GNU Linux-libre 4.14.251-gnu1
[releases.git] / arch / arm / kernel / ptrace.c
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/elf.h>
17 #include <linux/smp.h>
18 #include <linux/ptrace.h>
19 #include <linux/user.h>
20 #include <linux/security.h>
21 #include <linux/init.h>
22 #include <linux/signal.h>
23 #include <linux/uaccess.h>
24 #include <linux/perf_event.h>
25 #include <linux/hw_breakpoint.h>
26 #include <linux/regset.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/unistd.h>
30
31 #include <asm/pgtable.h>
32 #include <asm/traps.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/syscalls.h>
36
37 #define REG_PC  15
38 #define REG_PSR 16
39 /*
40  * does not yet catch signals sent when the child dies.
41  * in exit.c or in signal.c.
42  */
43
44 #if 0
45 /*
46  * Breakpoint SWI instruction: SWI &9F0001
47  */
48 #define BREAKINST_ARM   0xef9f0001
49 #define BREAKINST_THUMB 0xdf00          /* fill this in later */
50 #else
51 /*
52  * New breakpoints - use an undefined instruction.  The ARM architecture
53  * reference manual guarantees that the following instruction space
54  * will produce an undefined instruction exception on all CPUs:
55  *
56  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
57  *  Thumb: 1101 1110 xxxx xxxx
58  */
59 #define BREAKINST_ARM   0xe7f001f0
60 #define BREAKINST_THUMB 0xde01
61 #endif
62
63 struct pt_regs_offset {
64         const char *name;
65         int offset;
66 };
67
68 #define REG_OFFSET_NAME(r) \
69         {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
70 #define REG_OFFSET_END {.name = NULL, .offset = 0}
71
72 static const struct pt_regs_offset regoffset_table[] = {
73         REG_OFFSET_NAME(r0),
74         REG_OFFSET_NAME(r1),
75         REG_OFFSET_NAME(r2),
76         REG_OFFSET_NAME(r3),
77         REG_OFFSET_NAME(r4),
78         REG_OFFSET_NAME(r5),
79         REG_OFFSET_NAME(r6),
80         REG_OFFSET_NAME(r7),
81         REG_OFFSET_NAME(r8),
82         REG_OFFSET_NAME(r9),
83         REG_OFFSET_NAME(r10),
84         REG_OFFSET_NAME(fp),
85         REG_OFFSET_NAME(ip),
86         REG_OFFSET_NAME(sp),
87         REG_OFFSET_NAME(lr),
88         REG_OFFSET_NAME(pc),
89         REG_OFFSET_NAME(cpsr),
90         REG_OFFSET_NAME(ORIG_r0),
91         REG_OFFSET_END,
92 };
93
94 /**
95  * regs_query_register_offset() - query register offset from its name
96  * @name:       the name of a register
97  *
98  * regs_query_register_offset() returns the offset of a register in struct
99  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
100  */
101 int regs_query_register_offset(const char *name)
102 {
103         const struct pt_regs_offset *roff;
104         for (roff = regoffset_table; roff->name != NULL; roff++)
105                 if (!strcmp(roff->name, name))
106                         return roff->offset;
107         return -EINVAL;
108 }
109
110 /**
111  * regs_query_register_name() - query register name from its offset
112  * @offset:     the offset of a register in struct pt_regs.
113  *
114  * regs_query_register_name() returns the name of a register from its
115  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
116  */
117 const char *regs_query_register_name(unsigned int offset)
118 {
119         const struct pt_regs_offset *roff;
120         for (roff = regoffset_table; roff->name != NULL; roff++)
121                 if (roff->offset == offset)
122                         return roff->name;
123         return NULL;
124 }
125
126 /**
127  * regs_within_kernel_stack() - check the address in the stack
128  * @regs:      pt_regs which contains kernel stack pointer.
129  * @addr:      address which is checked.
130  *
131  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
132  * If @addr is within the kernel stack, it returns true. If not, returns false.
133  */
134 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
135 {
136         return ((addr & ~(THREAD_SIZE - 1))  ==
137                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
138 }
139
140 /**
141  * regs_get_kernel_stack_nth() - get Nth entry of the stack
142  * @regs:       pt_regs which contains kernel stack pointer.
143  * @n:          stack entry number.
144  *
145  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
146  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
147  * this returns 0.
148  */
149 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
150 {
151         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
152         addr += n;
153         if (regs_within_kernel_stack(regs, (unsigned long)addr))
154                 return *addr;
155         else
156                 return 0;
157 }
158
159 /*
160  * this routine will get a word off of the processes privileged stack.
161  * the offset is how far from the base addr as stored in the THREAD.
162  * this routine assumes that all the privileged stacks are in our
163  * data space.
164  */
165 static inline long get_user_reg(struct task_struct *task, int offset)
166 {
167         return task_pt_regs(task)->uregs[offset];
168 }
169
170 /*
171  * this routine will put a word on the processes privileged stack.
172  * the offset is how far from the base addr as stored in the THREAD.
173  * this routine assumes that all the privileged stacks are in our
174  * data space.
175  */
176 static inline int
177 put_user_reg(struct task_struct *task, int offset, long data)
178 {
179         struct pt_regs newregs, *regs = task_pt_regs(task);
180         int ret = -EINVAL;
181
182         newregs = *regs;
183         newregs.uregs[offset] = data;
184
185         if (valid_user_regs(&newregs)) {
186                 regs->uregs[offset] = data;
187                 ret = 0;
188         }
189
190         return ret;
191 }
192
193 /*
194  * Called by kernel/ptrace.c when detaching..
195  */
196 void ptrace_disable(struct task_struct *child)
197 {
198         /* Nothing to do. */
199 }
200
201 /*
202  * Handle hitting a breakpoint.
203  */
204 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
205 {
206         siginfo_t info;
207
208         info.si_signo = SIGTRAP;
209         info.si_errno = 0;
210         info.si_code  = TRAP_BRKPT;
211         info.si_addr  = (void __user *)instruction_pointer(regs);
212
213         force_sig_info(SIGTRAP, &info, tsk);
214 }
215
216 static int break_trap(struct pt_regs *regs, unsigned int instr)
217 {
218         ptrace_break(current, regs);
219         return 0;
220 }
221
222 static struct undef_hook arm_break_hook = {
223         .instr_mask     = 0x0fffffff,
224         .instr_val      = 0x07f001f0,
225         .cpsr_mask      = PSR_T_BIT,
226         .cpsr_val       = 0,
227         .fn             = break_trap,
228 };
229
230 static struct undef_hook thumb_break_hook = {
231         .instr_mask     = 0xffffffff,
232         .instr_val      = 0x0000de01,
233         .cpsr_mask      = PSR_T_BIT,
234         .cpsr_val       = PSR_T_BIT,
235         .fn             = break_trap,
236 };
237
238 static struct undef_hook thumb2_break_hook = {
239         .instr_mask     = 0xffffffff,
240         .instr_val      = 0xf7f0a000,
241         .cpsr_mask      = PSR_T_BIT,
242         .cpsr_val       = PSR_T_BIT,
243         .fn             = break_trap,
244 };
245
246 static int __init ptrace_break_init(void)
247 {
248         register_undef_hook(&arm_break_hook);
249         register_undef_hook(&thumb_break_hook);
250         register_undef_hook(&thumb2_break_hook);
251         return 0;
252 }
253
254 core_initcall(ptrace_break_init);
255
256 /*
257  * Read the word at offset "off" into the "struct user".  We
258  * actually access the pt_regs stored on the kernel stack.
259  */
260 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
261                             unsigned long __user *ret)
262 {
263         unsigned long tmp;
264
265         if (off & 3)
266                 return -EIO;
267
268         tmp = 0;
269         if (off == PT_TEXT_ADDR)
270                 tmp = tsk->mm->start_code;
271         else if (off == PT_DATA_ADDR)
272                 tmp = tsk->mm->start_data;
273         else if (off == PT_TEXT_END_ADDR)
274                 tmp = tsk->mm->end_code;
275         else if (off < sizeof(struct pt_regs))
276                 tmp = get_user_reg(tsk, off >> 2);
277         else if (off >= sizeof(struct user))
278                 return -EIO;
279
280         return put_user(tmp, ret);
281 }
282
283 /*
284  * Write the word at offset "off" into "struct user".  We
285  * actually access the pt_regs stored on the kernel stack.
286  */
287 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
288                              unsigned long val)
289 {
290         if (off & 3 || off >= sizeof(struct user))
291                 return -EIO;
292
293         if (off >= sizeof(struct pt_regs))
294                 return 0;
295
296         return put_user_reg(tsk, off >> 2, val);
297 }
298
299 #ifdef CONFIG_IWMMXT
300
301 /*
302  * Get the child iWMMXt state.
303  */
304 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
305 {
306         struct thread_info *thread = task_thread_info(tsk);
307
308         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
309                 return -ENODATA;
310         iwmmxt_task_disable(thread);  /* force it to ram */
311         return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
312                 ? -EFAULT : 0;
313 }
314
315 /*
316  * Set the child iWMMXt state.
317  */
318 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
319 {
320         struct thread_info *thread = task_thread_info(tsk);
321
322         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
323                 return -EACCES;
324         iwmmxt_task_release(thread);  /* force a reload */
325         return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
326                 ? -EFAULT : 0;
327 }
328
329 #endif
330
331 #ifdef CONFIG_CRUNCH
332 /*
333  * Get the child Crunch state.
334  */
335 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
336 {
337         struct thread_info *thread = task_thread_info(tsk);
338
339         crunch_task_disable(thread);  /* force it to ram */
340         return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
341                 ? -EFAULT : 0;
342 }
343
344 /*
345  * Set the child Crunch state.
346  */
347 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
348 {
349         struct thread_info *thread = task_thread_info(tsk);
350
351         crunch_task_release(thread);  /* force a reload */
352         return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
353                 ? -EFAULT : 0;
354 }
355 #endif
356
357 #ifdef CONFIG_HAVE_HW_BREAKPOINT
358 /*
359  * Convert a virtual register number into an index for a thread_info
360  * breakpoint array. Breakpoints are identified using positive numbers
361  * whilst watchpoints are negative. The registers are laid out as pairs
362  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
363  * Register 0 is reserved for describing resource information.
364  */
365 static int ptrace_hbp_num_to_idx(long num)
366 {
367         if (num < 0)
368                 num = (ARM_MAX_BRP << 1) - num;
369         return (num - 1) >> 1;
370 }
371
372 /*
373  * Returns the virtual register number for the address of the
374  * breakpoint at index idx.
375  */
376 static long ptrace_hbp_idx_to_num(int idx)
377 {
378         long mid = ARM_MAX_BRP << 1;
379         long num = (idx << 1) + 1;
380         return num > mid ? mid - num : num;
381 }
382
383 /*
384  * Handle hitting a HW-breakpoint.
385  */
386 static void ptrace_hbptriggered(struct perf_event *bp,
387                                      struct perf_sample_data *data,
388                                      struct pt_regs *regs)
389 {
390         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
391         long num;
392         int i;
393         siginfo_t info;
394
395         for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
396                 if (current->thread.debug.hbp[i] == bp)
397                         break;
398
399         num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
400
401         info.si_signo   = SIGTRAP;
402         info.si_errno   = (int)num;
403         info.si_code    = TRAP_HWBKPT;
404         info.si_addr    = (void __user *)(bkpt->trigger);
405
406         force_sig_info(SIGTRAP, &info, current);
407 }
408
409 /*
410  * Set ptrace breakpoint pointers to zero for this task.
411  * This is required in order to prevent child processes from unregistering
412  * breakpoints held by their parent.
413  */
414 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
415 {
416         memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
417 }
418
419 /*
420  * Unregister breakpoints from this task and reset the pointers in
421  * the thread_struct.
422  */
423 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
424 {
425         int i;
426         struct thread_struct *t = &tsk->thread;
427
428         for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
429                 if (t->debug.hbp[i]) {
430                         unregister_hw_breakpoint(t->debug.hbp[i]);
431                         t->debug.hbp[i] = NULL;
432                 }
433         }
434 }
435
436 static u32 ptrace_get_hbp_resource_info(void)
437 {
438         u8 num_brps, num_wrps, debug_arch, wp_len;
439         u32 reg = 0;
440
441         num_brps        = hw_breakpoint_slots(TYPE_INST);
442         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
443         debug_arch      = arch_get_debug_arch();
444         wp_len          = arch_get_max_wp_len();
445
446         reg             |= debug_arch;
447         reg             <<= 8;
448         reg             |= wp_len;
449         reg             <<= 8;
450         reg             |= num_wrps;
451         reg             <<= 8;
452         reg             |= num_brps;
453
454         return reg;
455 }
456
457 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
458 {
459         struct perf_event_attr attr;
460
461         ptrace_breakpoint_init(&attr);
462
463         /* Initialise fields to sane defaults. */
464         attr.bp_addr    = 0;
465         attr.bp_len     = HW_BREAKPOINT_LEN_4;
466         attr.bp_type    = type;
467         attr.disabled   = 1;
468
469         return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
470                                            tsk);
471 }
472
473 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
474                              unsigned long  __user *data)
475 {
476         u32 reg;
477         int idx, ret = 0;
478         struct perf_event *bp;
479         struct arch_hw_breakpoint_ctrl arch_ctrl;
480
481         if (num == 0) {
482                 reg = ptrace_get_hbp_resource_info();
483         } else {
484                 idx = ptrace_hbp_num_to_idx(num);
485                 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
486                         ret = -EINVAL;
487                         goto out;
488                 }
489
490                 bp = tsk->thread.debug.hbp[idx];
491                 if (!bp) {
492                         reg = 0;
493                         goto put;
494                 }
495
496                 arch_ctrl = counter_arch_bp(bp)->ctrl;
497
498                 /*
499                  * Fix up the len because we may have adjusted it
500                  * to compensate for an unaligned address.
501                  */
502                 while (!(arch_ctrl.len & 0x1))
503                         arch_ctrl.len >>= 1;
504
505                 if (num & 0x1)
506                         reg = bp->attr.bp_addr;
507                 else
508                         reg = encode_ctrl_reg(arch_ctrl);
509         }
510
511 put:
512         if (put_user(reg, data))
513                 ret = -EFAULT;
514
515 out:
516         return ret;
517 }
518
519 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
520                              unsigned long __user *data)
521 {
522         int idx, gen_len, gen_type, implied_type, ret = 0;
523         u32 user_val;
524         struct perf_event *bp;
525         struct arch_hw_breakpoint_ctrl ctrl;
526         struct perf_event_attr attr;
527
528         if (num == 0)
529                 goto out;
530         else if (num < 0)
531                 implied_type = HW_BREAKPOINT_RW;
532         else
533                 implied_type = HW_BREAKPOINT_X;
534
535         idx = ptrace_hbp_num_to_idx(num);
536         if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
537                 ret = -EINVAL;
538                 goto out;
539         }
540
541         if (get_user(user_val, data)) {
542                 ret = -EFAULT;
543                 goto out;
544         }
545
546         bp = tsk->thread.debug.hbp[idx];
547         if (!bp) {
548                 bp = ptrace_hbp_create(tsk, implied_type);
549                 if (IS_ERR(bp)) {
550                         ret = PTR_ERR(bp);
551                         goto out;
552                 }
553                 tsk->thread.debug.hbp[idx] = bp;
554         }
555
556         attr = bp->attr;
557
558         if (num & 0x1) {
559                 /* Address */
560                 attr.bp_addr    = user_val;
561         } else {
562                 /* Control */
563                 decode_ctrl_reg(user_val, &ctrl);
564                 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
565                 if (ret)
566                         goto out;
567
568                 if ((gen_type & implied_type) != gen_type) {
569                         ret = -EINVAL;
570                         goto out;
571                 }
572
573                 attr.bp_len     = gen_len;
574                 attr.bp_type    = gen_type;
575                 attr.disabled   = !ctrl.enabled;
576         }
577
578         ret = modify_user_hw_breakpoint(bp, &attr);
579 out:
580         return ret;
581 }
582 #endif
583
584 /* regset get/set implementations */
585
586 static int gpr_get(struct task_struct *target,
587                    const struct user_regset *regset,
588                    unsigned int pos, unsigned int count,
589                    void *kbuf, void __user *ubuf)
590 {
591         struct pt_regs *regs = task_pt_regs(target);
592
593         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
594                                    regs,
595                                    0, sizeof(*regs));
596 }
597
598 static int gpr_set(struct task_struct *target,
599                    const struct user_regset *regset,
600                    unsigned int pos, unsigned int count,
601                    const void *kbuf, const void __user *ubuf)
602 {
603         int ret;
604         struct pt_regs newregs = *task_pt_regs(target);
605
606         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
607                                  &newregs,
608                                  0, sizeof(newregs));
609         if (ret)
610                 return ret;
611
612         if (!valid_user_regs(&newregs))
613                 return -EINVAL;
614
615         *task_pt_regs(target) = newregs;
616         return 0;
617 }
618
619 static int fpa_get(struct task_struct *target,
620                    const struct user_regset *regset,
621                    unsigned int pos, unsigned int count,
622                    void *kbuf, void __user *ubuf)
623 {
624         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
625                                    &task_thread_info(target)->fpstate,
626                                    0, sizeof(struct user_fp));
627 }
628
629 static int fpa_set(struct task_struct *target,
630                    const struct user_regset *regset,
631                    unsigned int pos, unsigned int count,
632                    const void *kbuf, const void __user *ubuf)
633 {
634         struct thread_info *thread = task_thread_info(target);
635
636         thread->used_cp[1] = thread->used_cp[2] = 1;
637
638         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
639                 &thread->fpstate,
640                 0, sizeof(struct user_fp));
641 }
642
643 #ifdef CONFIG_VFP
644 /*
645  * VFP register get/set implementations.
646  *
647  * With respect to the kernel, struct user_fp is divided into three chunks:
648  * 16 or 32 real VFP registers (d0-d15 or d0-31)
649  *      These are transferred to/from the real registers in the task's
650  *      vfp_hard_struct.  The number of registers depends on the kernel
651  *      configuration.
652  *
653  * 16 or 0 fake VFP registers (d16-d31 or empty)
654  *      i.e., the user_vfp structure has space for 32 registers even if
655  *      the kernel doesn't have them all.
656  *
657  *      vfp_get() reads this chunk as zero where applicable
658  *      vfp_set() ignores this chunk
659  *
660  * 1 word for the FPSCR
661  *
662  * The bounds-checking logic built into user_regset_copyout and friends
663  * means that we can make a simple sequence of calls to map the relevant data
664  * to/from the specified slice of the user regset structure.
665  */
666 static int vfp_get(struct task_struct *target,
667                    const struct user_regset *regset,
668                    unsigned int pos, unsigned int count,
669                    void *kbuf, void __user *ubuf)
670 {
671         int ret;
672         struct thread_info *thread = task_thread_info(target);
673         struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
674         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
675         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
676
677         vfp_sync_hwstate(thread);
678
679         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
680                                   &vfp->fpregs,
681                                   user_fpregs_offset,
682                                   user_fpregs_offset + sizeof(vfp->fpregs));
683         if (ret)
684                 return ret;
685
686         ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
687                                        user_fpregs_offset + sizeof(vfp->fpregs),
688                                        user_fpscr_offset);
689         if (ret)
690                 return ret;
691
692         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
693                                    &vfp->fpscr,
694                                    user_fpscr_offset,
695                                    user_fpscr_offset + sizeof(vfp->fpscr));
696 }
697
698 /*
699  * For vfp_set() a read-modify-write is done on the VFP registers,
700  * in order to avoid writing back a half-modified set of registers on
701  * failure.
702  */
703 static int vfp_set(struct task_struct *target,
704                           const struct user_regset *regset,
705                           unsigned int pos, unsigned int count,
706                           const void *kbuf, const void __user *ubuf)
707 {
708         int ret;
709         struct thread_info *thread = task_thread_info(target);
710         struct vfp_hard_struct new_vfp;
711         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
712         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
713
714         vfp_sync_hwstate(thread);
715         new_vfp = thread->vfpstate.hard;
716
717         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
718                                   &new_vfp.fpregs,
719                                   user_fpregs_offset,
720                                   user_fpregs_offset + sizeof(new_vfp.fpregs));
721         if (ret)
722                 return ret;
723
724         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
725                                 user_fpregs_offset + sizeof(new_vfp.fpregs),
726                                 user_fpscr_offset);
727         if (ret)
728                 return ret;
729
730         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
731                                  &new_vfp.fpscr,
732                                  user_fpscr_offset,
733                                  user_fpscr_offset + sizeof(new_vfp.fpscr));
734         if (ret)
735                 return ret;
736
737         thread->vfpstate.hard = new_vfp;
738         vfp_flush_hwstate(thread);
739
740         return 0;
741 }
742 #endif /* CONFIG_VFP */
743
744 enum arm_regset {
745         REGSET_GPR,
746         REGSET_FPR,
747 #ifdef CONFIG_VFP
748         REGSET_VFP,
749 #endif
750 };
751
752 static const struct user_regset arm_regsets[] = {
753         [REGSET_GPR] = {
754                 .core_note_type = NT_PRSTATUS,
755                 .n = ELF_NGREG,
756                 .size = sizeof(u32),
757                 .align = sizeof(u32),
758                 .get = gpr_get,
759                 .set = gpr_set
760         },
761         [REGSET_FPR] = {
762                 /*
763                  * For the FPA regs in fpstate, the real fields are a mixture
764                  * of sizes, so pretend that the registers are word-sized:
765                  */
766                 .core_note_type = NT_PRFPREG,
767                 .n = sizeof(struct user_fp) / sizeof(u32),
768                 .size = sizeof(u32),
769                 .align = sizeof(u32),
770                 .get = fpa_get,
771                 .set = fpa_set
772         },
773 #ifdef CONFIG_VFP
774         [REGSET_VFP] = {
775                 /*
776                  * Pretend that the VFP regs are word-sized, since the FPSCR is
777                  * a single word dangling at the end of struct user_vfp:
778                  */
779                 .core_note_type = NT_ARM_VFP,
780                 .n = ARM_VFPREGS_SIZE / sizeof(u32),
781                 .size = sizeof(u32),
782                 .align = sizeof(u32),
783                 .get = vfp_get,
784                 .set = vfp_set
785         },
786 #endif /* CONFIG_VFP */
787 };
788
789 static const struct user_regset_view user_arm_view = {
790         .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
791         .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
792 };
793
794 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
795 {
796         return &user_arm_view;
797 }
798
799 long arch_ptrace(struct task_struct *child, long request,
800                  unsigned long addr, unsigned long data)
801 {
802         int ret;
803         unsigned long __user *datap = (unsigned long __user *) data;
804
805         switch (request) {
806                 case PTRACE_PEEKUSR:
807                         ret = ptrace_read_user(child, addr, datap);
808                         break;
809
810                 case PTRACE_POKEUSR:
811                         ret = ptrace_write_user(child, addr, data);
812                         break;
813
814                 case PTRACE_GETREGS:
815                         ret = copy_regset_to_user(child,
816                                                   &user_arm_view, REGSET_GPR,
817                                                   0, sizeof(struct pt_regs),
818                                                   datap);
819                         break;
820
821                 case PTRACE_SETREGS:
822                         ret = copy_regset_from_user(child,
823                                                     &user_arm_view, REGSET_GPR,
824                                                     0, sizeof(struct pt_regs),
825                                                     datap);
826                         break;
827
828                 case PTRACE_GETFPREGS:
829                         ret = copy_regset_to_user(child,
830                                                   &user_arm_view, REGSET_FPR,
831                                                   0, sizeof(union fp_state),
832                                                   datap);
833                         break;
834
835                 case PTRACE_SETFPREGS:
836                         ret = copy_regset_from_user(child,
837                                                     &user_arm_view, REGSET_FPR,
838                                                     0, sizeof(union fp_state),
839                                                     datap);
840                         break;
841
842 #ifdef CONFIG_IWMMXT
843                 case PTRACE_GETWMMXREGS:
844                         ret = ptrace_getwmmxregs(child, datap);
845                         break;
846
847                 case PTRACE_SETWMMXREGS:
848                         ret = ptrace_setwmmxregs(child, datap);
849                         break;
850 #endif
851
852                 case PTRACE_GET_THREAD_AREA:
853                         ret = put_user(task_thread_info(child)->tp_value[0],
854                                        datap);
855                         break;
856
857                 case PTRACE_SET_SYSCALL:
858                         task_thread_info(child)->syscall = data;
859                         ret = 0;
860                         break;
861
862 #ifdef CONFIG_CRUNCH
863                 case PTRACE_GETCRUNCHREGS:
864                         ret = ptrace_getcrunchregs(child, datap);
865                         break;
866
867                 case PTRACE_SETCRUNCHREGS:
868                         ret = ptrace_setcrunchregs(child, datap);
869                         break;
870 #endif
871
872 #ifdef CONFIG_VFP
873                 case PTRACE_GETVFPREGS:
874                         ret = copy_regset_to_user(child,
875                                                   &user_arm_view, REGSET_VFP,
876                                                   0, ARM_VFPREGS_SIZE,
877                                                   datap);
878                         break;
879
880                 case PTRACE_SETVFPREGS:
881                         ret = copy_regset_from_user(child,
882                                                     &user_arm_view, REGSET_VFP,
883                                                     0, ARM_VFPREGS_SIZE,
884                                                     datap);
885                         break;
886 #endif
887
888 #ifdef CONFIG_HAVE_HW_BREAKPOINT
889                 case PTRACE_GETHBPREGS:
890                         ret = ptrace_gethbpregs(child, addr,
891                                                 (unsigned long __user *)data);
892                         break;
893                 case PTRACE_SETHBPREGS:
894                         ret = ptrace_sethbpregs(child, addr,
895                                                 (unsigned long __user *)data);
896                         break;
897 #endif
898
899                 default:
900                         ret = ptrace_request(child, request, addr, data);
901                         break;
902         }
903
904         return ret;
905 }
906
907 enum ptrace_syscall_dir {
908         PTRACE_SYSCALL_ENTER = 0,
909         PTRACE_SYSCALL_EXIT,
910 };
911
912 static void tracehook_report_syscall(struct pt_regs *regs,
913                                     enum ptrace_syscall_dir dir)
914 {
915         unsigned long ip;
916
917         /*
918          * IP is used to denote syscall entry/exit:
919          * IP = 0 -> entry, =1 -> exit
920          */
921         ip = regs->ARM_ip;
922         regs->ARM_ip = dir;
923
924         if (dir == PTRACE_SYSCALL_EXIT)
925                 tracehook_report_syscall_exit(regs, 0);
926         else if (tracehook_report_syscall_entry(regs))
927                 current_thread_info()->syscall = -1;
928
929         regs->ARM_ip = ip;
930 }
931
932 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
933 {
934         current_thread_info()->syscall = scno;
935
936         if (test_thread_flag(TIF_SYSCALL_TRACE))
937                 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
938
939         /* Do seccomp after ptrace; syscall may have changed. */
940 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
941         if (secure_computing(NULL) == -1)
942                 return -1;
943 #else
944         /* XXX: remove this once OABI gets fixed */
945         secure_computing_strict(current_thread_info()->syscall);
946 #endif
947
948         /* Tracer or seccomp may have changed syscall. */
949         scno = current_thread_info()->syscall;
950
951         if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
952                 trace_sys_enter(regs, scno);
953
954         audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
955                             regs->ARM_r3);
956
957         return scno;
958 }
959
960 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
961 {
962         /*
963          * Audit the syscall before anything else, as a debugger may
964          * come in and change the current registers.
965          */
966         audit_syscall_exit(regs);
967
968         /*
969          * Note that we haven't updated the ->syscall field for the
970          * current thread. This isn't a problem because it will have
971          * been set on syscall entry and there hasn't been an opportunity
972          * for a PTRACE_SET_SYSCALL since then.
973          */
974         if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
975                 trace_sys_exit(regs, regs_return_value(regs));
976
977         if (test_thread_flag(TIF_SYSCALL_TRACE))
978                 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
979 }