Linux 6.7-rc7
[linux-modified.git] / Documentation / dev-tools / kunit / usage.rst
1 .. SPDX-License-Identifier: GPL-2.0
2
3 Writing Tests
4 =============
5
6 Test Cases
7 ----------
8
9 The fundamental unit in KUnit is the test case. A test case is a function with
10 the signature ``void (*)(struct kunit *test)``. It calls the function under test
11 and then sets *expectations* for what should happen. For example:
12
13 .. code-block:: c
14
15         void example_test_success(struct kunit *test)
16         {
17         }
18
19         void example_test_failure(struct kunit *test)
20         {
21                 KUNIT_FAIL(test, "This test never passes.");
22         }
23
24 In the above example, ``example_test_success`` always passes because it does
25 nothing; no expectations are set, and therefore all expectations pass. On the
26 other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``,
27 which is a special expectation that logs a message and causes the test case to
28 fail.
29
30 Expectations
31 ~~~~~~~~~~~~
32 An *expectation* specifies that we expect a piece of code to do something in a
33 test. An expectation is called like a function. A test is made by setting
34 expectations about the behavior of a piece of code under test. When one or more
35 expectations fail, the test case fails and information about the failure is
36 logged. For example:
37
38 .. code-block:: c
39
40         void add_test_basic(struct kunit *test)
41         {
42                 KUNIT_EXPECT_EQ(test, 1, add(1, 0));
43                 KUNIT_EXPECT_EQ(test, 2, add(1, 1));
44         }
45
46 In the above example, ``add_test_basic`` makes a number of assertions about the
47 behavior of a function called ``add``. The first parameter is always of type
48 ``struct kunit *``, which contains information about the current test context.
49 The second parameter, in this case, is what the value is expected to be. The
50 last value is what the value actually is. If ``add`` passes all of these
51 expectations, the test case, ``add_test_basic`` will pass; if any one of these
52 expectations fails, the test case will fail.
53
54 A test case *fails* when any expectation is violated; however, the test will
55 continue to run, and try other expectations until the test case ends or is
56 otherwise terminated. This is as opposed to *assertions* which are discussed
57 later.
58
59 To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst.
60
61 .. note::
62    A single test case should be short, easy to understand, and focused on a
63    single behavior.
64
65 For example, if we want to rigorously test the ``add`` function above, create
66 additional tests cases which would test each property that an ``add`` function
67 should have as shown below:
68
69 .. code-block:: c
70
71         void add_test_basic(struct kunit *test)
72         {
73                 KUNIT_EXPECT_EQ(test, 1, add(1, 0));
74                 KUNIT_EXPECT_EQ(test, 2, add(1, 1));
75         }
76
77         void add_test_negative(struct kunit *test)
78         {
79                 KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
80         }
81
82         void add_test_max(struct kunit *test)
83         {
84                 KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
85                 KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
86         }
87
88         void add_test_overflow(struct kunit *test)
89         {
90                 KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1));
91         }
92
93 Assertions
94 ~~~~~~~~~~
95
96 An assertion is like an expectation, except that the assertion immediately
97 terminates the test case if the condition is not satisfied. For example:
98
99 .. code-block:: c
100
101         static void test_sort(struct kunit *test)
102         {
103                 int *a, i, r = 1;
104                 a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL);
105                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a);
106                 for (i = 0; i < TEST_LEN; i++) {
107                         r = (r * 725861) % 6599;
108                         a[i] = r;
109                 }
110                 sort(a, TEST_LEN, sizeof(*a), cmpint, NULL);
111                 for (i = 0; i < TEST_LEN-1; i++)
112                         KUNIT_EXPECT_LE(test, a[i], a[i + 1]);
113         }
114
115 In this example, we need to be able to allocate an array to test the ``sort()``
116 function. So we use ``KUNIT_ASSERT_NOT_ERR_OR_NULL()`` to abort the test if
117 there's an allocation error.
118
119 .. note::
120    In other test frameworks, ``ASSERT`` macros are often implemented by calling
121    ``return`` so they only work from the test function. In KUnit, we stop the
122    current kthread on failure, so you can call them from anywhere.
123
124 .. note::
125    Warning: There is an exception to the above rule. You shouldn't use assertions
126    in the suite's exit() function, or in the free function for a resource. These
127    run when a test is shutting down, and an assertion here prevents further
128    cleanup code from running, potentially leading to a memory leak.
129
130 Customizing error messages
131 --------------------------
132
133 Each of the ``KUNIT_EXPECT`` and ``KUNIT_ASSERT`` macros have a ``_MSG``
134 variant.  These take a format string and arguments to provide additional
135 context to the automatically generated error messages.
136
137 .. code-block:: c
138
139         char some_str[41];
140         generate_sha1_hex_string(some_str);
141
142         /* Before. Not easy to tell why the test failed. */
143         KUNIT_EXPECT_EQ(test, strlen(some_str), 40);
144
145         /* After. Now we see the offending string. */
146         KUNIT_EXPECT_EQ_MSG(test, strlen(some_str), 40, "some_str='%s'", some_str);
147
148 Alternatively, one can take full control over the error message by using
149 ``KUNIT_FAIL()``, e.g.
150
151 .. code-block:: c
152
153         /* Before */
154         KUNIT_EXPECT_EQ(test, some_setup_function(), 0);
155
156         /* After: full control over the failure message. */
157         if (some_setup_function())
158                 KUNIT_FAIL(test, "Failed to setup thing for testing");
159
160
161 Test Suites
162 ~~~~~~~~~~~
163
164 We need many test cases covering all the unit's behaviors. It is common to have
165 many similar tests. In order to reduce duplication in these closely related
166 tests, most unit testing frameworks (including KUnit) provide the concept of a
167 *test suite*. A test suite is a collection of test cases for a unit of code
168 with optional setup and teardown functions that run before/after the whole
169 suite and/or every test case.
170
171 .. note::
172    A test case will only run if it is associated with a test suite.
173
174 For example:
175
176 .. code-block:: c
177
178         static struct kunit_case example_test_cases[] = {
179                 KUNIT_CASE(example_test_foo),
180                 KUNIT_CASE(example_test_bar),
181                 KUNIT_CASE(example_test_baz),
182                 {}
183         };
184
185         static struct kunit_suite example_test_suite = {
186                 .name = "example",
187                 .init = example_test_init,
188                 .exit = example_test_exit,
189                 .suite_init = example_suite_init,
190                 .suite_exit = example_suite_exit,
191                 .test_cases = example_test_cases,
192         };
193         kunit_test_suite(example_test_suite);
194
195 In the above example, the test suite ``example_test_suite`` would first run
196 ``example_suite_init``, then run the test cases ``example_test_foo``,
197 ``example_test_bar``, and ``example_test_baz``. Each would have
198 ``example_test_init`` called immediately before it and ``example_test_exit``
199 called immediately after it. Finally, ``example_suite_exit`` would be called
200 after everything else. ``kunit_test_suite(example_test_suite)`` registers the
201 test suite with the KUnit test framework.
202
203 .. note::
204    The ``exit`` and ``suite_exit`` functions will run even if ``init`` or
205    ``suite_init`` fail. Make sure that they can handle any inconsistent
206    state which may result from ``init`` or ``suite_init`` encountering errors
207    or exiting early.
208
209 ``kunit_test_suite(...)`` is a macro which tells the linker to put the
210 specified test suite in a special linker section so that it can be run by KUnit
211 either after ``late_init``, or when the test module is loaded (if the test was
212 built as a module).
213
214 For more information, see Documentation/dev-tools/kunit/api/test.rst.
215
216 .. _kunit-on-non-uml:
217
218 Writing Tests For Other Architectures
219 -------------------------------------
220
221 It is better to write tests that run on UML to tests that only run under a
222 particular architecture. It is better to write tests that run under QEMU or
223 another easy to obtain (and monetarily free) software environment to a specific
224 piece of hardware.
225
226 Nevertheless, there are still valid reasons to write a test that is architecture
227 or hardware specific. For example, we might want to test code that really
228 belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does
229 not depend on physical hardware. Some of our test cases may not need hardware,
230 only few tests actually require the hardware to test it. When hardware is not
231 available, instead of disabling tests, we can skip them.
232
233 Now that we have narrowed down exactly what bits are hardware specific, the
234 actual procedure for writing and running the tests is same as writing normal
235 KUnit tests.
236
237 .. important::
238    We may have to reset hardware state. If this is not possible, we may only
239    be able to run one test case per invocation.
240
241 .. TODO(brendanhiggins@google.com): Add an actual example of an architecture-
242    dependent KUnit test.
243
244 Common Patterns
245 ===============
246
247 Isolating Behavior
248 ------------------
249
250 Unit testing limits the amount of code under test to a single unit. It controls
251 what code gets run when the unit under test calls a function. Where a function
252 is exposed as part of an API such that the definition of that function can be
253 changed without affecting the rest of the code base. In the kernel, this comes
254 from two constructs: classes, which are structs that contain function pointers
255 provided by the implementer, and architecture-specific functions, which have
256 definitions selected at compile time.
257
258 Classes
259 ~~~~~~~
260
261 Classes are not a construct that is built into the C programming language;
262 however, it is an easily derived concept. Accordingly, in most cases, every
263 project that does not use a standardized object oriented library (like GNOME's
264 GObject) has their own slightly different way of doing object oriented
265 programming; the Linux kernel is no exception.
266
267 The central concept in kernel object oriented programming is the class. In the
268 kernel, a *class* is a struct that contains function pointers. This creates a
269 contract between *implementers* and *users* since it forces them to use the
270 same function signature without having to call the function directly. To be a
271 class, the function pointers must specify that a pointer to the class, known as
272 a *class handle*, be one of the parameters. Thus the member functions (also
273 known as *methods*) have access to member variables (also known as *fields*)
274 allowing the same implementation to have multiple *instances*.
275
276 A class can be *overridden* by *child classes* by embedding the *parent class*
277 in the child class. Then when the child class *method* is called, the child
278 implementation knows that the pointer passed to it is of a parent contained
279 within the child. Thus, the child can compute the pointer to itself because the
280 pointer to the parent is always a fixed offset from the pointer to the child.
281 This offset is the offset of the parent contained in the child struct. For
282 example:
283
284 .. code-block:: c
285
286         struct shape {
287                 int (*area)(struct shape *this);
288         };
289
290         struct rectangle {
291                 struct shape parent;
292                 int length;
293                 int width;
294         };
295
296         int rectangle_area(struct shape *this)
297         {
298                 struct rectangle *self = container_of(this, struct rectangle, parent);
299
300                 return self->length * self->width;
301         };
302
303         void rectangle_new(struct rectangle *self, int length, int width)
304         {
305                 self->parent.area = rectangle_area;
306                 self->length = length;
307                 self->width = width;
308         }
309
310 In this example, computing the pointer to the child from the pointer to the
311 parent is done by ``container_of``.
312
313 Faking Classes
314 ~~~~~~~~~~~~~~
315
316 In order to unit test a piece of code that calls a method in a class, the
317 behavior of the method must be controllable, otherwise the test ceases to be a
318 unit test and becomes an integration test.
319
320 A fake class implements a piece of code that is different than what runs in a
321 production instance, but behaves identical from the standpoint of the callers.
322 This is done to replace a dependency that is hard to deal with, or is slow. For
323 example, implementing a fake EEPROM that stores the "contents" in an
324 internal buffer. Assume we have a class that represents an EEPROM:
325
326 .. code-block:: c
327
328         struct eeprom {
329                 ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count);
330                 ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count);
331         };
332
333 And we want to test code that buffers writes to the EEPROM:
334
335 .. code-block:: c
336
337         struct eeprom_buffer {
338                 ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count);
339                 int flush(struct eeprom_buffer *this);
340                 size_t flush_count; /* Flushes when buffer exceeds flush_count. */
341         };
342
343         struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom);
344         void destroy_eeprom_buffer(struct eeprom *eeprom);
345
346 We can test this code by *faking out* the underlying EEPROM:
347
348 .. code-block:: c
349
350         struct fake_eeprom {
351                 struct eeprom parent;
352                 char contents[FAKE_EEPROM_CONTENTS_SIZE];
353         };
354
355         ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count)
356         {
357                 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
358
359                 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
360                 memcpy(buffer, this->contents + offset, count);
361
362                 return count;
363         }
364
365         ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count)
366         {
367                 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
368
369                 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
370                 memcpy(this->contents + offset, buffer, count);
371
372                 return count;
373         }
374
375         void fake_eeprom_init(struct fake_eeprom *this)
376         {
377                 this->parent.read = fake_eeprom_read;
378                 this->parent.write = fake_eeprom_write;
379                 memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE);
380         }
381
382 We can now use it to test ``struct eeprom_buffer``:
383
384 .. code-block:: c
385
386         struct eeprom_buffer_test {
387                 struct fake_eeprom *fake_eeprom;
388                 struct eeprom_buffer *eeprom_buffer;
389         };
390
391         static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test)
392         {
393                 struct eeprom_buffer_test *ctx = test->priv;
394                 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
395                 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
396                 char buffer[] = {0xff};
397
398                 eeprom_buffer->flush_count = SIZE_MAX;
399
400                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
401                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
402
403                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
404                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0);
405
406                 eeprom_buffer->flush(eeprom_buffer);
407                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
408                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
409         }
410
411         static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test)
412         {
413                 struct eeprom_buffer_test *ctx = test->priv;
414                 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
415                 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
416                 char buffer[] = {0xff};
417
418                 eeprom_buffer->flush_count = 2;
419
420                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
421                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
422
423                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
424                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
425                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
426         }
427
428         static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test)
429         {
430                 struct eeprom_buffer_test *ctx = test->priv;
431                 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
432                 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
433                 char buffer[] = {0xff, 0xff};
434
435                 eeprom_buffer->flush_count = 2;
436
437                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
438                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
439
440                 eeprom_buffer->write(eeprom_buffer, buffer, 2);
441                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
442                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
443                 /* Should have only flushed the first two bytes. */
444                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0);
445         }
446
447         static int eeprom_buffer_test_init(struct kunit *test)
448         {
449                 struct eeprom_buffer_test *ctx;
450
451                 ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
452                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
453
454                 ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL);
455                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom);
456                 fake_eeprom_init(ctx->fake_eeprom);
457
458                 ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent);
459                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer);
460
461                 test->priv = ctx;
462
463                 return 0;
464         }
465
466         static void eeprom_buffer_test_exit(struct kunit *test)
467         {
468                 struct eeprom_buffer_test *ctx = test->priv;
469
470                 destroy_eeprom_buffer(ctx->eeprom_buffer);
471         }
472
473 Testing Against Multiple Inputs
474 -------------------------------
475
476 Testing just a few inputs is not enough to ensure that the code works correctly,
477 for example: testing a hash function.
478
479 We can write a helper macro or function. The function is called for each input.
480 For example, to test ``sha1sum(1)``, we can write:
481
482 .. code-block:: c
483
484         #define TEST_SHA1(in, want) \
485                 sha1sum(in, out); \
486                 KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in);
487
488         char out[40];
489         TEST_SHA1("hello world",  "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed");
490         TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169");
491
492 Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more
493 detailed error and make the assertions clearer within the helper macros.
494
495 The ``_MSG`` variants are useful when the same expectation is called multiple
496 times (in a loop or helper function) and thus the line number is not enough to
497 identify what failed, as shown below.
498
499 In complicated cases, we recommend using a *table-driven test* compared to the
500 helper macro variation, for example:
501
502 .. code-block:: c
503
504         int i;
505         char out[40];
506
507         struct sha1_test_case {
508                 const char *str;
509                 const char *sha1;
510         };
511
512         struct sha1_test_case cases[] = {
513                 {
514                         .str = "hello world",
515                         .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
516                 },
517                 {
518                         .str = "hello world!",
519                         .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
520                 },
521         };
522         for (i = 0; i < ARRAY_SIZE(cases); ++i) {
523                 sha1sum(cases[i].str, out);
524                 KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1,
525                                       "sha1sum(%s)", cases[i].str);
526         }
527
528
529 There is more boilerplate code involved, but it can:
530
531 * be more readable when there are multiple inputs/outputs (due to field names).
532
533   * For example, see ``fs/ext4/inode-test.c``.
534
535 * reduce duplication if test cases are shared across multiple tests.
536
537   * For example: if we want to test ``sha256sum``, we could add a ``sha256``
538     field and reuse ``cases``.
539
540 * be converted to a "parameterized test".
541
542 Parameterized Testing
543 ~~~~~~~~~~~~~~~~~~~~~
544
545 The table-driven testing pattern is common enough that KUnit has special
546 support for it.
547
548 By reusing the same ``cases`` array from above, we can write the test as a
549 "parameterized test" with the following.
550
551 .. code-block:: c
552
553         // This is copy-pasted from above.
554         struct sha1_test_case {
555                 const char *str;
556                 const char *sha1;
557         };
558         const struct sha1_test_case cases[] = {
559                 {
560                         .str = "hello world",
561                         .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
562                 },
563                 {
564                         .str = "hello world!",
565                         .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
566                 },
567         };
568
569         // Need a helper function to generate a name for each test case.
570         static void case_to_desc(const struct sha1_test_case *t, char *desc)
571         {
572                 strcpy(desc, t->str);
573         }
574         // Creates `sha1_gen_params()` to iterate over `cases`.
575         KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc);
576
577         // Looks no different from a normal test.
578         static void sha1_test(struct kunit *test)
579         {
580                 // This function can just contain the body of the for-loop.
581                 // The former `cases[i]` is accessible under test->param_value.
582                 char out[40];
583                 struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value);
584
585                 sha1sum(test_param->str, out);
586                 KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1,
587                                       "sha1sum(%s)", test_param->str);
588         }
589
590         // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the
591         // function declared by KUNIT_ARRAY_PARAM.
592         static struct kunit_case sha1_test_cases[] = {
593                 KUNIT_CASE_PARAM(sha1_test, sha1_gen_params),
594                 {}
595         };
596
597 Allocating Memory
598 -----------------
599
600 Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit
601 will then ensure that the memory is freed once the test completes.
602
603 This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit
604 early from a test without having to worry about remembering to call ``kfree``.
605 For example:
606
607 .. code-block:: c
608
609         void example_test_allocation(struct kunit *test)
610         {
611                 char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL);
612                 /* Ensure allocation succeeded. */
613                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer);
614
615                 KUNIT_ASSERT_STREQ(test, buffer, "");
616         }
617
618 Registering Cleanup Actions
619 ---------------------------
620
621 If you need to perform some cleanup beyond simple use of ``kunit_kzalloc``,
622 you can register a custom "deferred action", which is a cleanup function
623 run when the test exits (whether cleanly, or via a failed assertion).
624
625 Actions are simple functions with no return value, and a single ``void*``
626 context argument, and fulfill the same role as "cleanup" functions in Python
627 and Go tests, "defer" statements in languages which support them, and
628 (in some cases) destructors in RAII languages.
629
630 These are very useful for unregistering things from global lists, closing
631 files or other resources, or freeing resources.
632
633 For example:
634
635 .. code-block:: C
636
637         static void cleanup_device(void *ctx)
638         {
639                 struct device *dev = (struct device *)ctx;
640
641                 device_unregister(dev);
642         }
643
644         void example_device_test(struct kunit *test)
645         {
646                 struct my_device dev;
647
648                 device_register(&dev);
649
650                 kunit_add_action(test, &cleanup_device, &dev);
651         }
652
653 Note that, for functions like device_unregister which only accept a single
654 pointer-sized argument, it's possible to directly cast that function to
655 a ``kunit_action_t`` rather than writing a wrapper function, for example:
656
657 .. code-block:: C
658
659         kunit_add_action(test, (kunit_action_t *)&device_unregister, &dev);
660
661 ``kunit_add_action`` can fail if, for example, the system is out of memory.
662 You can use ``kunit_add_action_or_reset`` instead which runs the action
663 immediately if it cannot be deferred.
664
665 If you need more control over when the cleanup function is called, you
666 can trigger it early using ``kunit_release_action``, or cancel it entirely
667 with ``kunit_remove_action``.
668
669
670 Testing Static Functions
671 ------------------------
672
673 If we do not want to expose functions or variables for testing, one option is to
674 conditionally ``#include`` the test file at the end of your .c file. For
675 example:
676
677 .. code-block:: c
678
679         /* In my_file.c */
680
681         static int do_interesting_thing();
682
683         #ifdef CONFIG_MY_KUNIT_TEST
684         #include "my_kunit_test.c"
685         #endif
686
687 Injecting Test-Only Code
688 ------------------------
689
690 Similar to as shown above, we can add test-specific logic. For example:
691
692 .. code-block:: c
693
694         /* In my_file.h */
695
696         #ifdef CONFIG_MY_KUNIT_TEST
697         /* Defined in my_kunit_test.c */
698         void test_only_hook(void);
699         #else
700         void test_only_hook(void) { }
701         #endif
702
703 This test-only code can be made more useful by accessing the current ``kunit_test``
704 as shown in next section: *Accessing The Current Test*.
705
706 Accessing The Current Test
707 --------------------------
708
709 In some cases, we need to call test-only code from outside the test file.  This
710 is helpful, for example, when providing a fake implementation of a function, or
711 to fail any current test from within an error handler.
712 We can do this via the ``kunit_test`` field in ``task_struct``, which we can
713 access using the ``kunit_get_current_test()`` function in ``kunit/test-bug.h``.
714
715 ``kunit_get_current_test()`` is safe to call even if KUnit is not enabled. If
716 KUnit is not enabled, or if no test is running in the current task, it will
717 return ``NULL``. This compiles down to either a no-op or a static key check,
718 so will have a negligible performance impact when no test is running.
719
720 The example below uses this to implement a "mock" implementation of a function, ``foo``:
721
722 .. code-block:: c
723
724         #include <kunit/test-bug.h> /* for kunit_get_current_test */
725
726         struct test_data {
727                 int foo_result;
728                 int want_foo_called_with;
729         };
730
731         static int fake_foo(int arg)
732         {
733                 struct kunit *test = kunit_get_current_test();
734                 struct test_data *test_data = test->priv;
735
736                 KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg);
737                 return test_data->foo_result;
738         }
739
740         static void example_simple_test(struct kunit *test)
741         {
742                 /* Assume priv (private, a member used to pass test data from
743                  * the init function) is allocated in the suite's .init */
744                 struct test_data *test_data = test->priv;
745
746                 test_data->foo_result = 42;
747                 test_data->want_foo_called_with = 1;
748
749                 /* In a real test, we'd probably pass a pointer to fake_foo somewhere
750                  * like an ops struct, etc. instead of calling it directly. */
751                 KUNIT_EXPECT_EQ(test, fake_foo(1), 42);
752         }
753
754 In this example, we are using the ``priv`` member of ``struct kunit`` as a way
755 of passing data to the test from the init function. In general ``priv`` is
756 pointer that can be used for any user data. This is preferred over static
757 variables, as it avoids concurrency issues.
758
759 Had we wanted something more flexible, we could have used a named ``kunit_resource``.
760 Each test can have multiple resources which have string names providing the same
761 flexibility as a ``priv`` member, but also, for example, allowing helper
762 functions to create resources without conflicting with each other. It is also
763 possible to define a clean up function for each resource, making it easy to
764 avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/resource.rst.
765
766 Failing The Current Test
767 ------------------------
768
769 If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)``
770 which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``.
771 For example, we have an option to enable some extra debug checks on some data
772 structures as shown below:
773
774 .. code-block:: c
775
776         #include <kunit/test-bug.h>
777
778         #ifdef CONFIG_EXTRA_DEBUG_CHECKS
779         static void validate_my_data(struct data *data)
780         {
781                 if (is_valid(data))
782                         return;
783
784                 kunit_fail_current_test("data %p is invalid", data);
785
786                 /* Normal, non-KUnit, error reporting code here. */
787         }
788         #else
789         static void my_debug_function(void) { }
790         #endif
791
792 ``kunit_fail_current_test()`` is safe to call even if KUnit is not enabled. If
793 KUnit is not enabled, or if no test is running in the current task, it will do
794 nothing. This compiles down to either a no-op or a static key check, so will
795 have a negligible performance impact when no test is running.