smb: client: Fix minor whitespace errors and warnings
[linux-modified.git] / Documentation / devicetree / bindings / power / power-domain.yaml
1 # SPDX-License-Identifier: GPL-2.0
2 %YAML 1.2
3 ---
4 $id: http://devicetree.org/schemas/power/power-domain.yaml#
5 $schema: http://devicetree.org/meta-schemas/core.yaml#
6
7 title: Generic PM domains
8
9 maintainers:
10   - Rafael J. Wysocki <rjw@rjwysocki.net>
11   - Kevin Hilman <khilman@kernel.org>
12   - Ulf Hansson <ulf.hansson@linaro.org>
13
14 description: |+
15   System on chip designs are often divided into multiple PM domains that can be
16   used for power gating of selected IP blocks for power saving by reduced
17   leakage current. Moreover, in some cases the similar PM domains may also be
18   capable of scaling performance for a group of IP blocks.
19
20   This device tree binding can be used to bind PM domain consumer devices with
21   their PM domains provided by PM domain providers. A PM domain provider can be
22   represented by any node in the device tree and can provide one or more PM
23   domains. A consumer node can refer to the provider by a phandle and a set of
24   phandle arguments (so called PM domain specifiers) of length specified by the
25   \#power-domain-cells property in the PM domain provider node.
26
27 properties:
28   $nodename:
29     pattern: "^(power-controller|power-domain|performance-domain)([@-].*)?$"
30
31   domain-idle-states:
32     $ref: /schemas/types.yaml#/definitions/phandle-array
33     items:
34       maxItems: 1
35     description: |
36       Phandles of idle states that defines the available states for the
37       power-domain provider. The idle state definitions are compatible with the
38       domain-idle-state bindings, specified in ./domain-idle-state.yaml.
39
40       Note that, the domain-idle-state property reflects the idle states of this
41       PM domain and not the idle states of the devices or sub-domains in the PM
42       domain. Devices and sub-domains have their own idle states independent of
43       the parent domain's idle states. In the absence of this property, the
44       domain would be considered as capable of being powered-on or powered-off.
45
46   operating-points-v2:
47     description:
48       Phandles to the OPP tables of power domains that are capable of scaling
49       performance, provided by a power domain provider. If the provider provides
50       a single power domain only or all the power domains provided by the
51       provider have identical OPP tables, then this shall contain a single
52       phandle. Refer to ../opp/opp-v2-base.yaml for more information.
53
54   "#power-domain-cells":
55     description:
56       Number of cells in a PM domain specifier. Typically 0 for nodes
57       representing a single PM domain and 1 for nodes providing multiple PM
58       domains (e.g. power controllers), but can be any value as specified
59       by device tree binding documentation of particular provider.
60
61   power-domains:
62     description:
63       A phandle and PM domain specifier as defined by bindings of the power
64       controller specified by phandle. Some power domains might be powered
65       from another power domain (or have other hardware specific
66       dependencies). For representing such dependency a standard PM domain
67       consumer binding is used. When provided, all domains created
68       by the given provider should be subdomains of the domain specified
69       by this binding.
70
71 required:
72   - "#power-domain-cells"
73
74 additionalProperties: true
75
76 examples:
77   - |
78     power: power-controller@12340000 {
79         compatible = "foo,power-controller";
80         reg = <0x12340000 0x1000>;
81         #power-domain-cells = <1>;
82     };
83
84     // The node above defines a power controller that is a PM domain provider and
85     // expects one cell as its phandle argument.
86
87   - |
88     parent2: power-controller@12340000 {
89         compatible = "foo,power-controller";
90         reg = <0x12340000 0x1000>;
91         #power-domain-cells = <1>;
92     };
93
94     child2: power-controller@12341000 {
95         compatible = "foo,power-controller";
96         reg = <0x12341000 0x1000>;
97         power-domains = <&parent2 0>;
98         #power-domain-cells = <1>;
99     };
100
101     // The nodes above define two power controllers: 'parent' and 'child'.
102     // Domains created by the 'child' power controller are subdomains of '0' power
103     // domain provided by the 'parent' power controller.
104
105   - |
106     parent3: power-controller@12340000 {
107         compatible = "foo,power-controller";
108         reg = <0x12340000 0x1000>;
109         #power-domain-cells = <0>;
110         domain-idle-states = <&DOMAIN_RET>, <&DOMAIN_PWR_DN>;
111     };
112
113     child3: power-controller@12341000 {
114         compatible = "foo,power-controller";
115         reg = <0x12341000 0x1000>;
116         power-domains = <&parent3>;
117         #power-domain-cells = <0>;
118         domain-idle-states = <&DOMAIN_PWR_DN>;
119     };
120
121     domain-idle-states {
122         DOMAIN_RET: domain-retention {
123             compatible = "domain-idle-state";
124             entry-latency-us = <1000>;
125             exit-latency-us = <2000>;
126             min-residency-us = <10000>;
127         };
128
129         DOMAIN_PWR_DN: domain-pwr-dn {
130             compatible = "domain-idle-state";
131             entry-latency-us = <5000>;
132             exit-latency-us = <8000>;
133             min-residency-us = <7000>;
134         };
135     };