1 Common bindings for device graphs
6 The hierarchical organisation of the device tree is well suited to describe
7 control flow to devices, but there can be more complex connections between
8 devices that work together to form a logical compound device, following an
9 arbitrarily complex graph.
10 There already is a simple directed graph between devices tree nodes using
11 phandle properties pointing to other nodes to describe connections that
12 can not be inferred from device tree parent-child relationships. The device
13 tree graph bindings described herein abstract more complex devices that can
14 have multiple specifiable ports, each of which can be linked to one or more
15 ports of other devices.
17 These common bindings do not contain any information about the direction or
18 type of the connections, they just map their existence. Specific properties
19 may be described by specialized bindings depending on the type of connection.
21 To see how this binding applies to video pipelines, for example, see
22 Documentation/devicetree/bindings/media/video-interfaces.txt.
23 Here the ports describe data interfaces, and the links between them are
24 the connecting data buses. A single port with multiple connections can
25 correspond to multiple devices being connected to the same physical bus.
27 Organisation of ports and endpoints
28 -----------------------------------
30 Ports are described by child 'port' nodes contained in the device node.
31 Each port node contains an 'endpoint' subnode for each remote device port
32 connected to this port. If a single port is connected to more than one
33 remote device, an 'endpoint' child node must be provided for each link.
34 If more than one port is present in a device node or there is more than one
35 endpoint at a port, or a port node needs to be associated with a selected
36 hardware interface, a common scheme using '#address-cells', '#size-cells'
37 and 'reg' properties is used to number the nodes.
66 All 'port' nodes can be grouped under an optional 'ports' node, which
67 allows to specify #address-cells, #size-cells properties for the 'port'
68 nodes independently from any other child device nodes a device might
87 Links between endpoints
88 -----------------------
90 Each endpoint should contain a 'remote-endpoint' phandle property that points
91 to the corresponding endpoint in the port of the remote device. In turn, the
92 remote endpoint should contain a 'remote-endpoint' property. If it has one, it
93 must not point to anything other than the local endpoint. Two endpoints with
94 their 'remote-endpoint' phandles pointing at each other form a link between the
99 device_1_output: endpoint {
100 remote-endpoint = <&device_2_input>;
107 device_2_input: endpoint {
108 remote-endpoint = <&device_1_output>;
116 If there is more than one 'port' or more than one 'endpoint' node or 'reg'
117 property present in the port and/or endpoint nodes then the following
118 properties are required in a relevant parent node:
120 - #address-cells : number of cells required to define port/endpoint
121 identifier, should be 1.
122 - #size-cells : should be zero.
124 Optional endpoint properties
125 ----------------------------
127 - remote-endpoint: phandle to an 'endpoint' subnode of a remote device node.