GNU Linux-libre 6.9-gnu
[releases.git] / Documentation / networking / tls.rst
1 .. _kernel_tls:
2
3 ==========
4 Kernel TLS
5 ==========
6
7 Overview
8 ========
9
10 Transport Layer Security (TLS) is a Upper Layer Protocol (ULP) that runs over
11 TCP. TLS provides end-to-end data integrity and confidentiality.
12
13 User interface
14 ==============
15
16 Creating a TLS connection
17 -------------------------
18
19 First create a new TCP socket and set the TLS ULP.
20
21 .. code-block:: c
22
23   sock = socket(AF_INET, SOCK_STREAM, 0);
24   setsockopt(sock, SOL_TCP, TCP_ULP, "tls", sizeof("tls"));
25
26 Setting the TLS ULP allows us to set/get TLS socket options. Currently
27 only the symmetric encryption is handled in the kernel.  After the TLS
28 handshake is complete, we have all the parameters required to move the
29 data-path to the kernel. There is a separate socket option for moving
30 the transmit and the receive into the kernel.
31
32 .. code-block:: c
33
34   /* From linux/tls.h */
35   struct tls_crypto_info {
36           unsigned short version;
37           unsigned short cipher_type;
38   };
39
40   struct tls12_crypto_info_aes_gcm_128 {
41           struct tls_crypto_info info;
42           unsigned char iv[TLS_CIPHER_AES_GCM_128_IV_SIZE];
43           unsigned char key[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
44           unsigned char salt[TLS_CIPHER_AES_GCM_128_SALT_SIZE];
45           unsigned char rec_seq[TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE];
46   };
47
48
49   struct tls12_crypto_info_aes_gcm_128 crypto_info;
50
51   crypto_info.info.version = TLS_1_2_VERSION;
52   crypto_info.info.cipher_type = TLS_CIPHER_AES_GCM_128;
53   memcpy(crypto_info.iv, iv_write, TLS_CIPHER_AES_GCM_128_IV_SIZE);
54   memcpy(crypto_info.rec_seq, seq_number_write,
55                                         TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
56   memcpy(crypto_info.key, cipher_key_write, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
57   memcpy(crypto_info.salt, implicit_iv_write, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
58
59   setsockopt(sock, SOL_TLS, TLS_TX, &crypto_info, sizeof(crypto_info));
60
61 Transmit and receive are set separately, but the setup is the same, using either
62 TLS_TX or TLS_RX.
63
64 Sending TLS application data
65 ----------------------------
66
67 After setting the TLS_TX socket option all application data sent over this
68 socket is encrypted using TLS and the parameters provided in the socket option.
69 For example, we can send an encrypted hello world record as follows:
70
71 .. code-block:: c
72
73   const char *msg = "hello world\n";
74   send(sock, msg, strlen(msg));
75
76 send() data is directly encrypted from the userspace buffer provided
77 to the encrypted kernel send buffer if possible.
78
79 The sendfile system call will send the file's data over TLS records of maximum
80 length (2^14).
81
82 .. code-block:: c
83
84   file = open(filename, O_RDONLY);
85   fstat(file, &stat);
86   sendfile(sock, file, &offset, stat.st_size);
87
88 TLS records are created and sent after each send() call, unless
89 MSG_MORE is passed.  MSG_MORE will delay creation of a record until
90 MSG_MORE is not passed, or the maximum record size is reached.
91
92 The kernel will need to allocate a buffer for the encrypted data.
93 This buffer is allocated at the time send() is called, such that
94 either the entire send() call will return -ENOMEM (or block waiting
95 for memory), or the encryption will always succeed.  If send() returns
96 -ENOMEM and some data was left on the socket buffer from a previous
97 call using MSG_MORE, the MSG_MORE data is left on the socket buffer.
98
99 Receiving TLS application data
100 ------------------------------
101
102 After setting the TLS_RX socket option, all recv family socket calls
103 are decrypted using TLS parameters provided.  A full TLS record must
104 be received before decryption can happen.
105
106 .. code-block:: c
107
108   char buffer[16384];
109   recv(sock, buffer, 16384);
110
111 Received data is decrypted directly in to the user buffer if it is
112 large enough, and no additional allocations occur.  If the userspace
113 buffer is too small, data is decrypted in the kernel and copied to
114 userspace.
115
116 ``EINVAL`` is returned if the TLS version in the received message does not
117 match the version passed in setsockopt.
118
119 ``EMSGSIZE`` is returned if the received message is too big.
120
121 ``EBADMSG`` is returned if decryption failed for any other reason.
122
123 Send TLS control messages
124 -------------------------
125
126 Other than application data, TLS has control messages such as alert
127 messages (record type 21) and handshake messages (record type 22), etc.
128 These messages can be sent over the socket by providing the TLS record type
129 via a CMSG. For example the following function sends @data of @length bytes
130 using a record of type @record_type.
131
132 .. code-block:: c
133
134   /* send TLS control message using record_type */
135   static int klts_send_ctrl_message(int sock, unsigned char record_type,
136                                     void *data, size_t length)
137   {
138         struct msghdr msg = {0};
139         int cmsg_len = sizeof(record_type);
140         struct cmsghdr *cmsg;
141         char buf[CMSG_SPACE(cmsg_len)];
142         struct iovec msg_iov;   /* Vector of data to send/receive into.  */
143
144         msg.msg_control = buf;
145         msg.msg_controllen = sizeof(buf);
146         cmsg = CMSG_FIRSTHDR(&msg);
147         cmsg->cmsg_level = SOL_TLS;
148         cmsg->cmsg_type = TLS_SET_RECORD_TYPE;
149         cmsg->cmsg_len = CMSG_LEN(cmsg_len);
150         *CMSG_DATA(cmsg) = record_type;
151         msg.msg_controllen = cmsg->cmsg_len;
152
153         msg_iov.iov_base = data;
154         msg_iov.iov_len = length;
155         msg.msg_iov = &msg_iov;
156         msg.msg_iovlen = 1;
157
158         return sendmsg(sock, &msg, 0);
159   }
160
161 Control message data should be provided unencrypted, and will be
162 encrypted by the kernel.
163
164 Receiving TLS control messages
165 ------------------------------
166
167 TLS control messages are passed in the userspace buffer, with message
168 type passed via cmsg.  If no cmsg buffer is provided, an error is
169 returned if a control message is received.  Data messages may be
170 received without a cmsg buffer set.
171
172 .. code-block:: c
173
174   char buffer[16384];
175   char cmsg[CMSG_SPACE(sizeof(unsigned char))];
176   struct msghdr msg = {0};
177   msg.msg_control = cmsg;
178   msg.msg_controllen = sizeof(cmsg);
179
180   struct iovec msg_iov;
181   msg_iov.iov_base = buffer;
182   msg_iov.iov_len = 16384;
183
184   msg.msg_iov = &msg_iov;
185   msg.msg_iovlen = 1;
186
187   int ret = recvmsg(sock, &msg, 0 /* flags */);
188
189   struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
190   if (cmsg->cmsg_level == SOL_TLS &&
191       cmsg->cmsg_type == TLS_GET_RECORD_TYPE) {
192       int record_type = *((unsigned char *)CMSG_DATA(cmsg));
193       // Do something with record_type, and control message data in
194       // buffer.
195       //
196       // Note that record_type may be == to application data (23).
197   } else {
198       // Buffer contains application data.
199   }
200
201 recv will never return data from mixed types of TLS records.
202
203 Integrating in to userspace TLS library
204 ---------------------------------------
205
206 At a high level, the kernel TLS ULP is a replacement for the record
207 layer of a userspace TLS library.
208
209 A patchset to OpenSSL to use ktls as the record layer is
210 `here <https://github.com/Mellanox/openssl/commits/tls_rx2>`_.
211
212 `An example <https://github.com/ktls/af_ktls-tool/commits/RX>`_
213 of calling send directly after a handshake using gnutls.
214 Since it doesn't implement a full record layer, control
215 messages are not supported.
216
217 Optional optimizations
218 ----------------------
219
220 There are certain condition-specific optimizations the TLS ULP can make,
221 if requested. Those optimizations are either not universally beneficial
222 or may impact correctness, hence they require an opt-in.
223 All options are set per-socket using setsockopt(), and their
224 state can be checked using getsockopt() and via socket diag (``ss``).
225
226 TLS_TX_ZEROCOPY_RO
227 ~~~~~~~~~~~~~~~~~~
228
229 For device offload only. Allow sendfile() data to be transmitted directly
230 to the NIC without making an in-kernel copy. This allows true zero-copy
231 behavior when device offload is enabled.
232
233 The application must make sure that the data is not modified between being
234 submitted and transmission completing. In other words this is mostly
235 applicable if the data sent on a socket via sendfile() is read-only.
236
237 Modifying the data may result in different versions of the data being used
238 for the original TCP transmission and TCP retransmissions. To the receiver
239 this will look like TLS records had been tampered with and will result
240 in record authentication failures.
241
242 TLS_RX_EXPECT_NO_PAD
243 ~~~~~~~~~~~~~~~~~~~~
244
245 TLS 1.3 only. Expect the sender to not pad records. This allows the data
246 to be decrypted directly into user space buffers with TLS 1.3.
247
248 This optimization is safe to enable only if the remote end is trusted,
249 otherwise it is an attack vector to doubling the TLS processing cost.
250
251 If the record decrypted turns out to had been padded or is not a data
252 record it will be decrypted again into a kernel buffer without zero copy.
253 Such events are counted in the ``TlsDecryptRetry`` statistic.
254
255 Statistics
256 ==========
257
258 TLS implementation exposes the following per-namespace statistics
259 (``/proc/net/tls_stat``):
260
261 - ``TlsCurrTxSw``, ``TlsCurrRxSw`` -
262   number of TX and RX sessions currently installed where host handles
263   cryptography
264
265 - ``TlsCurrTxDevice``, ``TlsCurrRxDevice`` -
266   number of TX and RX sessions currently installed where NIC handles
267   cryptography
268
269 - ``TlsTxSw``, ``TlsRxSw`` -
270   number of TX and RX sessions opened with host cryptography
271
272 - ``TlsTxDevice``, ``TlsRxDevice`` -
273   number of TX and RX sessions opened with NIC cryptography
274
275 - ``TlsDecryptError`` -
276   record decryption failed (e.g. due to incorrect authentication tag)
277
278 - ``TlsDeviceRxResync`` -
279   number of RX resyncs sent to NICs handling cryptography
280
281 - ``TlsDecryptRetry`` -
282   number of RX records which had to be re-decrypted due to
283   ``TLS_RX_EXPECT_NO_PAD`` mis-prediction. Note that this counter will
284   also increment for non-data records.
285
286 - ``TlsRxNoPadViolation`` -
287   number of data RX records which had to be re-decrypted due to
288   ``TLS_RX_EXPECT_NO_PAD`` mis-prediction.