GNU Linux-libre 4.4.283-gnu1
[releases.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/nmi.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29 #include <linux/irq_work.h>
30 #include <linux/slab.h>
31
32 #include <linux/atomic.h>
33 #include <asm/bugs.h>
34 #include <asm/smp.h>
35 #include <asm/cacheflush.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 #include <asm/idmap.h>
40 #include <asm/topology.h>
41 #include <asm/mmu_context.h>
42 #include <asm/pgtable.h>
43 #include <asm/pgalloc.h>
44 #include <asm/procinfo.h>
45 #include <asm/processor.h>
46 #include <asm/sections.h>
47 #include <asm/tlbflush.h>
48 #include <asm/ptrace.h>
49 #include <asm/smp_plat.h>
50 #include <asm/virt.h>
51 #include <asm/mach/arch.h>
52 #include <asm/mpu.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56
57 /*
58  * as from 2.5, kernels no longer have an init_tasks structure
59  * so we need some other way of telling a new secondary core
60  * where to place its SVC stack
61  */
62 struct secondary_data secondary_data;
63
64 /*
65  * control for which core is the next to come out of the secondary
66  * boot "holding pen"
67  */
68 volatile int pen_release = -1;
69
70 enum ipi_msg_type {
71         IPI_WAKEUP,
72         IPI_TIMER,
73         IPI_RESCHEDULE,
74         IPI_CALL_FUNC,
75         IPI_CALL_FUNC_SINGLE,
76         IPI_CPU_STOP,
77         IPI_IRQ_WORK,
78         IPI_COMPLETION,
79         IPI_CPU_BACKTRACE = 15,
80 };
81
82 static DECLARE_COMPLETION(cpu_running);
83
84 static struct smp_operations smp_ops;
85
86 void __init smp_set_ops(const struct smp_operations *ops)
87 {
88         if (ops)
89                 smp_ops = *ops;
90 };
91
92 static unsigned long get_arch_pgd(pgd_t *pgd)
93 {
94 #ifdef CONFIG_ARM_LPAE
95         return __phys_to_pfn(virt_to_phys(pgd));
96 #else
97         return virt_to_phys(pgd);
98 #endif
99 }
100
101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102 static int secondary_biglittle_prepare(unsigned int cpu)
103 {
104         if (!cpu_vtable[cpu])
105                 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106
107         return cpu_vtable[cpu] ? 0 : -ENOMEM;
108 }
109
110 static void secondary_biglittle_init(void)
111 {
112         init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113 }
114 #else
115 static int secondary_biglittle_prepare(unsigned int cpu)
116 {
117         return 0;
118 }
119
120 static void secondary_biglittle_init(void)
121 {
122 }
123 #endif
124
125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
126 {
127         int ret;
128
129         if (!smp_ops.smp_boot_secondary)
130                 return -ENOSYS;
131
132         ret = secondary_biglittle_prepare(cpu);
133         if (ret)
134                 return ret;
135
136         /*
137          * We need to tell the secondary core where to find
138          * its stack and the page tables.
139          */
140         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141 #ifdef CONFIG_ARM_MPU
142         secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
143 #endif
144
145 #ifdef CONFIG_MMU
146         secondary_data.pgdir = virt_to_phys(idmap_pgd);
147         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148 #endif
149         sync_cache_w(&secondary_data);
150
151         /*
152          * Now bring the CPU into our world.
153          */
154         ret = smp_ops.smp_boot_secondary(cpu, idle);
155         if (ret == 0) {
156                 /*
157                  * CPU was successfully started, wait for it
158                  * to come online or time out.
159                  */
160                 wait_for_completion_timeout(&cpu_running,
161                                                  msecs_to_jiffies(1000));
162
163                 if (!cpu_online(cpu)) {
164                         pr_crit("CPU%u: failed to come online\n", cpu);
165                         ret = -EIO;
166                 }
167         } else {
168                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169         }
170
171
172         memset(&secondary_data, 0, sizeof(secondary_data));
173         return ret;
174 }
175
176 /* platform specific SMP operations */
177 void __init smp_init_cpus(void)
178 {
179         if (smp_ops.smp_init_cpus)
180                 smp_ops.smp_init_cpus();
181 }
182
183 int platform_can_secondary_boot(void)
184 {
185         return !!smp_ops.smp_boot_secondary;
186 }
187
188 int platform_can_cpu_hotplug(void)
189 {
190 #ifdef CONFIG_HOTPLUG_CPU
191         if (smp_ops.cpu_kill)
192                 return 1;
193 #endif
194
195         return 0;
196 }
197
198 #ifdef CONFIG_HOTPLUG_CPU
199 static int platform_cpu_kill(unsigned int cpu)
200 {
201         if (smp_ops.cpu_kill)
202                 return smp_ops.cpu_kill(cpu);
203         return 1;
204 }
205
206 static int platform_cpu_disable(unsigned int cpu)
207 {
208         if (smp_ops.cpu_disable)
209                 return smp_ops.cpu_disable(cpu);
210
211         return 0;
212 }
213
214 int platform_can_hotplug_cpu(unsigned int cpu)
215 {
216         /* cpu_die must be specified to support hotplug */
217         if (!smp_ops.cpu_die)
218                 return 0;
219
220         if (smp_ops.cpu_can_disable)
221                 return smp_ops.cpu_can_disable(cpu);
222
223         /*
224          * By default, allow disabling all CPUs except the first one,
225          * since this is special on a lot of platforms, e.g. because
226          * of clock tick interrupts.
227          */
228         return cpu != 0;
229 }
230
231 /*
232  * __cpu_disable runs on the processor to be shutdown.
233  */
234 int __cpu_disable(void)
235 {
236         unsigned int cpu = smp_processor_id();
237         int ret;
238
239         ret = platform_cpu_disable(cpu);
240         if (ret)
241                 return ret;
242
243         /*
244          * Take this CPU offline.  Once we clear this, we can't return,
245          * and we must not schedule until we're ready to give up the cpu.
246          */
247         set_cpu_online(cpu, false);
248
249         /*
250          * OK - migrate IRQs away from this CPU
251          */
252         irq_migrate_all_off_this_cpu();
253
254         /*
255          * Flush user cache and TLB mappings, and then remove this CPU
256          * from the vm mask set of all processes.
257          *
258          * Caches are flushed to the Level of Unification Inner Shareable
259          * to write-back dirty lines to unified caches shared by all CPUs.
260          */
261         flush_cache_louis();
262         local_flush_tlb_all();
263
264         clear_tasks_mm_cpumask(cpu);
265
266         return 0;
267 }
268
269 static DECLARE_COMPLETION(cpu_died);
270
271 /*
272  * called on the thread which is asking for a CPU to be shutdown -
273  * waits until shutdown has completed, or it is timed out.
274  */
275 void __cpu_die(unsigned int cpu)
276 {
277         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
278                 pr_err("CPU%u: cpu didn't die\n", cpu);
279                 return;
280         }
281         pr_notice("CPU%u: shutdown\n", cpu);
282
283         /*
284          * platform_cpu_kill() is generally expected to do the powering off
285          * and/or cutting of clocks to the dying CPU.  Optionally, this may
286          * be done by the CPU which is dying in preference to supporting
287          * this call, but that means there is _no_ synchronisation between
288          * the requesting CPU and the dying CPU actually losing power.
289          */
290         if (!platform_cpu_kill(cpu))
291                 pr_err("CPU%u: unable to kill\n", cpu);
292 }
293
294 /*
295  * Called from the idle thread for the CPU which has been shutdown.
296  *
297  * Note that we disable IRQs here, but do not re-enable them
298  * before returning to the caller. This is also the behaviour
299  * of the other hotplug-cpu capable cores, so presumably coming
300  * out of idle fixes this.
301  */
302 void arch_cpu_idle_dead(void)
303 {
304         unsigned int cpu = smp_processor_id();
305
306         idle_task_exit();
307
308         local_irq_disable();
309
310         /*
311          * Flush the data out of the L1 cache for this CPU.  This must be
312          * before the completion to ensure that data is safely written out
313          * before platform_cpu_kill() gets called - which may disable
314          * *this* CPU and power down its cache.
315          */
316         flush_cache_louis();
317
318         /*
319          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
320          * this returns, power and/or clocks can be removed at any point
321          * from this CPU and its cache by platform_cpu_kill().
322          */
323         complete(&cpu_died);
324
325         /*
326          * Ensure that the cache lines associated with that completion are
327          * written out.  This covers the case where _this_ CPU is doing the
328          * powering down, to ensure that the completion is visible to the
329          * CPU waiting for this one.
330          */
331         flush_cache_louis();
332
333         /*
334          * The actual CPU shutdown procedure is at least platform (if not
335          * CPU) specific.  This may remove power, or it may simply spin.
336          *
337          * Platforms are generally expected *NOT* to return from this call,
338          * although there are some which do because they have no way to
339          * power down the CPU.  These platforms are the _only_ reason we
340          * have a return path which uses the fragment of assembly below.
341          *
342          * The return path should not be used for platforms which can
343          * power off the CPU.
344          */
345         if (smp_ops.cpu_die)
346                 smp_ops.cpu_die(cpu);
347
348         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
349                 cpu);
350
351         /*
352          * Do not return to the idle loop - jump back to the secondary
353          * cpu initialisation.  There's some initialisation which needs
354          * to be repeated to undo the effects of taking the CPU offline.
355          */
356         __asm__("mov    sp, %0\n"
357         "       mov     fp, #0\n"
358         "       b       secondary_start_kernel"
359                 :
360                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
361 }
362 #endif /* CONFIG_HOTPLUG_CPU */
363
364 /*
365  * Called by both boot and secondaries to move global data into
366  * per-processor storage.
367  */
368 static void smp_store_cpu_info(unsigned int cpuid)
369 {
370         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
371
372         cpu_info->loops_per_jiffy = loops_per_jiffy;
373         cpu_info->cpuid = read_cpuid_id();
374
375         store_cpu_topology(cpuid);
376 }
377
378 /*
379  * This is the secondary CPU boot entry.  We're using this CPUs
380  * idle thread stack, but a set of temporary page tables.
381  */
382 asmlinkage void secondary_start_kernel(void)
383 {
384         struct mm_struct *mm = &init_mm;
385         unsigned int cpu;
386
387         secondary_biglittle_init();
388
389         /*
390          * The identity mapping is uncached (strongly ordered), so
391          * switch away from it before attempting any exclusive accesses.
392          */
393         cpu_switch_mm(mm->pgd, mm);
394         local_flush_bp_all();
395         enter_lazy_tlb(mm, current);
396         local_flush_tlb_all();
397
398         /*
399          * All kernel threads share the same mm context; grab a
400          * reference and switch to it.
401          */
402         cpu = smp_processor_id();
403         atomic_inc(&mm->mm_count);
404         current->active_mm = mm;
405         cpumask_set_cpu(cpu, mm_cpumask(mm));
406
407         cpu_init();
408
409         pr_debug("CPU%u: Booted secondary processor\n", cpu);
410
411         preempt_disable();
412         trace_hardirqs_off();
413
414         /*
415          * Give the platform a chance to do its own initialisation.
416          */
417         if (smp_ops.smp_secondary_init)
418                 smp_ops.smp_secondary_init(cpu);
419
420         notify_cpu_starting(cpu);
421
422         calibrate_delay();
423
424         smp_store_cpu_info(cpu);
425
426         /*
427          * OK, now it's safe to let the boot CPU continue.  Wait for
428          * the CPU migration code to notice that the CPU is online
429          * before we continue - which happens after __cpu_up returns.
430          */
431         set_cpu_online(cpu, true);
432
433         check_other_bugs();
434
435         complete(&cpu_running);
436
437         local_irq_enable();
438         local_fiq_enable();
439         local_abt_enable();
440
441         /*
442          * OK, it's off to the idle thread for us
443          */
444         cpu_startup_entry(CPUHP_ONLINE);
445 }
446
447 void __init smp_cpus_done(unsigned int max_cpus)
448 {
449         int cpu;
450         unsigned long bogosum = 0;
451
452         for_each_online_cpu(cpu)
453                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
454
455         printk(KERN_INFO "SMP: Total of %d processors activated "
456                "(%lu.%02lu BogoMIPS).\n",
457                num_online_cpus(),
458                bogosum / (500000/HZ),
459                (bogosum / (5000/HZ)) % 100);
460
461         hyp_mode_check();
462 }
463
464 void __init smp_prepare_boot_cpu(void)
465 {
466         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
467 }
468
469 void __init smp_prepare_cpus(unsigned int max_cpus)
470 {
471         unsigned int ncores = num_possible_cpus();
472
473         init_cpu_topology();
474
475         smp_store_cpu_info(smp_processor_id());
476
477         /*
478          * are we trying to boot more cores than exist?
479          */
480         if (max_cpus > ncores)
481                 max_cpus = ncores;
482         if (ncores > 1 && max_cpus) {
483                 /*
484                  * Initialise the present map, which describes the set of CPUs
485                  * actually populated at the present time. A platform should
486                  * re-initialize the map in the platforms smp_prepare_cpus()
487                  * if present != possible (e.g. physical hotplug).
488                  */
489                 init_cpu_present(cpu_possible_mask);
490
491                 /*
492                  * Initialise the SCU if there are more than one CPU
493                  * and let them know where to start.
494                  */
495                 if (smp_ops.smp_prepare_cpus)
496                         smp_ops.smp_prepare_cpus(max_cpus);
497         }
498 }
499
500 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
501
502 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
503 {
504         if (!__smp_cross_call)
505                 __smp_cross_call = fn;
506 }
507
508 static const char *ipi_types[NR_IPI] __tracepoint_string = {
509 #define S(x,s)  [x] = s
510         S(IPI_WAKEUP, "CPU wakeup interrupts"),
511         S(IPI_TIMER, "Timer broadcast interrupts"),
512         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
513         S(IPI_CALL_FUNC, "Function call interrupts"),
514         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
515         S(IPI_CPU_STOP, "CPU stop interrupts"),
516         S(IPI_IRQ_WORK, "IRQ work interrupts"),
517         S(IPI_COMPLETION, "completion interrupts"),
518 };
519
520 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
521 {
522         trace_ipi_raise(target, ipi_types[ipinr]);
523         __smp_cross_call(target, ipinr);
524 }
525
526 void show_ipi_list(struct seq_file *p, int prec)
527 {
528         unsigned int cpu, i;
529
530         for (i = 0; i < NR_IPI; i++) {
531                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
532
533                 for_each_online_cpu(cpu)
534                         seq_printf(p, "%10u ",
535                                    __get_irq_stat(cpu, ipi_irqs[i]));
536
537                 seq_printf(p, " %s\n", ipi_types[i]);
538         }
539 }
540
541 u64 smp_irq_stat_cpu(unsigned int cpu)
542 {
543         u64 sum = 0;
544         int i;
545
546         for (i = 0; i < NR_IPI; i++)
547                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
548
549         return sum;
550 }
551
552 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
553 {
554         smp_cross_call(mask, IPI_CALL_FUNC);
555 }
556
557 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
558 {
559         smp_cross_call(mask, IPI_WAKEUP);
560 }
561
562 void arch_send_call_function_single_ipi(int cpu)
563 {
564         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
565 }
566
567 #ifdef CONFIG_IRQ_WORK
568 void arch_irq_work_raise(void)
569 {
570         if (arch_irq_work_has_interrupt())
571                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
572 }
573 #endif
574
575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576 void tick_broadcast(const struct cpumask *mask)
577 {
578         smp_cross_call(mask, IPI_TIMER);
579 }
580 #endif
581
582 static DEFINE_RAW_SPINLOCK(stop_lock);
583
584 /*
585  * ipi_cpu_stop - handle IPI from smp_send_stop()
586  */
587 static void ipi_cpu_stop(unsigned int cpu)
588 {
589         if (system_state == SYSTEM_BOOTING ||
590             system_state == SYSTEM_RUNNING) {
591                 raw_spin_lock(&stop_lock);
592                 pr_crit("CPU%u: stopping\n", cpu);
593                 dump_stack();
594                 raw_spin_unlock(&stop_lock);
595         }
596
597         set_cpu_online(cpu, false);
598
599         local_fiq_disable();
600         local_irq_disable();
601
602         while (1) {
603                 cpu_relax();
604                 wfe();
605         }
606 }
607
608 static DEFINE_PER_CPU(struct completion *, cpu_completion);
609
610 int register_ipi_completion(struct completion *completion, int cpu)
611 {
612         per_cpu(cpu_completion, cpu) = completion;
613         return IPI_COMPLETION;
614 }
615
616 static void ipi_complete(unsigned int cpu)
617 {
618         complete(per_cpu(cpu_completion, cpu));
619 }
620
621 /*
622  * Main handler for inter-processor interrupts
623  */
624 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
625 {
626         handle_IPI(ipinr, regs);
627 }
628
629 void handle_IPI(int ipinr, struct pt_regs *regs)
630 {
631         unsigned int cpu = smp_processor_id();
632         struct pt_regs *old_regs = set_irq_regs(regs);
633
634         if ((unsigned)ipinr < NR_IPI) {
635                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
636                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
637         }
638
639         switch (ipinr) {
640         case IPI_WAKEUP:
641                 break;
642
643 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
644         case IPI_TIMER:
645                 irq_enter();
646                 tick_receive_broadcast();
647                 irq_exit();
648                 break;
649 #endif
650
651         case IPI_RESCHEDULE:
652                 scheduler_ipi();
653                 break;
654
655         case IPI_CALL_FUNC:
656                 irq_enter();
657                 generic_smp_call_function_interrupt();
658                 irq_exit();
659                 break;
660
661         case IPI_CALL_FUNC_SINGLE:
662                 irq_enter();
663                 generic_smp_call_function_single_interrupt();
664                 irq_exit();
665                 break;
666
667         case IPI_CPU_STOP:
668                 irq_enter();
669                 ipi_cpu_stop(cpu);
670                 irq_exit();
671                 break;
672
673 #ifdef CONFIG_IRQ_WORK
674         case IPI_IRQ_WORK:
675                 irq_enter();
676                 irq_work_run();
677                 irq_exit();
678                 break;
679 #endif
680
681         case IPI_COMPLETION:
682                 irq_enter();
683                 ipi_complete(cpu);
684                 irq_exit();
685                 break;
686
687         case IPI_CPU_BACKTRACE:
688                 irq_enter();
689                 nmi_cpu_backtrace(regs);
690                 irq_exit();
691                 break;
692
693         default:
694                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
695                         cpu, ipinr);
696                 break;
697         }
698
699         if ((unsigned)ipinr < NR_IPI)
700                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
701         set_irq_regs(old_regs);
702 }
703
704 void smp_send_reschedule(int cpu)
705 {
706         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
707 }
708
709 void smp_send_stop(void)
710 {
711         unsigned long timeout;
712         struct cpumask mask;
713
714         cpumask_copy(&mask, cpu_online_mask);
715         cpumask_clear_cpu(smp_processor_id(), &mask);
716         if (!cpumask_empty(&mask))
717                 smp_cross_call(&mask, IPI_CPU_STOP);
718
719         /* Wait up to one second for other CPUs to stop */
720         timeout = USEC_PER_SEC;
721         while (num_online_cpus() > 1 && timeout--)
722                 udelay(1);
723
724         if (num_online_cpus() > 1)
725                 pr_warn("SMP: failed to stop secondary CPUs\n");
726 }
727
728 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
729  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
730  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
731  * kdump fails. So split out the panic_smp_self_stop() and add
732  * set_cpu_online(smp_processor_id(), false).
733  */
734 void panic_smp_self_stop(void)
735 {
736         pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
737                  smp_processor_id());
738         set_cpu_online(smp_processor_id(), false);
739         while (1)
740                 cpu_relax();
741 }
742
743 /*
744  * not supported here
745  */
746 int setup_profiling_timer(unsigned int multiplier)
747 {
748         return -EINVAL;
749 }
750
751 #ifdef CONFIG_CPU_FREQ
752
753 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
754 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
755 static unsigned long global_l_p_j_ref;
756 static unsigned long global_l_p_j_ref_freq;
757
758 static int cpufreq_callback(struct notifier_block *nb,
759                                         unsigned long val, void *data)
760 {
761         struct cpufreq_freqs *freq = data;
762         int cpu = freq->cpu;
763
764         if (freq->flags & CPUFREQ_CONST_LOOPS)
765                 return NOTIFY_OK;
766
767         if (!per_cpu(l_p_j_ref, cpu)) {
768                 per_cpu(l_p_j_ref, cpu) =
769                         per_cpu(cpu_data, cpu).loops_per_jiffy;
770                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
771                 if (!global_l_p_j_ref) {
772                         global_l_p_j_ref = loops_per_jiffy;
773                         global_l_p_j_ref_freq = freq->old;
774                 }
775         }
776
777         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
778             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
779                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
780                                                 global_l_p_j_ref_freq,
781                                                 freq->new);
782                 per_cpu(cpu_data, cpu).loops_per_jiffy =
783                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
784                                         per_cpu(l_p_j_ref_freq, cpu),
785                                         freq->new);
786         }
787         return NOTIFY_OK;
788 }
789
790 static struct notifier_block cpufreq_notifier = {
791         .notifier_call  = cpufreq_callback,
792 };
793
794 static int __init register_cpufreq_notifier(void)
795 {
796         return cpufreq_register_notifier(&cpufreq_notifier,
797                                                 CPUFREQ_TRANSITION_NOTIFIER);
798 }
799 core_initcall(register_cpufreq_notifier);
800
801 #endif
802
803 static void raise_nmi(cpumask_t *mask)
804 {
805         /*
806          * Generate the backtrace directly if we are running in a calling
807          * context that is not preemptible by the backtrace IPI. Note
808          * that nmi_cpu_backtrace() automatically removes the current cpu
809          * from mask.
810          */
811         if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled())
812                 nmi_cpu_backtrace(NULL);
813
814         smp_cross_call(mask, IPI_CPU_BACKTRACE);
815 }
816
817 void arch_trigger_all_cpu_backtrace(bool include_self)
818 {
819         nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
820 }