2 * arch/alpha/lib/stxncpy.S
3 * Contributed by Richard Henderson (rth@tamu.edu)
5 * Copy no more than COUNT bytes of the null-terminated string from
8 * This is an internal routine used by strncpy, stpncpy, and strncat.
9 * As such, it uses special linkage conventions to make implementation
10 * of these public functions more efficient.
18 * Furthermore, COUNT may not be zero.
21 * t0 = last word written
22 * t10 = bitmask (with one bit set) indicating the byte position of
23 * the end of the range specified by COUNT
24 * t12 = bitmask (with one bit set) indicating the last byte written
25 * a0 = unaligned address of the last *word* written
26 * a2 = the number of full words left in COUNT
28 * Furthermore, v0, a3-a5, t11, and $at are untouched.
31 #include <asm/regdef.h>
38 /* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
39 doesn't like putting the entry point for a procedure somewhere in the
40 middle of the procedure descriptor. Work around this by putting the
41 aligned copy in its own procedure descriptor */
49 /* On entry to this basic block:
50 t0 == the first destination word for masking back in
51 t1 == the first source word. */
53 /* Create the 1st output word and detect 0's in the 1st input word. */
54 lda t2, -1 # e1 : build a mask against false zero
55 mskqh t2, a1, t2 # e0 : detection in the src word
56 mskqh t1, a1, t3 # e0 :
57 ornot t1, t2, t2 # .. e1 :
58 mskql t0, a1, t0 # e0 : assemble the first output word
59 cmpbge zero, t2, t8 # .. e1 : bits set iff null found
61 beq a2, $a_eoc # .. e1 :
62 bne t8, $a_eos # .. e1 :
64 /* On entry to this basic block:
65 t0 == a source word not containing a null. */
68 stq_u t0, 0(a0) # e0 :
69 addq a0, 8, a0 # .. e1 :
70 ldq_u t0, 0(a1) # e0 :
71 addq a1, 8, a1 # .. e1 :
73 cmpbge zero, t0, t8 # .. e1 (stall)
75 beq t8, $a_loop # e1 :
77 /* Take care of the final (partial) word store. At this point
78 the end-of-count bit is set in t8 iff it applies.
80 On entry to this basic block we have:
81 t0 == the source word containing the null
82 t8 == the cmpbge mask that found it. */
85 negq t8, t12 # e0 : find low bit set
86 and t8, t12, t12 # e1 (stall)
88 /* For the sake of the cache, don't read a destination word
89 if we're not going to need it. */
90 and t12, 0x80, t6 # e0 :
91 bne t6, 1f # .. e1 (zdb)
93 /* We're doing a partial word store and so need to combine
94 our source and original destination words. */
95 ldq_u t1, 0(a0) # e0 :
96 subq t12, 1, t6 # .. e1 :
99 zapnot t0, t8, t0 # e0 : clear src bytes > null
100 zap t1, t8, t1 # .. e1 : clear dst bytes <= null
103 1: stq_u t0, 0(a0) # e0 :
106 /* Add the end-of-count bit to the eos detection bitmask. */
120 /* Are source and destination co-aligned? */
121 xor a0, a1, t1 # e0 :
122 and a0, 7, t0 # .. e1 : find dest misalignment
124 addq a2, t0, a2 # .. e1 : bias count by dest misalignment
125 subq a2, 1, a2 # e0 :
127 srl a2, 3, a2 # e0 : a2 = loop counter = (count - 1)/8
128 addq zero, 1, t10 # .. e1 :
129 sll t10, t2, t10 # e0 : t10 = bitmask of last count byte
130 bne t1, $unaligned # .. e1 :
132 /* We are co-aligned; take care of a partial first word. */
134 ldq_u t1, 0(a1) # e0 : load first src word
135 addq a1, 8, a1 # .. e1 :
137 beq t0, stxncpy_aligned # avoid loading dest word if not needed
138 ldq_u t0, 0(a0) # e0 :
139 br stxncpy_aligned # .. e1 :
142 /* The source and destination are not co-aligned. Align the destination
143 and cope. We have to be very careful about not reading too much and
148 /* We know just enough now to be able to assemble the first
149 full source word. We can still find a zero at the end of it
150 that prevents us from outputting the whole thing.
152 On entry to this basic block:
153 t0 == the first dest word, unmasked
154 t1 == the shifted low bits of the first source word
155 t6 == bytemask that is -1 in dest word bytes */
157 ldq_u t2, 8(a1) # e0 : load second src word
158 addq a1, 8, a1 # .. e1 :
159 mskql t0, a0, t0 # e0 : mask trailing garbage in dst
160 extqh t2, a1, t4 # e0 :
161 or t1, t4, t1 # e1 : first aligned src word complete
162 mskqh t1, a0, t1 # e0 : mask leading garbage in src
163 or t0, t1, t0 # e0 : first output word complete
164 or t0, t6, t6 # e1 : mask original data for zero test
165 cmpbge zero, t6, t8 # e0 :
166 beq a2, $u_eocfin # .. e1 :
168 bne t8, $u_final # .. e1 :
170 mskql t6, a1, t6 # e0 : mask out bits already seen
172 stq_u t0, 0(a0) # e0 : store first output word
173 or t6, t2, t2 # .. e1 :
174 cmpbge zero, t2, t8 # e0 : find nulls in second partial
175 addq a0, 8, a0 # .. e1 :
176 subq a2, 1, a2 # e0 :
177 bne t8, $u_late_head_exit # .. e1 :
179 /* Finally, we've got all the stupid leading edge cases taken care
180 of and we can set up to enter the main loop. */
182 extql t2, a1, t1 # e0 : position hi-bits of lo word
183 beq a2, $u_eoc # .. e1 :
184 ldq_u t2, 8(a1) # e0 : read next high-order source word
185 addq a1, 8, a1 # .. e1 :
186 extqh t2, a1, t0 # e0 : position lo-bits of hi word (stall)
187 cmpbge zero, t2, t8 # .. e1 :
189 bne t8, $u_eos # .. e1 :
191 /* Unaligned copy main loop. In order to avoid reading too much,
192 the loop is structured to detect zeros in aligned source words.
193 This has, unfortunately, effectively pulled half of a loop
194 iteration out into the head and half into the tail, but it does
195 prevent nastiness from accumulating in the very thing we want
196 to run as fast as possible.
198 On entry to this basic block:
199 t0 == the shifted low-order bits from the current source word
200 t1 == the shifted high-order bits from the previous source word
201 t2 == the unshifted current source word
203 We further know that t2 does not contain a null terminator. */
207 or t0, t1, t0 # e0 : current dst word now complete
208 subq a2, 1, a2 # .. e1 : decrement word count
209 stq_u t0, 0(a0) # e0 : save the current word
210 addq a0, 8, a0 # .. e1 :
211 extql t2, a1, t1 # e0 : extract high bits for next time
212 beq a2, $u_eoc # .. e1 :
213 ldq_u t2, 8(a1) # e0 : load high word for next time
214 addq a1, 8, a1 # .. e1 :
216 cmpbge zero, t2, t8 # e1 : test new word for eos (stall)
217 extqh t2, a1, t0 # e0 : extract low bits for current word
218 beq t8, $u_loop # .. e1 :
220 /* We've found a zero somewhere in the source word we just read.
221 If it resides in the lower half, we have one (probably partial)
222 word to write out, and if it resides in the upper half, we
223 have one full and one partial word left to write out.
225 On entry to this basic block:
226 t0 == the shifted low-order bits from the current source word
227 t1 == the shifted high-order bits from the previous source word
228 t2 == the unshifted current source word. */
230 or t0, t1, t0 # e0 : first (partial) source word complete
232 cmpbge zero, t0, t8 # e0 : is the null in this first bit?
233 bne t8, $u_final # .. e1 (zdb)
235 stq_u t0, 0(a0) # e0 : the null was in the high-order bits
236 addq a0, 8, a0 # .. e1 :
237 subq a2, 1, a2 # e1 :
240 extql t2, a1, t0 # .. e0 :
241 cmpbge zero, t0, t8 # e0 :
242 or t8, t10, t6 # e1 :
243 cmoveq a2, t6, t8 # e0 :
246 /* Take care of a final (probably partial) result word.
247 On entry to this basic block:
248 t0 == assembled source word
249 t8 == cmpbge mask that found the null. */
251 negq t8, t6 # e0 : isolate low bit set
252 and t6, t8, t12 # e1 :
254 and t12, 0x80, t6 # e0 : avoid dest word load if we can
255 bne t6, 1f # .. e1 (zdb)
257 ldq_u t1, 0(a0) # e0 :
258 subq t12, 1, t6 # .. e1 :
259 or t6, t12, t8 # e0 :
260 zapnot t0, t8, t0 # .. e1 : kill source bytes > null
261 zap t1, t8, t1 # e0 : kill dest bytes <= null
264 1: stq_u t0, 0(a0) # e0 :
267 /* Got to end-of-count before end of string.
268 On entry to this basic block:
269 t1 == the shifted high-order bits from the previous source word */
272 sll t10, t6, t6 # e0 :
273 and t6, 0xff, t6 # e0 :
276 ldq_u t2, 8(a1) # e0 : load final src word
278 extqh t2, a1, t0 # e0 : extract low bits for last word
281 1: cmpbge zero, t1, t8
284 $u_eocfin: # end-of-count, final word
288 /* Unaligned copy entry point. */
292 ldq_u t1, 0(a1) # e0 : load first source word
294 and a0, 7, t4 # .. e1 : find dest misalignment
295 and a1, 7, t5 # e0 : find src misalignment
297 /* Conditionally load the first destination word and a bytemask
298 with 0xff indicating that the destination byte is sacrosanct. */
300 mov zero, t0 # .. e1 :
303 ldq_u t0, 0(a0) # e0 :
305 mskql t6, a0, t6 # e0 :
306 subq a1, t4, a1 # .. e1 : sub dest misalignment from src addr
308 /* If source misalignment is larger than dest misalignment, we need
309 extra startup checks to avoid SEGV. */
311 1: cmplt t4, t5, t12 # e1 :
312 extql t1, a1, t1 # .. e0 : shift src into place
313 lda t2, -1 # e0 : for creating masks later
314 beq t12, $u_head # .. e1 :
316 extql t2, a1, t2 # e0 :
317 cmpbge zero, t1, t8 # .. e1 : is there a zero?
318 andnot t2, t6, t2 # e0 : dest mask for a single word copy
319 or t8, t10, t5 # .. e1 : test for end-of-count too
320 cmpbge zero, t2, t3 # e0 :
321 cmoveq a2, t5, t8 # .. e1 :
322 andnot t8, t3, t8 # e0 :
323 beq t8, $u_head # .. e1 (zdb)
325 /* At this point we've found a zero in the first partial word of
326 the source. We need to isolate the valid source data and mask
327 it into the original destination data. (Incidentally, we know
328 that we'll need at least one byte of that original dest word.) */
330 ldq_u t0, 0(a0) # e0 :
331 negq t8, t6 # .. e1 : build bitmask of bytes <= zero
332 mskqh t1, t4, t1 # e0 :
333 and t6, t8, t12 # .. e1 :
334 subq t12, 1, t6 # e0 :
335 or t6, t12, t8 # e1 :
337 zapnot t2, t8, t2 # e0 : prepare source word; mirror changes
338 zapnot t1, t8, t1 # .. e1 : to source validity mask
340 andnot t0, t2, t0 # e0 : zero place for source to reside
341 or t0, t1, t0 # e1 : and put it there
342 stq_u t0, 0(a0) # e0 :