arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / Documentation / virt / kvm / devices / vcpu.rst
1 .. SPDX-License-Identifier: GPL-2.0
2
3 ======================
4 Generic vcpu interface
5 ======================
6
7 The virtual cpu "device" also accepts the ioctls KVM_SET_DEVICE_ATTR,
8 KVM_GET_DEVICE_ATTR, and KVM_HAS_DEVICE_ATTR. The interface uses the same struct
9 kvm_device_attr as other devices, but targets VCPU-wide settings and controls.
10
11 The groups and attributes per virtual cpu, if any, are architecture specific.
12
13 1. GROUP: KVM_ARM_VCPU_PMU_V3_CTRL
14 ==================================
15
16 :Architectures: ARM64
17
18 1.1. ATTRIBUTE: KVM_ARM_VCPU_PMU_V3_IRQ
19 ---------------------------------------
20
21 :Parameters: in kvm_device_attr.addr the address for PMU overflow interrupt is a
22              pointer to an int
23
24 Returns:
25
26          =======  ========================================================
27          -EBUSY   The PMU overflow interrupt is already set
28          -EFAULT  Error reading interrupt number
29          -ENXIO   PMUv3 not supported or the overflow interrupt not set
30                   when attempting to get it
31          -ENODEV  KVM_ARM_VCPU_PMU_V3 feature missing from VCPU
32          -EINVAL  Invalid PMU overflow interrupt number supplied or
33                   trying to set the IRQ number without using an in-kernel
34                   irqchip.
35          =======  ========================================================
36
37 A value describing the PMUv3 (Performance Monitor Unit v3) overflow interrupt
38 number for this vcpu. This interrupt could be a PPI or SPI, but the interrupt
39 type must be same for each vcpu. As a PPI, the interrupt number is the same for
40 all vcpus, while as an SPI it must be a separate number per vcpu.
41
42 1.2 ATTRIBUTE: KVM_ARM_VCPU_PMU_V3_INIT
43 ---------------------------------------
44
45 :Parameters: no additional parameter in kvm_device_attr.addr
46
47 Returns:
48
49          =======  ======================================================
50          -EEXIST  Interrupt number already used
51          -ENODEV  PMUv3 not supported or GIC not initialized
52          -ENXIO   PMUv3 not supported, missing VCPU feature or interrupt
53                   number not set
54          -EBUSY   PMUv3 already initialized
55          =======  ======================================================
56
57 Request the initialization of the PMUv3.  If using the PMUv3 with an in-kernel
58 virtual GIC implementation, this must be done after initializing the in-kernel
59 irqchip.
60
61 1.3 ATTRIBUTE: KVM_ARM_VCPU_PMU_V3_FILTER
62 -----------------------------------------
63
64 :Parameters: in kvm_device_attr.addr the address for a PMU event filter is a
65              pointer to a struct kvm_pmu_event_filter
66
67 :Returns:
68
69          =======  ======================================================
70          -ENODEV  PMUv3 not supported or GIC not initialized
71          -ENXIO   PMUv3 not properly configured or in-kernel irqchip not
72                   configured as required prior to calling this attribute
73          -EBUSY   PMUv3 already initialized or a VCPU has already run
74          -EINVAL  Invalid filter range
75          =======  ======================================================
76
77 Request the installation of a PMU event filter described as follows::
78
79     struct kvm_pmu_event_filter {
80             __u16       base_event;
81             __u16       nevents;
82
83     #define KVM_PMU_EVENT_ALLOW 0
84     #define KVM_PMU_EVENT_DENY  1
85
86             __u8        action;
87             __u8        pad[3];
88     };
89
90 A filter range is defined as the range [@base_event, @base_event + @nevents),
91 together with an @action (KVM_PMU_EVENT_ALLOW or KVM_PMU_EVENT_DENY). The
92 first registered range defines the global policy (global ALLOW if the first
93 @action is DENY, global DENY if the first @action is ALLOW). Multiple ranges
94 can be programmed, and must fit within the event space defined by the PMU
95 architecture (10 bits on ARMv8.0, 16 bits from ARMv8.1 onwards).
96
97 Note: "Cancelling" a filter by registering the opposite action for the same
98 range doesn't change the default action. For example, installing an ALLOW
99 filter for event range [0:10) as the first filter and then applying a DENY
100 action for the same range will leave the whole range as disabled.
101
102 Restrictions: Event 0 (SW_INCR) is never filtered, as it doesn't count a
103 hardware event. Filtering event 0x1E (CHAIN) has no effect either, as it
104 isn't strictly speaking an event. Filtering the cycle counter is possible
105 using event 0x11 (CPU_CYCLES).
106
107 1.4 ATTRIBUTE: KVM_ARM_VCPU_PMU_V3_SET_PMU
108 ------------------------------------------
109
110 :Parameters: in kvm_device_attr.addr the address to an int representing the PMU
111              identifier.
112
113 :Returns:
114
115          =======  ====================================================
116          -EBUSY   PMUv3 already initialized, a VCPU has already run or
117                   an event filter has already been set
118          -EFAULT  Error accessing the PMU identifier
119          -ENXIO   PMU not found
120          -ENODEV  PMUv3 not supported or GIC not initialized
121          -ENOMEM  Could not allocate memory
122          =======  ====================================================
123
124 Request that the VCPU uses the specified hardware PMU when creating guest events
125 for the purpose of PMU emulation. The PMU identifier can be read from the "type"
126 file for the desired PMU instance under /sys/devices (or, equivalent,
127 /sys/bus/even_source). This attribute is particularly useful on heterogeneous
128 systems where there are at least two CPU PMUs on the system. The PMU that is set
129 for one VCPU will be used by all the other VCPUs. It isn't possible to set a PMU
130 if a PMU event filter is already present.
131
132 Note that KVM will not make any attempts to run the VCPU on the physical CPUs
133 associated with the PMU specified by this attribute. This is entirely left to
134 userspace. However, attempting to run the VCPU on a physical CPU not supported
135 by the PMU will fail and KVM_RUN will return with
136 exit_reason = KVM_EXIT_FAIL_ENTRY and populate the fail_entry struct by setting
137 hardare_entry_failure_reason field to KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED and
138 the cpu field to the processor id.
139
140 2. GROUP: KVM_ARM_VCPU_TIMER_CTRL
141 =================================
142
143 :Architectures: ARM64
144
145 2.1. ATTRIBUTES: KVM_ARM_VCPU_TIMER_IRQ_VTIMER, KVM_ARM_VCPU_TIMER_IRQ_PTIMER
146 -----------------------------------------------------------------------------
147
148 :Parameters: in kvm_device_attr.addr the address for the timer interrupt is a
149              pointer to an int
150
151 Returns:
152
153          =======  =================================
154          -EINVAL  Invalid timer interrupt number
155          -EBUSY   One or more VCPUs has already run
156          =======  =================================
157
158 A value describing the architected timer interrupt number when connected to an
159 in-kernel virtual GIC.  These must be a PPI (16 <= intid < 32).  Setting the
160 attribute overrides the default values (see below).
161
162 =============================  ==========================================
163 KVM_ARM_VCPU_TIMER_IRQ_VTIMER  The EL1 virtual timer intid (default: 27)
164 KVM_ARM_VCPU_TIMER_IRQ_PTIMER  The EL1 physical timer intid (default: 30)
165 =============================  ==========================================
166
167 Setting the same PPI for different timers will prevent the VCPUs from running.
168 Setting the interrupt number on a VCPU configures all VCPUs created at that
169 time to use the number provided for a given timer, overwriting any previously
170 configured values on other VCPUs.  Userspace should configure the interrupt
171 numbers on at least one VCPU after creating all VCPUs and before running any
172 VCPUs.
173
174 .. _kvm_arm_vcpu_pvtime_ctrl:
175
176 3. GROUP: KVM_ARM_VCPU_PVTIME_CTRL
177 ==================================
178
179 :Architectures: ARM64
180
181 3.1 ATTRIBUTE: KVM_ARM_VCPU_PVTIME_IPA
182 --------------------------------------
183
184 :Parameters: 64-bit base address
185
186 Returns:
187
188          =======  ======================================
189          -ENXIO   Stolen time not implemented
190          -EEXIST  Base address already set for this VCPU
191          -EINVAL  Base address not 64 byte aligned
192          =======  ======================================
193
194 Specifies the base address of the stolen time structure for this VCPU. The
195 base address must be 64 byte aligned and exist within a valid guest memory
196 region. See Documentation/virt/kvm/arm/pvtime.rst for more information
197 including the layout of the stolen time structure.
198
199 4. GROUP: KVM_VCPU_TSC_CTRL
200 ===========================
201
202 :Architectures: x86
203
204 4.1 ATTRIBUTE: KVM_VCPU_TSC_OFFSET
205
206 :Parameters: 64-bit unsigned TSC offset
207
208 Returns:
209
210          ======= ======================================
211          -EFAULT Error reading/writing the provided
212                  parameter address.
213          -ENXIO  Attribute not supported
214          ======= ======================================
215
216 Specifies the guest's TSC offset relative to the host's TSC. The guest's
217 TSC is then derived by the following equation:
218
219   guest_tsc = host_tsc + KVM_VCPU_TSC_OFFSET
220
221 This attribute is useful to adjust the guest's TSC on live migration,
222 so that the TSC counts the time during which the VM was paused. The
223 following describes a possible algorithm to use for this purpose.
224
225 From the source VMM process:
226
227 1. Invoke the KVM_GET_CLOCK ioctl to record the host TSC (tsc_src),
228    kvmclock nanoseconds (guest_src), and host CLOCK_REALTIME nanoseconds
229    (host_src).
230
231 2. Read the KVM_VCPU_TSC_OFFSET attribute for every vCPU to record the
232    guest TSC offset (ofs_src[i]).
233
234 3. Invoke the KVM_GET_TSC_KHZ ioctl to record the frequency of the
235    guest's TSC (freq).
236
237 From the destination VMM process:
238
239 4. Invoke the KVM_SET_CLOCK ioctl, providing the source nanoseconds from
240    kvmclock (guest_src) and CLOCK_REALTIME (host_src) in their respective
241    fields.  Ensure that the KVM_CLOCK_REALTIME flag is set in the provided
242    structure.
243
244    KVM will advance the VM's kvmclock to account for elapsed time since
245    recording the clock values.  Note that this will cause problems in
246    the guest (e.g., timeouts) unless CLOCK_REALTIME is synchronized
247    between the source and destination, and a reasonably short time passes
248    between the source pausing the VMs and the destination executing
249    steps 4-7.
250
251 5. Invoke the KVM_GET_CLOCK ioctl to record the host TSC (tsc_dest) and
252    kvmclock nanoseconds (guest_dest).
253
254 6. Adjust the guest TSC offsets for every vCPU to account for (1) time
255    elapsed since recording state and (2) difference in TSCs between the
256    source and destination machine:
257
258    ofs_dst[i] = ofs_src[i] -
259      (guest_src - guest_dest) * freq +
260      (tsc_src - tsc_dest)
261
262    ("ofs[i] + tsc - guest * freq" is the guest TSC value corresponding to
263    a time of 0 in kvmclock.  The above formula ensures that it is the
264    same on the destination as it was on the source).
265
266 7. Write the KVM_VCPU_TSC_OFFSET attribute for every vCPU with the
267    respective value derived in the previous step.