1 .. _overcommit_accounting:
7 The Linux kernel supports the following overcommit handling modes
10 Heuristic overcommit handling. Obvious overcommits of address
11 space are refused. Used for a typical system. It ensures a
12 seriously wild allocation fails while allowing overcommit to
13 reduce swap usage. root is allowed to allocate slightly more
14 memory in this mode. This is the default.
17 Always overcommit. Appropriate for some scientific
18 applications. Classic example is code using sparse arrays and
19 just relying on the virtual memory consisting almost entirely
23 Don't overcommit. The total address space commit for the
24 system is not permitted to exceed swap + a configurable amount
25 (default is 50%) of physical RAM. Depending on the amount you
26 use, in most situations this means a process will not be
27 killed while accessing pages but will receive errors on memory
28 allocation as appropriate.
30 Useful for applications that want to guarantee their memory
31 allocations will be available in the future without having to
32 initialize every page.
34 The overcommit policy is set via the sysctl ``vm.overcommit_memory``.
36 The overcommit amount can be set via ``vm.overcommit_ratio`` (percentage)
37 or ``vm.overcommit_kbytes`` (absolute value).
39 The current overcommit limit and amount committed are viewable in
40 ``/proc/meminfo`` as CommitLimit and Committed_AS respectively.
45 The C language stack growth does an implicit mremap. If you want absolute
46 guarantees and run close to the edge you MUST mmap your stack for the
47 largest size you think you will need. For typical stack usage this does
48 not matter much but it's a corner case if you really really care
50 In mode 2 the MAP_NORESERVE flag is ignored.
56 The overcommit is based on the following rules
59 | SHARED or READ-only - 0 cost (the file is the map not swap)
60 | PRIVATE WRITABLE - size of mapping per instance
62 For an anonymous or ``/dev/zero`` map
63 | SHARED - size of mapping
64 | PRIVATE READ-only - 0 cost (but of little use)
65 | PRIVATE WRITABLE - size of mapping per instance
68 | Pages made writable copies by mmap
69 | shmfs memory drawn from the same pool
74 * We account mmap memory mappings
75 * We account mprotect changes in commit
76 * We account mremap changes in size
79 * We report the commit status in /proc
80 * Account and check on fork
81 * Review stack handling/building on exec
83 * Implement actual limit enforcement
87 * Account ptrace pages (this is hard)