GNU Linux-libre 5.13.14-gnu1
[releases.git] / Documentation / networking / dsa / dsa.rst
1 ============
2 Architecture
3 ============
4
5 This document describes the **Distributed Switch Architecture (DSA)** subsystem
6 design principles, limitations, interactions with other subsystems, and how to
7 develop drivers for this subsystem as well as a TODO for developers interested
8 in joining the effort.
9
10 Design principles
11 =================
12
13 The Distributed Switch Architecture is a subsystem which was primarily designed
14 to support Marvell Ethernet switches (MV88E6xxx, a.k.a Linkstreet product line)
15 using Linux, but has since evolved to support other vendors as well.
16
17 The original philosophy behind this design was to be able to use unmodified
18 Linux tools such as bridge, iproute2, ifconfig to work transparently whether
19 they configured/queried a switch port network device or a regular network
20 device.
21
22 An Ethernet switch is typically comprised of multiple front-panel ports, and one
23 or more CPU or management port. The DSA subsystem currently relies on the
24 presence of a management port connected to an Ethernet controller capable of
25 receiving Ethernet frames from the switch. This is a very common setup for all
26 kinds of Ethernet switches found in Small Home and Office products: routers,
27 gateways, or even top-of-the rack switches. This host Ethernet controller will
28 be later referred to as "master" and "cpu" in DSA terminology and code.
29
30 The D in DSA stands for Distributed, because the subsystem has been designed
31 with the ability to configure and manage cascaded switches on top of each other
32 using upstream and downstream Ethernet links between switches. These specific
33 ports are referred to as "dsa" ports in DSA terminology and code. A collection
34 of multiple switches connected to each other is called a "switch tree".
35
36 For each front-panel port, DSA will create specialized network devices which are
37 used as controlling and data-flowing endpoints for use by the Linux networking
38 stack. These specialized network interfaces are referred to as "slave" network
39 interfaces in DSA terminology and code.
40
41 The ideal case for using DSA is when an Ethernet switch supports a "switch tag"
42 which is a hardware feature making the switch insert a specific tag for each
43 Ethernet frames it received to/from specific ports to help the management
44 interface figure out:
45
46 - what port is this frame coming from
47 - what was the reason why this frame got forwarded
48 - how to send CPU originated traffic to specific ports
49
50 The subsystem does support switches not capable of inserting/stripping tags, but
51 the features might be slightly limited in that case (traffic separation relies
52 on Port-based VLAN IDs).
53
54 Note that DSA does not currently create network interfaces for the "cpu" and
55 "dsa" ports because:
56
57 - the "cpu" port is the Ethernet switch facing side of the management
58   controller, and as such, would create a duplication of feature, since you
59   would get two interfaces for the same conduit: master netdev, and "cpu" netdev
60
61 - the "dsa" port(s) are just conduits between two or more switches, and as such
62   cannot really be used as proper network interfaces either, only the
63   downstream, or the top-most upstream interface makes sense with that model
64
65 Switch tagging protocols
66 ------------------------
67
68 DSA supports many vendor-specific tagging protocols, one software-defined
69 tagging protocol, and a tag-less mode as well (``DSA_TAG_PROTO_NONE``).
70
71 The exact format of the tag protocol is vendor specific, but in general, they
72 all contain something which:
73
74 - identifies which port the Ethernet frame came from/should be sent to
75 - provides a reason why this frame was forwarded to the management interface
76
77 All tagging protocols are in ``net/dsa/tag_*.c`` files and implement the
78 methods of the ``struct dsa_device_ops`` structure, which are detailed below.
79
80 Tagging protocols generally fall in one of three categories:
81
82 1. The switch-specific frame header is located before the Ethernet header,
83    shifting to the right (from the perspective of the DSA master's frame
84    parser) the MAC DA, MAC SA, EtherType and the entire L2 payload.
85 2. The switch-specific frame header is located before the EtherType, keeping
86    the MAC DA and MAC SA in place from the DSA master's perspective, but
87    shifting the 'real' EtherType and L2 payload to the right.
88 3. The switch-specific frame header is located at the tail of the packet,
89    keeping all frame headers in place and not altering the view of the packet
90    that the DSA master's frame parser has.
91
92 A tagging protocol may tag all packets with switch tags of the same length, or
93 the tag length might vary (for example packets with PTP timestamps might
94 require an extended switch tag, or there might be one tag length on TX and a
95 different one on RX). Either way, the tagging protocol driver must populate the
96 ``struct dsa_device_ops::overhead`` with the length in octets of the longest
97 switch frame header. The DSA framework will automatically adjust the MTU of the
98 master interface to accomodate for this extra size in order for DSA user ports
99 to support the standard MTU (L2 payload length) of 1500 octets. The ``overhead``
100 is also used to request from the network stack, on a best-effort basis, the
101 allocation of packets with a ``needed_headroom`` or ``needed_tailroom``
102 sufficient such that the act of pushing the switch tag on transmission of a
103 packet does not cause it to reallocate due to lack of memory.
104
105 Even though applications are not expected to parse DSA-specific frame headers,
106 the format on the wire of the tagging protocol represents an Application Binary
107 Interface exposed by the kernel towards user space, for decoders such as
108 ``libpcap``. The tagging protocol driver must populate the ``proto`` member of
109 ``struct dsa_device_ops`` with a value that uniquely describes the
110 characteristics of the interaction required between the switch hardware and the
111 data path driver: the offset of each bit field within the frame header and any
112 stateful processing required to deal with the frames (as may be required for
113 PTP timestamping).
114
115 From the perspective of the network stack, all switches within the same DSA
116 switch tree use the same tagging protocol. In case of a packet transiting a
117 fabric with more than one switch, the switch-specific frame header is inserted
118 by the first switch in the fabric that the packet was received on. This header
119 typically contains information regarding its type (whether it is a control
120 frame that must be trapped to the CPU, or a data frame to be forwarded).
121 Control frames should be decapsulated only by the software data path, whereas
122 data frames might also be autonomously forwarded towards other user ports of
123 other switches from the same fabric, and in this case, the outermost switch
124 ports must decapsulate the packet.
125
126 Note that in certain cases, it might be the case that the tagging format used
127 by a leaf switch (not connected directly to the CPU) to not be the same as what
128 the network stack sees. This can be seen with Marvell switch trees, where the
129 CPU port can be configured to use either the DSA or the Ethertype DSA (EDSA)
130 format, but the DSA links are configured to use the shorter (without Ethertype)
131 DSA frame header, in order to reduce the autonomous packet forwarding overhead.
132 It still remains the case that, if the DSA switch tree is configured for the
133 EDSA tagging protocol, the operating system sees EDSA-tagged packets from the
134 leaf switches that tagged them with the shorter DSA header. This can be done
135 because the Marvell switch connected directly to the CPU is configured to
136 perform tag translation between DSA and EDSA (which is simply the operation of
137 adding or removing the ``ETH_P_EDSA`` EtherType and some padding octets).
138
139 It is possible to construct cascaded setups of DSA switches even if their
140 tagging protocols are not compatible with one another. In this case, there are
141 no DSA links in this fabric, and each switch constitutes a disjoint DSA switch
142 tree. The DSA links are viewed as simply a pair of a DSA master (the out-facing
143 port of the upstream DSA switch) and a CPU port (the in-facing port of the
144 downstream DSA switch).
145
146 The tagging protocol of the attached DSA switch tree can be viewed through the
147 ``dsa/tagging`` sysfs attribute of the DSA master::
148
149     cat /sys/class/net/eth0/dsa/tagging
150
151 If the hardware and driver are capable, the tagging protocol of the DSA switch
152 tree can be changed at runtime. This is done by writing the new tagging
153 protocol name to the same sysfs device attribute as above (the DSA master and
154 all attached switch ports must be down while doing this).
155
156 It is desirable that all tagging protocols are testable with the ``dsa_loop``
157 mockup driver, which can be attached to any network interface. The goal is that
158 any network interface should be capable of transmitting the same packet in the
159 same way, and the tagger should decode the same received packet in the same way
160 regardless of the driver used for the switch control path, and the driver used
161 for the DSA master.
162
163 The transmission of a packet goes through the tagger's ``xmit`` function.
164 The passed ``struct sk_buff *skb`` has ``skb->data`` pointing at
165 ``skb_mac_header(skb)``, i.e. at the destination MAC address, and the passed
166 ``struct net_device *dev`` represents the virtual DSA user network interface
167 whose hardware counterpart the packet must be steered to (i.e. ``swp0``).
168 The job of this method is to prepare the skb in a way that the switch will
169 understand what egress port the packet is for (and not deliver it towards other
170 ports). Typically this is fulfilled by pushing a frame header. Checking for
171 insufficient size in the skb headroom or tailroom is unnecessary provided that
172 the ``overhead`` and ``tail_tag`` properties were filled out properly, because
173 DSA ensures there is enough space before calling this method.
174
175 The reception of a packet goes through the tagger's ``rcv`` function. The
176 passed ``struct sk_buff *skb`` has ``skb->data`` pointing at
177 ``skb_mac_header(skb) + ETH_ALEN`` octets, i.e. to where the first octet after
178 the EtherType would have been, were this frame not tagged. The role of this
179 method is to consume the frame header, adjust ``skb->data`` to really point at
180 the first octet after the EtherType, and to change ``skb->dev`` to point to the
181 virtual DSA user network interface corresponding to the physical front-facing
182 switch port that the packet was received on.
183
184 Since tagging protocols in category 1 and 2 break software (and most often also
185 hardware) packet dissection on the DSA master, features such as RPS (Receive
186 Packet Steering) on the DSA master would be broken. The DSA framework deals
187 with this by hooking into the flow dissector and shifting the offset at which
188 the IP header is to be found in the tagged frame as seen by the DSA master.
189 This behavior is automatic based on the ``overhead`` value of the tagging
190 protocol. If not all packets are of equal size, the tagger can implement the
191 ``flow_dissect`` method of the ``struct dsa_device_ops`` and override this
192 default behavior by specifying the correct offset incurred by each individual
193 RX packet. Tail taggers do not cause issues to the flow dissector.
194
195 Due to various reasons (most common being category 1 taggers being associated
196 with DSA-unaware masters, mangling what the master perceives as MAC DA), the
197 tagging protocol may require the DSA master to operate in promiscuous mode, to
198 receive all frames regardless of the value of the MAC DA. This can be done by
199 setting the ``promisc_on_master`` property of the ``struct dsa_device_ops``.
200 Note that this assumes a DSA-unaware master driver, which is the norm.
201
202 Hardware manufacturers are strongly discouraged to do this, but some tagging
203 protocols might not provide source port information on RX for all packets, but
204 e.g. only for control traffic (link-local PDUs). In this case, by implementing
205 the ``filter`` method of ``struct dsa_device_ops``, the tagger might select
206 which packets are to be redirected on RX towards the virtual DSA user network
207 interfaces, and which are to be left in the DSA master's RX data path.
208
209 It might also happen (although silicon vendors are strongly discouraged to
210 produce hardware like this) that a tagging protocol splits the switch-specific
211 information into a header portion and a tail portion, therefore not falling
212 cleanly into any of the above 3 categories. DSA does not support this
213 configuration.
214
215 Master network devices
216 ----------------------
217
218 Master network devices are regular, unmodified Linux network device drivers for
219 the CPU/management Ethernet interface. Such a driver might occasionally need to
220 know whether DSA is enabled (e.g.: to enable/disable specific offload features),
221 but the DSA subsystem has been proven to work with industry standard drivers:
222 ``e1000e,`` ``mv643xx_eth`` etc. without having to introduce modifications to these
223 drivers. Such network devices are also often referred to as conduit network
224 devices since they act as a pipe between the host processor and the hardware
225 Ethernet switch.
226
227 Networking stack hooks
228 ----------------------
229
230 When a master netdev is used with DSA, a small hook is placed in the
231 networking stack is in order to have the DSA subsystem process the Ethernet
232 switch specific tagging protocol. DSA accomplishes this by registering a
233 specific (and fake) Ethernet type (later becoming ``skb->protocol``) with the
234 networking stack, this is also known as a ``ptype`` or ``packet_type``. A typical
235 Ethernet Frame receive sequence looks like this:
236
237 Master network device (e.g.: e1000e):
238
239 1. Receive interrupt fires:
240
241         - receive function is invoked
242         - basic packet processing is done: getting length, status etc.
243         - packet is prepared to be processed by the Ethernet layer by calling
244           ``eth_type_trans``
245
246 2. net/ethernet/eth.c::
247
248           eth_type_trans(skb, dev)
249                   if (dev->dsa_ptr != NULL)
250                           -> skb->protocol = ETH_P_XDSA
251
252 3. drivers/net/ethernet/\*::
253
254           netif_receive_skb(skb)
255                   -> iterate over registered packet_type
256                           -> invoke handler for ETH_P_XDSA, calls dsa_switch_rcv()
257
258 4. net/dsa/dsa.c::
259
260           -> dsa_switch_rcv()
261                   -> invoke switch tag specific protocol handler in 'net/dsa/tag_*.c'
262
263 5. net/dsa/tag_*.c:
264
265         - inspect and strip switch tag protocol to determine originating port
266         - locate per-port network device
267         - invoke ``eth_type_trans()`` with the DSA slave network device
268         - invoked ``netif_receive_skb()``
269
270 Past this point, the DSA slave network devices get delivered regular Ethernet
271 frames that can be processed by the networking stack.
272
273 Slave network devices
274 ---------------------
275
276 Slave network devices created by DSA are stacked on top of their master network
277 device, each of these network interfaces will be responsible for being a
278 controlling and data-flowing end-point for each front-panel port of the switch.
279 These interfaces are specialized in order to:
280
281 - insert/remove the switch tag protocol (if it exists) when sending traffic
282   to/from specific switch ports
283 - query the switch for ethtool operations: statistics, link state,
284   Wake-on-LAN, register dumps...
285 - external/internal PHY management: link, auto-negotiation etc.
286
287 These slave network devices have custom net_device_ops and ethtool_ops function
288 pointers which allow DSA to introduce a level of layering between the networking
289 stack/ethtool, and the switch driver implementation.
290
291 Upon frame transmission from these slave network devices, DSA will look up which
292 switch tagging protocol is currently registered with these network devices, and
293 invoke a specific transmit routine which takes care of adding the relevant
294 switch tag in the Ethernet frames.
295
296 These frames are then queued for transmission using the master network device
297 ``ndo_start_xmit()`` function, since they contain the appropriate switch tag, the
298 Ethernet switch will be able to process these incoming frames from the
299 management interface and delivers these frames to the physical switch port.
300
301 Graphical representation
302 ------------------------
303
304 Summarized, this is basically how DSA looks like from a network device
305 perspective::
306
307                 Unaware application
308               opens and binds socket
309                        |  ^
310                        |  |
311            +-----------v--|--------------------+
312            |+------+ +------+ +------+ +------+|
313            || swp0 | | swp1 | | swp2 | | swp3 ||
314            |+------+-+------+-+------+-+------+|
315            |          DSA switch driver        |
316            +-----------------------------------+
317                          |        ^
318             Tag added by |        | Tag consumed by
319            switch driver |        | switch driver
320                          v        |
321            +-----------------------------------+
322            | Unmodified host interface driver  | Software
323    --------+-----------------------------------+------------
324            |       Host interface (eth0)       | Hardware
325            +-----------------------------------+
326                          |        ^
327          Tag consumed by |        | Tag added by
328          switch hardware |        | switch hardware
329                          v        |
330            +-----------------------------------+
331            |               Switch              |
332            |+------+ +------+ +------+ +------+|
333            || swp0 | | swp1 | | swp2 | | swp3 ||
334            ++------+-+------+-+------+-+------++
335
336 Slave MDIO bus
337 --------------
338
339 In order to be able to read to/from a switch PHY built into it, DSA creates a
340 slave MDIO bus which allows a specific switch driver to divert and intercept
341 MDIO reads/writes towards specific PHY addresses. In most MDIO-connected
342 switches, these functions would utilize direct or indirect PHY addressing mode
343 to return standard MII registers from the switch builtin PHYs, allowing the PHY
344 library and/or to return link status, link partner pages, auto-negotiation
345 results etc..
346
347 For Ethernet switches which have both external and internal MDIO busses, the
348 slave MII bus can be utilized to mux/demux MDIO reads and writes towards either
349 internal or external MDIO devices this switch might be connected to: internal
350 PHYs, external PHYs, or even external switches.
351
352 Data structures
353 ---------------
354
355 DSA data structures are defined in ``include/net/dsa.h`` as well as
356 ``net/dsa/dsa_priv.h``:
357
358 - ``dsa_chip_data``: platform data configuration for a given switch device,
359   this structure describes a switch device's parent device, its address, as
360   well as various properties of its ports: names/labels, and finally a routing
361   table indication (when cascading switches)
362
363 - ``dsa_platform_data``: platform device configuration data which can reference
364   a collection of dsa_chip_data structure if multiples switches are cascaded,
365   the master network device this switch tree is attached to needs to be
366   referenced
367
368 - ``dsa_switch_tree``: structure assigned to the master network device under
369   ``dsa_ptr``, this structure references a dsa_platform_data structure as well as
370   the tagging protocol supported by the switch tree, and which receive/transmit
371   function hooks should be invoked, information about the directly attached
372   switch is also provided: CPU port. Finally, a collection of dsa_switch are
373   referenced to address individual switches in the tree.
374
375 - ``dsa_switch``: structure describing a switch device in the tree, referencing
376   a ``dsa_switch_tree`` as a backpointer, slave network devices, master network
377   device, and a reference to the backing``dsa_switch_ops``
378
379 - ``dsa_switch_ops``: structure referencing function pointers, see below for a
380   full description.
381
382 Design limitations
383 ==================
384
385 Lack of CPU/DSA network devices
386 -------------------------------
387
388 DSA does not currently create slave network devices for the CPU or DSA ports, as
389 described before. This might be an issue in the following cases:
390
391 - inability to fetch switch CPU port statistics counters using ethtool, which
392   can make it harder to debug MDIO switch connected using xMII interfaces
393
394 - inability to configure the CPU port link parameters based on the Ethernet
395   controller capabilities attached to it: http://patchwork.ozlabs.org/patch/509806/
396
397 - inability to configure specific VLAN IDs / trunking VLANs between switches
398   when using a cascaded setup
399
400 Common pitfalls using DSA setups
401 --------------------------------
402
403 Once a master network device is configured to use DSA (dev->dsa_ptr becomes
404 non-NULL), and the switch behind it expects a tagging protocol, this network
405 interface can only exclusively be used as a conduit interface. Sending packets
406 directly through this interface (e.g.: opening a socket using this interface)
407 will not make us go through the switch tagging protocol transmit function, so
408 the Ethernet switch on the other end, expecting a tag will typically drop this
409 frame.
410
411 Interactions with other subsystems
412 ==================================
413
414 DSA currently leverages the following subsystems:
415
416 - MDIO/PHY library: ``drivers/net/phy/phy.c``, ``mdio_bus.c``
417 - Switchdev:``net/switchdev/*``
418 - Device Tree for various of_* functions
419 - Devlink: ``net/core/devlink.c``
420
421 MDIO/PHY library
422 ----------------
423
424 Slave network devices exposed by DSA may or may not be interfacing with PHY
425 devices (``struct phy_device`` as defined in ``include/linux/phy.h)``, but the DSA
426 subsystem deals with all possible combinations:
427
428 - internal PHY devices, built into the Ethernet switch hardware
429 - external PHY devices, connected via an internal or external MDIO bus
430 - internal PHY devices, connected via an internal MDIO bus
431 - special, non-autonegotiated or non MDIO-managed PHY devices: SFPs, MoCA; a.k.a
432   fixed PHYs
433
434 The PHY configuration is done by the ``dsa_slave_phy_setup()`` function and the
435 logic basically looks like this:
436
437 - if Device Tree is used, the PHY device is looked up using the standard
438   "phy-handle" property, if found, this PHY device is created and registered
439   using ``of_phy_connect()``
440
441 - if Device Tree is used, and the PHY device is "fixed", that is, conforms to
442   the definition of a non-MDIO managed PHY as defined in
443   ``Documentation/devicetree/bindings/net/fixed-link.txt``, the PHY is registered
444   and connected transparently using the special fixed MDIO bus driver
445
446 - finally, if the PHY is built into the switch, as is very common with
447   standalone switch packages, the PHY is probed using the slave MII bus created
448   by DSA
449
450
451 SWITCHDEV
452 ---------
453
454 DSA directly utilizes SWITCHDEV when interfacing with the bridge layer, and
455 more specifically with its VLAN filtering portion when configuring VLANs on top
456 of per-port slave network devices. As of today, the only SWITCHDEV objects
457 supported by DSA are the FDB and VLAN objects.
458
459 Devlink
460 -------
461
462 DSA registers one devlink device per physical switch in the fabric.
463 For each devlink device, every physical port (i.e. user ports, CPU ports, DSA
464 links or unused ports) is exposed as a devlink port.
465
466 DSA drivers can make use of the following devlink features:
467
468 - Regions: debugging feature which allows user space to dump driver-defined
469   areas of hardware information in a low-level, binary format. Both global
470   regions as well as per-port regions are supported. It is possible to export
471   devlink regions even for pieces of data that are already exposed in some way
472   to the standard iproute2 user space programs (ip-link, bridge), like address
473   tables and VLAN tables. For example, this might be useful if the tables
474   contain additional hardware-specific details which are not visible through
475   the iproute2 abstraction, or it might be useful to inspect these tables on
476   the non-user ports too, which are invisible to iproute2 because no network
477   interface is registered for them.
478 - Params: a feature which enables user to configure certain low-level tunable
479   knobs pertaining to the device. Drivers may implement applicable generic
480   devlink params, or may add new device-specific devlink params.
481 - Resources: a monitoring feature which enables users to see the degree of
482   utilization of certain hardware tables in the device, such as FDB, VLAN, etc.
483 - Shared buffers: a QoS feature for adjusting and partitioning memory and frame
484   reservations per port and per traffic class, in the ingress and egress
485   directions, such that low-priority bulk traffic does not impede the
486   processing of high-priority critical traffic.
487
488 For more details, consult ``Documentation/networking/devlink/``.
489
490 Device Tree
491 -----------
492
493 DSA features a standardized binding which is documented in
494 ``Documentation/devicetree/bindings/net/dsa/dsa.txt``. PHY/MDIO library helper
495 functions such as ``of_get_phy_mode()``, ``of_phy_connect()`` are also used to query
496 per-port PHY specific details: interface connection, MDIO bus location etc..
497
498 Driver development
499 ==================
500
501 DSA switch drivers need to implement a dsa_switch_ops structure which will
502 contain the various members described below.
503
504 ``register_switch_driver()`` registers this dsa_switch_ops in its internal list
505 of drivers to probe for. ``unregister_switch_driver()`` does the exact opposite.
506
507 Unless requested differently by setting the priv_size member accordingly, DSA
508 does not allocate any driver private context space.
509
510 Switch configuration
511 --------------------
512
513 - ``tag_protocol``: this is to indicate what kind of tagging protocol is supported,
514   should be a valid value from the ``dsa_tag_protocol`` enum
515
516 - ``probe``: probe routine which will be invoked by the DSA platform device upon
517   registration to test for the presence/absence of a switch device. For MDIO
518   devices, it is recommended to issue a read towards internal registers using
519   the switch pseudo-PHY and return whether this is a supported device. For other
520   buses, return a non-NULL string
521
522 - ``setup``: setup function for the switch, this function is responsible for setting
523   up the ``dsa_switch_ops`` private structure with all it needs: register maps,
524   interrupts, mutexes, locks etc.. This function is also expected to properly
525   configure the switch to separate all network interfaces from each other, that
526   is, they should be isolated by the switch hardware itself, typically by creating
527   a Port-based VLAN ID for each port and allowing only the CPU port and the
528   specific port to be in the forwarding vector. Ports that are unused by the
529   platform should be disabled. Past this function, the switch is expected to be
530   fully configured and ready to serve any kind of request. It is recommended
531   to issue a software reset of the switch during this setup function in order to
532   avoid relying on what a previous software agent such as a bootloader/firmware
533   may have previously configured.
534
535 PHY devices and link management
536 -------------------------------
537
538 - ``get_phy_flags``: Some switches are interfaced to various kinds of Ethernet PHYs,
539   if the PHY library PHY driver needs to know about information it cannot obtain
540   on its own (e.g.: coming from switch memory mapped registers), this function
541   should return a 32-bits bitmask of "flags", that is private between the switch
542   driver and the Ethernet PHY driver in ``drivers/net/phy/\*``.
543
544 - ``phy_read``: Function invoked by the DSA slave MDIO bus when attempting to read
545   the switch port MDIO registers. If unavailable, return 0xffff for each read.
546   For builtin switch Ethernet PHYs, this function should allow reading the link
547   status, auto-negotiation results, link partner pages etc..
548
549 - ``phy_write``: Function invoked by the DSA slave MDIO bus when attempting to write
550   to the switch port MDIO registers. If unavailable return a negative error
551   code.
552
553 - ``adjust_link``: Function invoked by the PHY library when a slave network device
554   is attached to a PHY device. This function is responsible for appropriately
555   configuring the switch port link parameters: speed, duplex, pause based on
556   what the ``phy_device`` is providing.
557
558 - ``fixed_link_update``: Function invoked by the PHY library, and specifically by
559   the fixed PHY driver asking the switch driver for link parameters that could
560   not be auto-negotiated, or obtained by reading the PHY registers through MDIO.
561   This is particularly useful for specific kinds of hardware such as QSGMII,
562   MoCA or other kinds of non-MDIO managed PHYs where out of band link
563   information is obtained
564
565 Ethtool operations
566 ------------------
567
568 - ``get_strings``: ethtool function used to query the driver's strings, will
569   typically return statistics strings, private flags strings etc.
570
571 - ``get_ethtool_stats``: ethtool function used to query per-port statistics and
572   return their values. DSA overlays slave network devices general statistics:
573   RX/TX counters from the network device, with switch driver specific statistics
574   per port
575
576 - ``get_sset_count``: ethtool function used to query the number of statistics items
577
578 - ``get_wol``: ethtool function used to obtain Wake-on-LAN settings per-port, this
579   function may, for certain implementations also query the master network device
580   Wake-on-LAN settings if this interface needs to participate in Wake-on-LAN
581
582 - ``set_wol``: ethtool function used to configure Wake-on-LAN settings per-port,
583   direct counterpart to set_wol with similar restrictions
584
585 - ``set_eee``: ethtool function which is used to configure a switch port EEE (Green
586   Ethernet) settings, can optionally invoke the PHY library to enable EEE at the
587   PHY level if relevant. This function should enable EEE at the switch port MAC
588   controller and data-processing logic
589
590 - ``get_eee``: ethtool function which is used to query a switch port EEE settings,
591   this function should return the EEE state of the switch port MAC controller
592   and data-processing logic as well as query the PHY for its currently configured
593   EEE settings
594
595 - ``get_eeprom_len``: ethtool function returning for a given switch the EEPROM
596   length/size in bytes
597
598 - ``get_eeprom``: ethtool function returning for a given switch the EEPROM contents
599
600 - ``set_eeprom``: ethtool function writing specified data to a given switch EEPROM
601
602 - ``get_regs_len``: ethtool function returning the register length for a given
603   switch
604
605 - ``get_regs``: ethtool function returning the Ethernet switch internal register
606   contents. This function might require user-land code in ethtool to
607   pretty-print register values and registers
608
609 Power management
610 ----------------
611
612 - ``suspend``: function invoked by the DSA platform device when the system goes to
613   suspend, should quiesce all Ethernet switch activities, but keep ports
614   participating in Wake-on-LAN active as well as additional wake-up logic if
615   supported
616
617 - ``resume``: function invoked by the DSA platform device when the system resumes,
618   should resume all Ethernet switch activities and re-configure the switch to be
619   in a fully active state
620
621 - ``port_enable``: function invoked by the DSA slave network device ndo_open
622   function when a port is administratively brought up, this function should be
623   fully enabling a given switch port. DSA takes care of marking the port with
624   ``BR_STATE_BLOCKING`` if the port is a bridge member, or ``BR_STATE_FORWARDING`` if it
625   was not, and propagating these changes down to the hardware
626
627 - ``port_disable``: function invoked by the DSA slave network device ndo_close
628   function when a port is administratively brought down, this function should be
629   fully disabling a given switch port. DSA takes care of marking the port with
630   ``BR_STATE_DISABLED`` and propagating changes to the hardware if this port is
631   disabled while being a bridge member
632
633 Bridge layer
634 ------------
635
636 - ``port_bridge_join``: bridge layer function invoked when a given switch port is
637   added to a bridge, this function should be doing the necessary at the switch
638   level to permit the joining port from being added to the relevant logical
639   domain for it to ingress/egress traffic with other members of the bridge.
640
641 - ``port_bridge_leave``: bridge layer function invoked when a given switch port is
642   removed from a bridge, this function should be doing the necessary at the
643   switch level to deny the leaving port from ingress/egress traffic from the
644   remaining bridge members. When the port leaves the bridge, it should be aged
645   out at the switch hardware for the switch to (re) learn MAC addresses behind
646   this port.
647
648 - ``port_stp_state_set``: bridge layer function invoked when a given switch port STP
649   state is computed by the bridge layer and should be propagated to switch
650   hardware to forward/block/learn traffic. The switch driver is responsible for
651   computing a STP state change based on current and asked parameters and perform
652   the relevant ageing based on the intersection results
653
654 - ``port_bridge_flags``: bridge layer function invoked when a port must
655   configure its settings for e.g. flooding of unknown traffic or source address
656   learning. The switch driver is responsible for initial setup of the
657   standalone ports with address learning disabled and egress flooding of all
658   types of traffic, then the DSA core notifies of any change to the bridge port
659   flags when the port joins and leaves a bridge. DSA does not currently manage
660   the bridge port flags for the CPU port. The assumption is that address
661   learning should be statically enabled (if supported by the hardware) on the
662   CPU port, and flooding towards the CPU port should also be enabled, due to a
663   lack of an explicit address filtering mechanism in the DSA core.
664
665 Bridge VLAN filtering
666 ---------------------
667
668 - ``port_vlan_filtering``: bridge layer function invoked when the bridge gets
669   configured for turning on or off VLAN filtering. If nothing specific needs to
670   be done at the hardware level, this callback does not need to be implemented.
671   When VLAN filtering is turned on, the hardware must be programmed with
672   rejecting 802.1Q frames which have VLAN IDs outside of the programmed allowed
673   VLAN ID map/rules.  If there is no PVID programmed into the switch port,
674   untagged frames must be rejected as well. When turned off the switch must
675   accept any 802.1Q frames irrespective of their VLAN ID, and untagged frames are
676   allowed.
677
678 - ``port_vlan_add``: bridge layer function invoked when a VLAN is configured
679   (tagged or untagged) for the given switch port. If the operation is not
680   supported by the hardware, this function should return ``-EOPNOTSUPP`` to
681   inform the bridge code to fallback to a software implementation.
682
683 - ``port_vlan_del``: bridge layer function invoked when a VLAN is removed from the
684   given switch port
685
686 - ``port_vlan_dump``: bridge layer function invoked with a switchdev callback
687   function that the driver has to call for each VLAN the given port is a member
688   of. A switchdev object is used to carry the VID and bridge flags.
689
690 - ``port_fdb_add``: bridge layer function invoked when the bridge wants to install a
691   Forwarding Database entry, the switch hardware should be programmed with the
692   specified address in the specified VLAN Id in the forwarding database
693   associated with this VLAN ID. If the operation is not supported, this
694   function should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to
695   a software implementation.
696
697 .. note:: VLAN ID 0 corresponds to the port private database, which, in the context
698         of DSA, would be its port-based VLAN, used by the associated bridge device.
699
700 - ``port_fdb_del``: bridge layer function invoked when the bridge wants to remove a
701   Forwarding Database entry, the switch hardware should be programmed to delete
702   the specified MAC address from the specified VLAN ID if it was mapped into
703   this port forwarding database
704
705 - ``port_fdb_dump``: bridge layer function invoked with a switchdev callback
706   function that the driver has to call for each MAC address known to be behind
707   the given port. A switchdev object is used to carry the VID and FDB info.
708
709 - ``port_mdb_add``: bridge layer function invoked when the bridge wants to install
710   a multicast database entry. If the operation is not supported, this function
711   should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to a
712   software implementation. The switch hardware should be programmed with the
713   specified address in the specified VLAN ID in the forwarding database
714   associated with this VLAN ID.
715
716 .. note:: VLAN ID 0 corresponds to the port private database, which, in the context
717         of DSA, would be its port-based VLAN, used by the associated bridge device.
718
719 - ``port_mdb_del``: bridge layer function invoked when the bridge wants to remove a
720   multicast database entry, the switch hardware should be programmed to delete
721   the specified MAC address from the specified VLAN ID if it was mapped into
722   this port forwarding database.
723
724 - ``port_mdb_dump``: bridge layer function invoked with a switchdev callback
725   function that the driver has to call for each MAC address known to be behind
726   the given port. A switchdev object is used to carry the VID and MDB info.
727
728 Link aggregation
729 ----------------
730
731 Link aggregation is implemented in the Linux networking stack by the bonding
732 and team drivers, which are modeled as virtual, stackable network interfaces.
733 DSA is capable of offloading a link aggregation group (LAG) to hardware that
734 supports the feature, and supports bridging between physical ports and LAGs,
735 as well as between LAGs. A bonding/team interface which holds multiple physical
736 ports constitutes a logical port, although DSA has no explicit concept of a
737 logical port at the moment. Due to this, events where a LAG joins/leaves a
738 bridge are treated as if all individual physical ports that are members of that
739 LAG join/leave the bridge. Switchdev port attributes (VLAN filtering, STP
740 state, etc) and objects (VLANs, MDB entries) offloaded to a LAG as bridge port
741 are treated similarly: DSA offloads the same switchdev object / port attribute
742 on all members of the LAG. Static bridge FDB entries on a LAG are not yet
743 supported, since the DSA driver API does not have the concept of a logical port
744 ID.
745
746 - ``port_lag_join``: function invoked when a given switch port is added to a
747   LAG. The driver may return ``-EOPNOTSUPP``, and in this case, DSA will fall
748   back to a software implementation where all traffic from this port is sent to
749   the CPU.
750 - ``port_lag_leave``: function invoked when a given switch port leaves a LAG
751   and returns to operation as a standalone port.
752 - ``port_lag_change``: function invoked when the link state of any member of
753   the LAG changes, and the hashing function needs rebalancing to only make use
754   of the subset of physical LAG member ports that are up.
755
756 Drivers that benefit from having an ID associated with each offloaded LAG
757 can optionally populate ``ds->num_lag_ids`` from the ``dsa_switch_ops::setup``
758 method. The LAG ID associated with a bonding/team interface can then be
759 retrieved by a DSA switch driver using the ``dsa_lag_id`` function.
760
761 IEC 62439-2 (MRP)
762 -----------------
763
764 The Media Redundancy Protocol is a topology management protocol optimized for
765 fast fault recovery time for ring networks, which has some components
766 implemented as a function of the bridge driver. MRP uses management PDUs
767 (Test, Topology, LinkDown/Up, Option) sent at a multicast destination MAC
768 address range of 01:15:4e:00:00:0x and with an EtherType of 0x88e3.
769 Depending on the node's role in the ring (MRM: Media Redundancy Manager,
770 MRC: Media Redundancy Client, MRA: Media Redundancy Automanager), certain MRP
771 PDUs might need to be terminated locally and others might need to be forwarded.
772 An MRM might also benefit from offloading to hardware the creation and
773 transmission of certain MRP PDUs (Test).
774
775 Normally an MRP instance can be created on top of any network interface,
776 however in the case of a device with an offloaded data path such as DSA, it is
777 necessary for the hardware, even if it is not MRP-aware, to be able to extract
778 the MRP PDUs from the fabric before the driver can proceed with the software
779 implementation. DSA today has no driver which is MRP-aware, therefore it only
780 listens for the bare minimum switchdev objects required for the software assist
781 to work properly. The operations are detailed below.
782
783 - ``port_mrp_add`` and ``port_mrp_del``: notifies driver when an MRP instance
784   with a certain ring ID, priority, primary port and secondary port is
785   created/deleted.
786 - ``port_mrp_add_ring_role`` and ``port_mrp_del_ring_role``: function invoked
787   when an MRP instance changes ring roles between MRM or MRC. This affects
788   which MRP PDUs should be trapped to software and which should be autonomously
789   forwarded.
790
791 IEC 62439-3 (HSR/PRP)
792 ---------------------
793
794 The Parallel Redundancy Protocol (PRP) is a network redundancy protocol which
795 works by duplicating and sequence numbering packets through two independent L2
796 networks (which are unaware of the PRP tail tags carried in the packets), and
797 eliminating the duplicates at the receiver. The High-availability Seamless
798 Redundancy (HSR) protocol is similar in concept, except all nodes that carry
799 the redundant traffic are aware of the fact that it is HSR-tagged (because HSR
800 uses a header with an EtherType of 0x892f) and are physically connected in a
801 ring topology. Both HSR and PRP use supervision frames for monitoring the
802 health of the network and for discovery of other nodes.
803
804 In Linux, both HSR and PRP are implemented in the hsr driver, which
805 instantiates a virtual, stackable network interface with two member ports.
806 The driver only implements the basic roles of DANH (Doubly Attached Node
807 implementing HSR) and DANP (Doubly Attached Node implementing PRP); the roles
808 of RedBox and QuadBox are not implemented (therefore, bridging a hsr network
809 interface with a physical switch port does not produce the expected result).
810
811 A driver which is able of offloading certain functions of a DANP or DANH should
812 declare the corresponding netdev features as indicated by the documentation at
813 ``Documentation/networking/netdev-features.rst``. Additionally, the following
814 methods must be implemented:
815
816 - ``port_hsr_join``: function invoked when a given switch port is added to a
817   DANP/DANH. The driver may return ``-EOPNOTSUPP`` and in this case, DSA will
818   fall back to a software implementation where all traffic from this port is
819   sent to the CPU.
820 - ``port_hsr_leave``: function invoked when a given switch port leaves a
821   DANP/DANH and returns to normal operation as a standalone port.
822
823 TODO
824 ====
825
826 Making SWITCHDEV and DSA converge towards an unified codebase
827 -------------------------------------------------------------
828
829 SWITCHDEV properly takes care of abstracting the networking stack with offload
830 capable hardware, but does not enforce a strict switch device driver model. On
831 the other DSA enforces a fairly strict device driver model, and deals with most
832 of the switch specific. At some point we should envision a merger between these
833 two subsystems and get the best of both worlds.
834
835 Other hanging fruits
836 --------------------
837
838 - allowing more than one CPU/management interface:
839   http://comments.gmane.org/gmane.linux.network/365657