
808         down_read(&current->mm->mmap_sem);
809         spin_lock(&kvm->mmu_lock);
810
811         slots = kvm_memslots(kvm);
812         kvm_for_each_memslot(memslot, slots)
813                 stage2_unmap_memslot(kvm, memslot);
814
815         spin_unlock(&kvm->mmu_lock);
816         up_read(&current->mm->mmap_sem);
817         srcu_read_unlock(&kvm->srcu, idx);
818 }
819
820 /**
821  * kvm_free_stage2_pgd - free all stage-2 tables
822  * @kvm:        The KVM struct pointer for the VM.
823  *
824  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
825  * underlying level-2 and level-3 tables before freeing the actual level-1 table
826  * and setting the struct pointer to NULL.
827  */
828 void kvm_free_stage2_pgd(struct kvm *kvm)
829 {
830         void *pgd = NULL;
831
832         spin_lock(&kvm->mmu_lock);
833         if (kvm->arch.pgd) {
834                 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
835                 pgd = READ_ONCE(kvm->arch.pgd);
836                 kvm->arch.pgd = NULL;
837         }
838         spin_unlock(&kvm->mmu_lock);
839
840         /* Free the HW pgd, one page at a time */
841         if (pgd)
842                 free_pages_exact(pgd, S2_PGD_SIZE);
843 }
844
845 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
846                              phys_addr_t addr)
847 {
848         pgd_t *pgd;
849         pud_t *pud;
850
851         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
852         if (WARN_ON(stage2_pgd_none(*pgd))) {
853                 if (!cache)
854                         return NULL;
855                 pud = mmu_memory_cache_alloc(cache);
856                 stage2_pgd_populate(pgd, pud);
857                 get_page(virt_to_page(pgd));
858         }
859
860         return stage2_pud_offset(pgd, addr);
861 }
862
863 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
864                              phys_addr_t addr)
865 {
866         pud_t *pud;
867         pmd_t *pmd;
868
869         pud = stage2_get_pud(kvm, cache, addr);
870         if (!pud)
871                 return NULL;
872
873         if (stage2_pud_none(*pud)) {
874                 if (!cache)
875                         return NULL;
876                 pmd = mmu_memory_cache_alloc(cache);
877                 stage2_pud_populate(pud, pmd);
878                 get_page(virt_to_page(pud));
879         }
880
881         return stage2_pmd_offset(pud, addr);
882 }
883
884 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
885                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
886 {
887         pmd_t *pmd, old_pmd;
888
889         pmd = stage2_get_pmd(kvm, cache, addr);
890         VM_BUG_ON(!pmd);
891
892         old_pmd = *pmd;
893         if (pmd_present(old_pmd)) {
894                 /*
895                  * Multiple vcpus faulting on the same PMD entry, can
896                  * lead to them sequentially updating the PMD with the
897                  * same value. Following the break-before-make
898                  * (pmd_clear() followed by tlb_flush()) process can
899                  * hinder forward progress due to refaults generated
900                  * on missing translations.
901                  *
902                  * Skip updating the page table if the entry is
903                  * unchanged.
904                  */
905                 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
906                         return 0;
907
908                 /*
909                  * Mapping in huge pages should only happen through a
910                  * fault.  If a page is merged into a transparent huge
911                  * page, the individual subpages of that huge page
912                  * should be unmapped through MMU notifiers before we
913                  * get here.
914                  *
915                  * Merging of CompoundPages is not supported; they
916                  * should become splitting first, unmapped, merged,
917                  * and mapped back in on-demand.
918                  */
919                 VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
920
921                 pmd_clear(pmd);
922                 kvm_tlb_flush_vmid_ipa(kvm, addr);
923         } else {
924                 get_page(virt_to_page(pmd));
925         }
926
927         kvm_set_pmd(pmd, *new_pmd);
928         return 0;
929 }
930
931 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
932                           phys_addr_t addr, const pte_t *new_pte,
933                           unsigned long flags)
934 {
935         pmd_t *pmd;
936         pte_t *pte, old_pte;
937         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
938         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
939
940         VM_BUG_ON(logging_active && !cache);
941
942         /* Create stage-2 page table mapping - Levels 0 and 1 */
943         pmd = stage2_get_pmd(kvm, cache, addr);
944         if (!pmd) {
945                 /*
946                  * Ignore calls from kvm_set_spte_hva for unallocated
947                  * address ranges.
948                  */
949                 return 0;
950         }
951
952         /*
953          * While dirty page logging - dissolve huge PMD, then continue on to
954          * allocate page.
955          */
956         if (logging_active)
957                 stage2_dissolve_pmd(kvm, addr, pmd);
958
959         /* Create stage-2 page mappings - Level 2 */
960         if (pmd_none(*pmd)) {
961                 if (!cache)
962                         return 0; /* ignore calls from kvm_set_spte_hva */
963                 pte = mmu_memory_cache_alloc(cache);
964                 pmd_populate_kernel(NULL, pmd, pte);
965                 get_page(virt_to_page(pmd));
966         }
967
968         pte = pte_offset_kernel(pmd, addr);
969
970         if (iomap && pte_present(*pte))
971                 return -EFAULT;
972
973         /* Create 2nd stage page table mapping - Level 3 */
974         old_pte = *pte;
975         if (pte_present(old_pte)) {
976                 /* Skip page table update if there is no change */
977                 if (pte_val(old_pte) == pte_val(*new_pte))
978                         return 0;
979
980                 kvm_set_pte(pte, __pte(0));
981                 kvm_tlb_flush_vmid_ipa(kvm, addr);
982         } else {
983                 get_page(virt_to_page(pte));
984         }
985
986         kvm_set_pte(pte, *new_pte);
987         return 0;
988 }
989
990 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
991 static int stage2_ptep_test_and_clear_young(pte_t *pte)
992 {
993         if (pte_young(*pte)) {
994                 *pte = pte_mkold(*pte);
995                 return 1;
996         }
997         return 0;
998 }
999 #else
1000 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1001 {
1002         return __ptep_test_and_clear_young(pte);
1003 }
1004 #endif
1005
1006 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1007 {
1008         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1009 }
1010
1011 /**
1012  * kvm_phys_addr_ioremap - map a device range to guest IPA
1013  *
1014  * @kvm:        The KVM pointer
1015  * @guest_ipa:  The IPA at which to insert the mapping
1016  * @pa:         The physical address of the device
1017  * @size:       The size of the mapping
1018  */
1019 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1020                           phys_addr_t pa, unsigned long size, bool writable)
1021 {
1022         phys_addr_t addr, end;
1023         int ret = 0;
1024         unsigned long pfn;
1025         struct kvm_mmu_memory_cache cache = { 0, };
1026
1027         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1028         pfn = __phys_to_pfn(pa);
1029
1030         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1031                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1032
1033                 if (writable)
1034                         pte = kvm_s2pte_mkwrite(pte);
1035
1036                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1037                                                 KVM_NR_MEM_OBJS);
1038                 if (ret)
1039                         goto out;
1040                 spin_lock(&kvm->mmu_lock);
1041                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1042                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1043                 spin_unlock(&kvm->mmu_lock);
1044                 if (ret)
1045                         goto out;
1046
1047                 pfn++;
1048         }
1049
1050 out:
1051         mmu_free_memory_cache(&cache);
1052         return ret;
1053 }
1054
1055 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1056 {
1057         kvm_pfn_t pfn = *pfnp;
1058         gfn_t gfn = *ipap >> PAGE_SHIFT;
1059
1060         if (PageTransCompoundMap(pfn_to_page(pfn))) {
1061                 unsigned long mask;
1062                 /*
1063                  * The address we faulted on is backed by a transparent huge
1064                  * page.  However, because we map the compound huge page and
1065                  * not the individual tail page, we need to transfer the
1066                  * refcount to the head page.  We have to be careful that the
1067                  * THP doesn't start to split while we are adjusting the
1068                  * refcounts.
1069                  *
1070                  * We are sure this doesn't happen, because mmu_notifier_retry
1071                  * was successful and we are holding the mmu_lock, so if this
1072                  * THP is trying to split, it will be blocked in the mmu
1073                  * notifier before touching any of the pages, specifically
1074                  * before being able to call __split_huge_page_refcount().
1075                  *
1076                  * We can therefore safely transfer the refcount from PG_tail
1077                  * to PG_head and switch the pfn from a tail page to the head
1078                  * page accordingly.
1079                  */
1080                 mask = PTRS_PER_PMD - 1;
1081                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1082                 if (pfn & mask) {
1083                         *ipap &= PMD_MASK;
1084                         kvm_release_pfn_clean(pfn);
1085                         pfn &= ~mask;
1086                         kvm_get_pfn(pfn);
1087                         *pfnp = pfn;
1088                 }
1089
1090                 return true;
1091         }
1092
1093         return false;
1094 }
1095
1096 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1097 {
1098         if (kvm_vcpu_trap_is_iabt(vcpu))
1099                 return false;
1100
1101         return kvm_vcpu_dabt_iswrite(vcpu);
1102 }
1103
1104 /**
1105  * stage2_wp_ptes - write protect PMD range
1106  * @pmd:        pointer to pmd entry
1107  * @addr:       range start address
1108  * @end:        range end address
1109  */
1110 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1111 {
1112         pte_t *pte;
1113
1114         pte = pte_offset_kernel(pmd, addr);
1115         do {
1116                 if (!pte_none(*pte)) {
1117                         if (!kvm_s2pte_readonly(pte))
1118                                 kvm_set_s2pte_readonly(pte);
1119                 }
1120         } while (pte++, addr += PAGE_SIZE, addr != end);
1121 }
1122
1123 /**
1124  * stage2_wp_pmds - write protect PUD range
1125  * @pud:        pointer to pud entry
1126  * @addr:       range start address
1127  * @end:        range end address
1128  */
1129 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1130 {
1131         pmd_t *pmd;
1132         phys_addr_t next;
1133
1134         pmd = stage2_pmd_offset(pud, addr);
1135
1136         do {
1137                 next = stage2_pmd_addr_end(addr, end);
1138                 if (!pmd_none(*pmd)) {
1139                         if (pmd_thp_or_huge(*pmd)) {
1140                                 if (!kvm_s2pmd_readonly(pmd))
1141                                         kvm_set_s2pmd_readonly(pmd);
1142                         } else {
1143                                 stage2_wp_ptes(pmd, addr, next);
1144                         }
1145                 }
1146         } while (pmd++, addr = next, addr != end);
1147 }
1148
1149 /**
1150   * stage2_wp_puds - write protect PGD range
1151   * @pgd:       pointer to pgd entry
1152   * @addr:      range start address
1153   * @end:       range end address
1154   *
1155   * Process PUD entries, for a huge PUD we cause a panic.
1156   */
1157 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1158 {
1159         pud_t *pud;
1160         phys_addr_t next;
1161
1162         pud = stage2_pud_offset(pgd, addr);
1163         do {
1164                 next = stage2_pud_addr_end(addr, end);
1165                 if (!stage2_pud_none(*pud)) {
1166                         /* TODO:PUD not supported, revisit later if supported */
1167                         BUG_ON(stage2_pud_huge(*pud));
1168                         stage2_wp_pmds(pud, addr, next);
1169                 }
1170         } while (pud++, addr = next, addr != end);
1171 }
1172
1173 /**
1174  * stage2_wp_range() - write protect stage2 memory region range
1175  * @kvm:        The KVM pointer
1176  * @addr:       Start address of range
1177  * @end:        End address of range
1178  */
1179 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1180 {
1181         pgd_t *pgd;
1182         phys_addr_t next;
1183
1184         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1185         do {
1186                 /*
1187                  * Release kvm_mmu_lock periodically if the memory region is
1188                  * large. Otherwise, we may see kernel panics with
1189                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1190                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1191                  * will also starve other vCPUs.
1192                  */
1193                 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1194                         cond_resched_lock(&kvm->mmu_lock);
1195
1196                 next = stage2_pgd_addr_end(addr, end);
1197                 if (stage2_pgd_present(*pgd))
1198                         stage2_wp_puds(pgd, addr, next);
1199         } while (pgd++, addr = next, addr != end);
1200 }
1201
1202 /**
1203  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1204  * @kvm:        The KVM pointer
1205  * @slot:       The memory slot to write protect
1206  *
1207  * Called to start logging dirty pages after memory region
1208  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1209  * all present PMD and PTEs are write protected in the memory region.
1210  * Afterwards read of dirty page log can be called.
1211  *
1212  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1213  * serializing operations for VM memory regions.
1214  */
1215 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1216 {
1217         struct kvm_memslots *slots = kvm_memslots(kvm);
1218         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1219         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1220         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1221
1222         spin_lock(&kvm->mmu_lock);
1223         stage2_wp_range(kvm, start, end);
1224         spin_unlock(&kvm->mmu_lock);
1225         kvm_flush_remote_tlbs(kvm);
1226 }
1227
1228 /**
1229  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1230  * @kvm:        The KVM pointer
1231  * @slot:       The memory slot associated with mask
1232  * @gfn_offset: The gfn offset in memory slot
1233  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1234  *              slot to be write protected
1235  *
1236  * Walks bits set in mask write protects the associated pte's. Caller must
1237  * acquire kvm_mmu_lock.
1238  */
1239 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1240                 struct kvm_memory_slot *slot,
1241                 gfn_t gfn_offset, unsigned long mask)
1242 {
1243         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1244         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1245         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1246
1247         stage2_wp_range(kvm, start, end);
1248 }
1249
1250 /*
1251  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1252  * dirty pages.
1253  *
1254  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1255  * enable dirty logging for them.
1256  */
1257 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1258                 struct kvm_memory_slot *slot,
1259                 gfn_t gfn_offset, unsigned long mask)
1260 {
1261         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1262 }
1263
1264 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1265                                       unsigned long size, bool uncached)
1266 {
1267         __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1268 }
1269
1270 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1271                           struct kvm_memory_slot *memslot, unsigned long hva,
1272                           unsigned long fault_status)
1273 {
1274         int ret;
1275         bool write_fault, writable, hugetlb = false, force_pte = false;
1276         unsigned long mmu_seq;
1277         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1278         struct kvm *kvm = vcpu->kvm;
1279         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1280         struct vm_area_struct *vma;
1281         kvm_pfn_t pfn;
1282         pgprot_t mem_type = PAGE_S2;
1283         bool fault_ipa_uncached;
1284         bool logging_active = memslot_is_logging(memslot);
1285         unsigned long flags = 0;
1286
1287         write_fault = kvm_is_write_fault(vcpu);
1288         if (fault_status == FSC_PERM && !write_fault) {
1289                 kvm_err("Unexpected L2 read permission error\n");
1290                 return -EFAULT;
1291         }
1292
1293         /* Let's check if we will get back a huge page backed by hugetlbfs */
1294         down_read(&current->mm->mmap_sem);
1295         vma = find_vma_intersection(current->mm, hva, hva + 1);
1296         if (unlikely(!vma)) {
1297                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1298                 up_read(&current->mm->mmap_sem);
1299                 return -EFAULT;
1300         }
1301
1302         if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1303                 hugetlb = true;
1304                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1305         } else {
1306                 /*
1307                  * Pages belonging to memslots that don't have the same
1308                  * alignment for userspace and IPA cannot be mapped using
1309                  * block descriptors even if the pages belong to a THP for
1310                  * the process, because the stage-2 block descriptor will
1311                  * cover more than a single THP and we loose atomicity for
1312                  * unmapping, updates, and splits of the THP or other pages
1313                  * in the stage-2 block range.
1314                  */
1315                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1316                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1317                         force_pte = true;
1318         }
1319         up_read(&current->mm->mmap_sem);
1320
1321         /* We need minimum second+third level pages */
1322         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1323                                      KVM_NR_MEM_OBJS);
1324         if (ret)
1325                 return ret;
1326
1327         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1328         /*
1329          * Ensure the read of mmu_notifier_seq happens before we call
1330          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1331          * the page we just got a reference to gets unmapped before we have a
1332          * chance to grab the mmu_lock, which ensure that if the page gets
1333          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1334          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1335          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1336          */
1337         smp_rmb();
1338
1339         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1340         if (is_error_noslot_pfn(pfn))
1341                 return -EFAULT;
1342
1343         if (kvm_is_device_pfn(pfn)) {
1344                 mem_type = PAGE_S2_DEVICE;
1345                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1346         } else if (logging_active) {
1347                 /*
1348                  * Faults on pages in a memslot with logging enabled
1349                  * should not be mapped with huge pages (it introduces churn
1350                  * and performance degradation), so force a pte mapping.
1351                  */
1352                 force_pte = true;
1353                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1354
1355                 /*
1356                  * Only actually map the page as writable if this was a write
1357                  * fault.
1358                  */
1359                 if (!write_fault)
1360                         writable = false;
1361         }
1362
1363         spin_lock(&kvm->mmu_lock);
1364         if (mmu_notifier_retry(kvm, mmu_seq))
1365                 goto out_unlock;
1366
1367         if (!hugetlb && !force_pte)
1368                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1369
1370         fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1371
1372         if (hugetlb) {
1373                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1374                 new_pmd = pmd_mkhuge(new_pmd);
1375                 if (writable) {
1376                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1377                         kvm_set_pfn_dirty(pfn);
1378                 }
1379                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1380                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1381         } else {
1382                 pte_t new_pte = pfn_pte(pfn, mem_type);
1383
1384                 if (writable) {
1385                         new_pte = kvm_s2pte_mkwrite(new_pte);
1386                         kvm_set_pfn_dirty(pfn);
1387                         mark_page_dirty(kvm, gfn);
1388                 }
1389                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1390                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1391         }
1392
1393 out_unlock:
1394         spin_unlock(&kvm->mmu_lock);
1395         kvm_set_pfn_accessed(pfn);
1396         kvm_release_pfn_clean(pfn);
1397         return ret;
1398 }
1399
1400 /*
1401  * Resolve the access fault by making the page young again.
1402  * Note that because the faulting entry is guaranteed not to be
1403  * cached in the TLB, we don't need to invalidate anything.
1404  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1405  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1406  */
1407 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1408 {
1409         pmd_t *pmd;
1410         pte_t *pte;
1411         kvm_pfn_t pfn;
1412         bool pfn_valid = false;
1413
1414         trace_kvm_access_fault(fault_ipa);
1415
1416         spin_lock(&vcpu->kvm->mmu_lock);
1417
1418         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1419         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1420                 goto out;
1421
1422         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1423                 *pmd = pmd_mkyoung(*pmd);
1424                 pfn = pmd_pfn(*pmd);
1425                 pfn_valid = true;
1426                 goto out;
1427         }
1428
1429         pte = pte_offset_kernel(pmd, fault_ipa);
1430         if (pte_none(*pte))             /* Nothing there either */
1431                 goto out;
1432
1433         *pte = pte_mkyoung(*pte);       /* Just a page... */
1434         pfn = pte_pfn(*pte);
1435         pfn_valid = true;
1436 out:
1437         spin_unlock(&vcpu->kvm->mmu_lock);
1438         if (pfn_valid)
1439                 kvm_set_pfn_accessed(pfn);
1440 }
1441
1442 /**
1443  * kvm_handle_guest_abort - handles all 2nd stage aborts
1444  * @vcpu:       the VCPU pointer
1445  * @run:        the kvm_run structure
1446  *
1447  * Any abort that gets to the host is almost guaranteed to be caused by a
1448  * missing second stage translation table entry, which can mean that either the
1449  * guest simply needs more memory and we must allocate an appropriate page or it
1450  * can mean that the guest tried to access I/O memory, which is emulated by user
1451  * space. The distinction is based on the IPA causing the fault and whether this
1452  * memory region has been registered as standard RAM by user space.
1453  */
1454 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1455 {
1456         unsigned long fault_status;
1457         phys_addr_t fault_ipa;
1458         struct kvm_memory_slot *memslot;
1459         unsigned long hva;
1460         bool is_iabt, write_fault, writable;
1461         gfn_t gfn;
1462         int ret, idx;
1463
1464         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1465         if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
1466                 kvm_inject_vabt(vcpu);
1467                 return 1;
1468         }
1469
1470         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1471
1472         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1473                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1474
1475         /* Check the stage-2 fault is trans. fault or write fault */
1476         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1477         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1478             fault_status != FSC_ACCESS) {
1479                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1480                         kvm_vcpu_trap_get_class(vcpu),
1481                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1482                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1483                 return -EFAULT;
1484         }
1485
1486         idx = srcu_read_lock(&vcpu->kvm->srcu);
1487
1488         gfn = fault_ipa >> PAGE_SHIFT;
1489         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1490         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1491         write_fault = kvm_is_write_fault(vcpu);
1492         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1493                 if (is_iabt) {
1494                         /* Prefetch Abort on I/O address */
1495                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1496                         ret = 1;
1497                         goto out_unlock;
1498                 }
1499
1500                 /*
1501                  * Check for a cache maintenance operation. Since we
1502                  * ended-up here, we know it is outside of any memory
1503                  * slot. But we can't find out if that is for a device,
1504                  * or if the guest is just being stupid. The only thing
1505                  * we know for sure is that this range cannot be cached.
1506                  *
1507                  * So let's assume that the guest is just being
1508                  * cautious, and skip the instruction.
1509                  */
1510                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1511                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1512                         ret = 1;
1513                         goto out_unlock;
1514                 }
1515
1516                 /*
1517                  * The IPA is reported as [MAX:12], so we need to
1518                  * complement it with the bottom 12 bits from the
1519                  * faulting VA. This is always 12 bits, irrespective
1520                  * of the page size.
1521                  */
1522                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1523                 ret = io_mem_abort(vcpu, run, fault_ipa);
1524                 goto out_unlock;
1525         }
1526
1527         /* Userspace should not be able to register out-of-bounds IPAs */
1528         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1529
1530         if (fault_status == FSC_ACCESS) {
1531                 handle_access_fault(vcpu, fault_ipa);
1532                 ret = 1;
1533                 goto out_unlock;
1534         }
1535
1536         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1537         if (ret == 0)
1538                 ret = 1;
1539 out_unlock:
1540         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1541         return ret;
1542 }
1543
1544 static int handle_hva_to_gpa(struct kvm *kvm,
1545                              unsigned long start,
1546                              unsigned long end,
1547                              int (*handler)(struct kvm *kvm,
1548                                             gpa_t gpa, void *data),
1549                              void *data)
1550 {
1551         struct kvm_memslots *slots;
1552         struct kvm_memory_slot *memslot;
1553         int ret = 0;
1554
1555         slots = kvm_memslots(kvm);
1556
1557         /* we only care about the pages that the guest sees */
1558         kvm_for_each_memslot(memslot, slots) {
1559                 unsigned long hva_start, hva_end;
1560                 gfn_t gfn, gfn_end;
1561
1562                 hva_start = max(start, memslot->userspace_addr);
1563                 hva_end = min(end, memslot->userspace_addr +
1564                                         (memslot->npages << PAGE_SHIFT));
1565                 if (hva_start >= hva_end)
1566                         continue;
1567
1568                 /*
1569                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1570                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1571                  */
1572                 gfn = hva_to_gfn_memslot(hva_start, memslot);
1573                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1574
1575                 for (; gfn < gfn_end; ++gfn) {
1576                         gpa_t gpa = gfn << PAGE_SHIFT;
1577                         ret |= handler(kvm, gpa, data);
1578                 }
1579         }
1580
1581         return ret;
1582 }
1583
1584 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1585 {
1586         unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1587         return 0;
1588 }
1589
1590 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1591 {
1592         unsigned long end = hva + PAGE_SIZE;
1593
1594         if (!kvm->arch.pgd)
1595                 return 0;
1596
1597         trace_kvm_unmap_hva(hva);
1598         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1599         return 0;
1600 }
1601
1602 int kvm_unmap_hva_range(struct kvm *kvm,
1603                         unsigned long start, unsigned long end)
1604 {
1605         if (!kvm->arch.pgd)
1606                 return 0;
1607
1608         trace_kvm_unmap_hva_range(start, end);
1609         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1610         return 0;
1611 }
1612
1613 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1614 {
1615         pte_t *pte = (pte_t *)data;
1616
1617         /*
1618          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1619          * flag clear because MMU notifiers will have unmapped a huge PMD before
1620          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1621          * therefore stage2_set_pte() never needs to clear out a huge PMD
1622          * through this calling path.
1623          */
1624         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1625         return 0;
1626 }
1627
1628
1629 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1630 {
1631         unsigned long end = hva + PAGE_SIZE;
1632         pte_t stage2_pte;
1633
1634         if (!kvm->arch.pgd)
1635                 return;
1636
1637         trace_kvm_set_spte_hva(hva);
1638         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1639         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1640 }
1641
1642 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1643 {
1644         pmd_t *pmd;
1645         pte_t *pte;
1646
1647         pmd = stage2_get_pmd(kvm, NULL, gpa);
1648         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1649                 return 0;
1650
1651         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1652                 return stage2_pmdp_test_and_clear_young(pmd);
1653
1654         pte = pte_offset_kernel(pmd, gpa);
1655         if (pte_none(*pte))
1656                 return 0;
1657
1658         return stage2_ptep_test_and_clear_young(pte);
1659 }
1660
1661 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1662 {
1663         pmd_t *pmd;
1664         pte_t *pte;
1665
1666         pmd = stage2_get_pmd(kvm, NULL, gpa);
1667         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1668                 return 0;
1669
1670         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1671                 return pmd_young(*pmd);
1672
1673         pte = pte_offset_kernel(pmd, gpa);
1674         if (!pte_none(*pte))            /* Just a page... */
1675                 return pte_young(*pte);
1676
1677         return 0;
1678 }
1679
1680 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1681 {
1682         if (!kvm->arch.pgd)
1683                 return 0;
1684         trace_kvm_age_hva(start, end);
1685         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1686 }
1687
1688 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1689 {
1690         if (!kvm->arch.pgd)
1691                 return 0;
1692         trace_kvm_test_age_hva(hva);
1693         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1694 }
1695
1696 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1697 {
1698         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1699 }
1700
1701 phys_addr_t kvm_mmu_get_httbr(void)
1702 {
1703         if (__kvm_cpu_uses_extended_idmap())
1704                 return virt_to_phys(merged_hyp_pgd);
1705         else
1706                 return virt_to_phys(hyp_pgd);
1707 }
1708
1709 phys_addr_t kvm_get_idmap_vector(void)
1710 {
1711         return hyp_idmap_vector;
1712 }
1713
1714 phys_addr_t kvm_get_idmap_start(void)
1715 {
1716         return hyp_idmap_start;
1717 }
1718
1719 static int kvm_map_idmap_text(pgd_t *pgd)
1720 {
1721         int err;
1722
1723         /* Create the idmap in the boot page tables */
1724         err =   __create_hyp_mappings(pgd,
1725                                       hyp_idmap_start, hyp_idmap_end,
1726                                       __phys_to_pfn(hyp_idmap_start),
1727                                       PAGE_HYP_EXEC);
1728         if (err)
1729                 kvm_err("Failed to idmap %lx-%lx\n",
1730                         hyp_idmap_start, hyp_idmap_end);
1731
1732         return err;
1733 }
1734
1735 int kvm_mmu_init(void)
1736 {
1737         int err;
1738
1739         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1740         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1741         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1742
1743         /*
1744          * We rely on the linker script to ensure at build time that the HYP
1745          * init code does not cross a page boundary.
1746          */
1747         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1748
1749         kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1750         kvm_info("HYP VA range: %lx:%lx\n",
1751                  kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1752
1753         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1754             hyp_idmap_start <  kern_hyp_va(~0UL) &&
1755             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1756                 /*
1757                  * The idmap page is intersecting with the VA space,
1758                  * it is not safe to continue further.
1759                  */
1760                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1761                 err = -EINVAL;
1762                 goto out;
1763         }
1764
1765         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1766         if (!hyp_pgd) {
1767                 kvm_err("Hyp mode PGD not allocated\n");
1768                 err = -ENOMEM;
1769                 goto out;
1770         }
1771
1772         if (__kvm_cpu_uses_extended_idmap()) {
1773                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1774                                                          hyp_pgd_order);
1775                 if (!boot_hyp_pgd) {
1776                         kvm_err("Hyp boot PGD not allocated\n");
1777                         err = -ENOMEM;
1778                         goto out;
1779                 }
1780
1781                 err = kvm_map_idmap_text(boot_hyp_pgd);
1782                 if (err)
1783                         goto out;
1784
1785                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1786                 if (!merged_hyp_pgd) {
1787                         kvm_err("Failed to allocate extra HYP pgd\n");
1788                         goto out;
1789                 }
1790                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1791                                     hyp_idmap_start);
1792         } else {
1793                 err = kvm_map_idmap_text(hyp_pgd);
1794                 if (err)
1795                         goto out;
1796         }
1797
1798         return 0;
1799 out:
1800         free_hyp_pgds();
1801         return err;
1802 }
1803
1804 void kvm_arch_commit_memory_region(struct kvm *kvm,
1805                                    const struct kvm_userspace_memory_region *mem,
1806                                    const struct kvm_memory_slot *old,
1807                                    const struct kvm_memory_slot *new,
1808                                    enum kvm_mr_change change)
1809 {
1810         /*
1811          * At this point memslot has been committed and there is an
1812          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1813          * memory slot is write protected.
1814          */
1815         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1816                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1817 }
1818
1819 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1820                                    struct kvm_memory_slot *memslot,
1821                                    const struct kvm_userspace_memory_region *mem,
1822                                    enum kvm_mr_change change)
1823 {
1824         hva_t hva = mem->userspace_addr;
1825         hva_t reg_end = hva + mem->memory_size;
1826         bool writable = !(mem->flags & KVM_MEM_READONLY);
1827         int ret = 0;
1828
1829         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1830                         change != KVM_MR_FLAGS_ONLY)
1831                 return 0;
1832
1833         /*
1834          * Prevent userspace from creating a memory region outside of the IPA
1835          * space addressable by the KVM guest IPA space.
1836          */
1837         if (memslot->base_gfn + memslot->npages >
1838             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1839                 return -EFAULT;
1840
1841         down_read(&current->mm->mmap_sem);
1842         /*
1843          * A memory region could potentially cover multiple VMAs, and any holes
1844          * between them, so iterate over all of them to find out if we can map
1845          * any of them right now.
1846          *
1847          *     +--------------------------------------------+
1848          * +---------------+----------------+   +----------------+
1849          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1850          * +---------------+----------------+   +----------------+
1851          *     |               memory region                |
1852          *     +--------------------------------------------+
1853          */
1854         do {
1855                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1856                 hva_t vm_start, vm_end;
1857
1858                 if (!vma || vma->vm_start >= reg_end)
1859                         break;
1860
1861                 /*
1862                  * Mapping a read-only VMA is only allowed if the
1863                  * memory region is configured as read-only.
1864                  */
1865                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1866                         ret = -EPERM;
1867                         break;
1868                 }
1869
1870                 /*
1871                  * Take the intersection of this VMA with the memory region
1872                  */
1873                 vm_start = max(hva, vma->vm_start);
1874                 vm_end = min(reg_end, vma->vm_end);
1875
1876                 if (vma->vm_flags & VM_PFNMAP) {
1877                         gpa_t gpa = mem->guest_phys_addr +
1878                                     (vm_start - mem->userspace_addr);
1879                         phys_addr_t pa;
1880
1881                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1882                         pa += vm_start - vma->vm_start;
1883
1884                         /* IO region dirty page logging not allowed */
1885                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1886                                 ret = -EINVAL;
1887                                 goto out;
1888                         }
1889
1890                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1891                                                     vm_end - vm_start,
1892                                                     writable);
1893                         if (ret)
1894                                 break;
1895                 }
1896                 hva = vm_end;
1897         } while (hva < reg_end);
1898
1899         if (change == KVM_MR_FLAGS_ONLY)
1900                 goto out;
1901
1902         spin_lock(&kvm->mmu_lock);
1903         if (ret)
1904                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1905         else
1906                 stage2_flush_memslot(kvm, memslot);
1907         spin_unlock(&kvm->mmu_lock);
1908 out:
1909         up_read(&current->mm->mmap_sem);
1910         return ret;
1911 }
1912
1913 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1914                            struct kvm_memory_slot *dont)
1915 {
1916 }
1917
1918 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1919                             unsigned long npages)
1920 {
1921         /*
1922          * Readonly memslots are not incoherent with the caches by definition,
1923          * but in practice, they are used mostly to emulate ROMs or NOR flashes
1924          * that the guest may consider devices and hence map as uncached.
1925          * To prevent incoherency issues in these cases, tag all readonly
1926          * regions as incoherent.
1927          */
1928         if (slot->flags & KVM_MEM_READONLY)
1929                 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1930         return 0;
1931 }
1932
1933 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1934 {
1935 }
1936
1937 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1938 {
1939         kvm_free_stage2_pgd(kvm);
1940 }
1941
1942 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1943                                    struct kvm_memory_slot *slot)
1944 {
1945         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1946         phys_addr_t size = slot->npages << PAGE_SHIFT;
1947
1948         spin_lock(&kvm->mmu_lock);
1949         unmap_stage2_range(kvm, gpa, size);
1950         spin_unlock(&kvm->mmu_lock);
1951 }
1952
1953 /*
1954  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1955  *
1956  * Main problems:
1957  * - S/W ops are local to a CPU (not broadcast)
1958  * - We have line migration behind our back (speculation)
1959  * - System caches don't support S/W at all (damn!)
1960  *
1961  * In the face of the above, the best we can do is to try and convert
1962  * S/W ops to VA ops. Because the guest is not allowed to infer the
1963  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1964  * which is a rather good thing for us.
1965  *
1966  * Also, it is only used when turning caches on/off ("The expected
1967  * usage of the cache maintenance instructions that operate by set/way
1968  * is associated with the cache maintenance instructions associated
1969  * with the powerdown and powerup of caches, if this is required by
1970  * the implementation.").
1971  *
1972  * We use the following policy:
1973  *
1974  * - If we trap a S/W operation, we enable VM trapping to detect
1975  *   caches being turned on/off, and do a full clean.
1976  *
1977  * - We flush the caches on both caches being turned on and off.
1978  *
1979  * - Once the caches are enabled, we stop trapping VM ops.
1980  */
1981 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1982 {
1983         unsigned long hcr = vcpu_get_hcr(vcpu);
1984
1985         /*
1986          * If this is the first time we do a S/W operation
1987          * (i.e. HCR_TVM not set) flush the whole memory, and set the
1988          * VM trapping.
1989          *
1990          * Otherwise, rely on the VM trapping to wait for the MMU +
1991          * Caches to be turned off. At that point, we'll be able to
1992          * clean the caches again.
1993          */
1994         if (!(hcr & HCR_TVM)) {
1995                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1996                                         vcpu_has_cache_enabled(vcpu));
1997                 stage2_flush_vm(vcpu->kvm);
1998                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1999         }
2000 }
2001
2002 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2003 {
2004         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2005
2006         /*
2007          * If switching the MMU+caches on, need to invalidate the caches.
2008          * If switching it off, need to clean the caches.
2009          * Clean + invalidate does the trick always.
2010          */
2011         if (now_enabled != was_enabled)
2012                 stage2_flush_vm(vcpu->kvm);
2013
2014         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2015         if (now_enabled)
2016                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2017
2018         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2019 }