7 Addresses scanned: from Super I/O config space (8 I/O ports)
8 Datasheet: Not publicly available
11 Addresses scanned: from Super I/O config space (8 I/O ports)
14 Addresses scanned: from Super I/O config space (8 I/O ports)
15 Datasheet: Not publicly available
18 Addresses scanned: from Super I/O config space (8 I/O ports)
19 Datasheet: Once publicly available at the ITE website, but no longer
22 Addresses scanned: from Super I/O config space (8 I/O ports)
23 Datasheet: Once publicly available at the ITE website, but no longer
26 Addresses scanned: from Super I/O config space (8 I/O ports)
27 Datasheet: Once publicly available at the ITE website, but no longer
30 Addresses scanned: from Super I/O config space (8 I/O ports)
31 Datasheet: Once publicly available at the ITE website, but no longer
34 Addresses scanned: from Super I/O config space (8 I/O ports)
35 Datasheet: Not publicly available
38 Addresses scanned: from Super I/O config space (8 I/O ports)
39 Datasheet: Not publicly available
42 Addresses scanned: from Super I/O config space (8 I/O ports)
43 Datasheet: Not publicly available
46 Addresses scanned: from Super I/O config space (8 I/O ports)
47 Datasheet: Not publicly available
50 Addresses scanned: from Super I/O config space (8 I/O ports)
51 Datasheet: Not publicly available
54 Addresses scanned: from Super I/O config space (8 I/O ports)
55 Datasheet: Not publicly available
58 Addresses scanned: from Super I/O config space (8 I/O ports)
59 Datasheet: Not publicly available
62 Addresses scanned: from Super I/O config space (8 I/O ports)
63 Datasheet: Not publicly available
66 Addresses scanned: from Super I/O config space (8 I/O ports)
67 Datasheet: Not publicly available
70 Addresses scanned: from Super I/O config space (8 I/O ports)
71 Datasheet: Not publicly available
74 Addresses scanned: from Super I/O config space (8 I/O ports)
75 Datasheet: Not publicly available
76 * SiS950 [clone of IT8705F]
78 Addresses scanned: from Super I/O config space (8 I/O ports)
79 Datasheet: No longer be available
83 Jean Delvare <jdelvare@suse.de>
91 0 if vbat should report power on value, 1 if vbat should be updated after
92 each read. Default is 0. On some boards the battery voltage is provided
93 by either the battery or the onboard power supply. Only the first reading
94 at power on will be the actual battery voltage (which the chip does
95 automatically). On other boards the battery voltage is always fed to
96 the chip so can be read at any time. Excessive reading may decrease
97 battery life but no information is given in the datasheet.
99 * fix_pwm_polarity int
101 Force PWM polarity to active high (DANGEROUS). Some chips are
102 misconfigured by BIOS - PWM values would be inverted. This option tries
103 to fix this. Please contact your BIOS manufacturer and ask him for fix.
109 All the chips supported by this driver are LPC Super-I/O chips, accessed
110 through the LPC bus (ISA-like I/O ports). The IT8712F additionally has an
111 SMBus interface to the hardware monitoring functions. This driver no
112 longer supports this interface though, as it is slower and less reliable
113 than the ISA access, and was only available on a small number of
120 This driver implements support for the IT8603E, IT8620E, IT8623E, IT8628E,
121 IT8705F, IT8712F, IT8716F, IT8718F, IT8720F, IT8721F, IT8726F, IT8728F, IT8732F,
122 IT8758E, IT8771E, IT8772E, IT8781F, IT8782F, IT8783E/F, IT8786E, IT8790E, and
125 These chips are 'Super I/O chips', supporting floppy disks, infrared ports,
126 joysticks and other miscellaneous stuff. For hardware monitoring, they
127 include an 'environment controller' with 3 temperature sensors, 3 fan
128 rotation speed sensors, 8 voltage sensors, associated alarms, and chassis
131 The IT8712F and IT8716F additionally feature VID inputs, used to report
132 the Vcore voltage of the processor. The early IT8712F have 5 VID pins,
133 the IT8716F and late IT8712F have 6. They are shared with other functions
134 though, so the functionality may not be available on a given system.
136 The IT8718F and IT8720F also features VID inputs (up to 8 pins) but the value
137 is stored in the Super-I/O configuration space. Due to technical limitations,
138 this value can currently only be read once at initialization time, so
139 the driver won't notice and report changes in the VID value. The two
140 upper VID bits share their pins with voltage inputs (in5 and in6) so you
141 can't have both on a given board.
143 The IT8716F, IT8718F, IT8720F, IT8721F/IT8758E and later IT8712F revisions
144 have support for 2 additional fans. The additional fans are supported by the
147 The IT8716F, IT8718F, IT8720F, IT8721F/IT8758E, IT8732F, IT8781F, IT8782F,
148 IT8783E/F, and late IT8712F and IT8705F also have optional 16-bit tachometer
149 counters for fans 1 to 3. This is better (no more fan clock divider mess) but
150 not compatible with the older chips and revisions. The 16-bit tachometer mode
151 is enabled by the driver when one of the above chips is detected.
153 The IT8726F is just bit enhanced IT8716F with additional hardware
154 for AMD power sequencing. Therefore the chip will appear as IT8716F
155 to userspace applications.
157 The IT8728F, IT8771E, and IT8772E are considered compatible with the IT8721F,
158 until a datasheet becomes available (hopefully.)
160 The IT8603E/IT8623E is a custom design, hardware monitoring part is similar to
161 IT8728F. It only supports 3 fans, 16-bit fan mode, and the full speed mode
162 of the fan is not supported (value 0 of pwmX_enable).
164 The IT8620E and IT8628E are custom designs, hardware monitoring part is similar
165 to IT8728F. It only supports 16-bit fan mode. Both chips support up to 6 fans.
167 The IT8790E supports up to 3 fans. 16-bit fan mode is always enabled.
169 The IT8732F supports a closed-loop mode for fan control, but this is not
170 currently implemented by the driver.
172 Temperatures are measured in degrees Celsius. An alarm is triggered once
173 when the Overtemperature Shutdown limit is crossed.
175 Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
176 triggered if the rotation speed has dropped below a programmable limit. When
177 16-bit tachometer counters aren't used, fan readings can be divided by
178 a programmable divider (1, 2, 4 or 8) to give the readings more range or
179 accuracy. With a divider of 2, the lowest representable value is around
180 2600 RPM. Not all RPM values can accurately be represented, so some rounding
183 Voltage sensors (also known as IN sensors) report their values in volts. An
184 alarm is triggered if the voltage has crossed a programmable minimum or
185 maximum limit. Note that minimum in this case always means 'closest to
186 zero'; this is important for negative voltage measurements. On most chips, all
187 voltage inputs can measure voltages between 0 and 4.08 volts, with a resolution
188 of 0.016 volt. IT8603E, IT8721F/IT8758E and IT8728F can measure between 0 and
189 3.06 volts, with a resolution of 0.012 volt. IT8732F can measure between 0 and
190 2.8 volts with a resolution of 0.0109 volt. The battery voltage in8 does not
191 have limit registers.
193 On the IT8603E, IT8620E, IT8628E, IT8721F/IT8758E, IT8732F, IT8781F, IT8782F,
194 and IT8783E/F, some voltage inputs are internal and scaled inside the chip:
196 * in7 (optional for IT8781F, IT8782F, and IT8783E/F)
198 * in9 (relevant for IT8603E only)
199 The driver handles this transparently so user-space doesn't have to care.
201 The VID lines (IT8712F/IT8716F/IT8718F/IT8720F) encode the core voltage value:
202 the voltage level your processor should work with. This is hardcoded by
203 the mainboard and/or processor itself. It is a value in volts.
205 If an alarm triggers, it will remain triggered until the hardware register
206 is read at least once. This means that the cause for the alarm may already
207 have disappeared! Note that in the current implementation, all hardware
208 registers are read whenever any data is read (unless it is less than 1.5
209 seconds since the last update). This means that you can easily miss
212 Out-of-limit readings can also result in beeping, if the chip is properly
213 wired and configured. Beeping can be enabled or disabled per sensor type
214 (temperatures, voltages and fans.)
216 The IT87xx only updates its values each 1.5 seconds; reading it more often
217 will do no harm, but will return 'old' values.
219 To change sensor N to a thermistor, 'echo 4 > tempN_type' where N is 1, 2,
220 or 3. To change sensor N to a thermal diode, 'echo 3 > tempN_type'.
221 Give 0 for unused sensor. Any other value is invalid. To configure this at
222 startup, consult lm_sensors's /etc/sensors.conf. (4 = thermistor;
229 The fan speed control features are limited to manual PWM mode. Automatic
230 "Smart Guardian" mode control handling is only implemented for older chips
231 (see below.) However if you want to go for "manual mode" just write 1 to
234 If you are only able to control the fan speed with very small PWM values,
235 try lowering the PWM base frequency (pwm1_freq). Depending on the fan,
236 it may give you a somewhat greater control range. The same frequency is
237 used to drive all fan outputs, which is why pwm2_freq and pwm3_freq are
241 Automatic fan speed control (old interface)
242 -------------------------------------------
244 The driver supports the old interface to automatic fan speed control
245 which is implemented by IT8705F chips up to revision F and IT8712F
246 chips up to revision G.
248 This interface implements 4 temperature vs. PWM output trip points.
249 The PWM output of trip point 4 is always the maximum value (fan running
250 at full speed) while the PWM output of the other 3 trip points can be
251 freely chosen. The temperature of all 4 trip points can be freely chosen.
252 Additionally, trip point 1 has an hysteresis temperature attached, to
253 prevent fast switching between fan on and off.
255 The chip automatically computes the PWM output value based on the input
256 temperature, based on this simple rule: if the temperature value is
257 between trip point N and trip point N+1 then the PWM output value is
258 the one of trip point N. The automatic control mode is less flexible
259 than the manual control mode, but it reacts faster, is more robust and
260 doesn't use CPU cycles.
262 Trip points must be set properly before switching to automatic fan speed
263 control mode. The driver will perform basic integrity checks before
264 actually switching to automatic control mode.
267 Temperature offset attributes
268 -----------------------------
270 The driver supports temp[1-3]_offset sysfs attributes to adjust the reported
271 temperature for thermal diodes or diode-connected thermal transistors.
272 If a temperature sensor is configured for thermistors, the attribute values
273 are ignored. If the thermal sensor type is Intel PECI, the temperature offset
274 must be programmed to the critical CPU temperature.