GNU Linux-libre 6.6.34-gnu
[releases.git] / Documentation / admin-guide / cgroup-v1 / hugetlb.rst
1 ==================
2 HugeTLB Controller
3 ==================
4
5 HugeTLB controller can be created by first mounting the cgroup filesystem.
6
7 # mount -t cgroup -o hugetlb none /sys/fs/cgroup
8
9 With the above step, the initial or the parent HugeTLB group becomes
10 visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
11 the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
12
13 New groups can be created under the parent group /sys/fs/cgroup::
14
15   # cd /sys/fs/cgroup
16   # mkdir g1
17   # echo $$ > g1/tasks
18
19 The above steps create a new group g1 and move the current shell
20 process (bash) into it.
21
22 Brief summary of control files::
23
24  hugetlb.<hugepagesize>.rsvd.limit_in_bytes            # set/show limit of "hugepagesize" hugetlb reservations
25  hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes        # show max "hugepagesize" hugetlb reservations and no-reserve faults
26  hugetlb.<hugepagesize>.rsvd.usage_in_bytes            # show current reservations and no-reserve faults for "hugepagesize" hugetlb
27  hugetlb.<hugepagesize>.rsvd.failcnt                   # show the number of allocation failure due to HugeTLB reservation limit
28  hugetlb.<hugepagesize>.limit_in_bytes                 # set/show limit of "hugepagesize" hugetlb faults
29  hugetlb.<hugepagesize>.max_usage_in_bytes             # show max "hugepagesize" hugetlb  usage recorded
30  hugetlb.<hugepagesize>.usage_in_bytes                 # show current usage for "hugepagesize" hugetlb
31  hugetlb.<hugepagesize>.failcnt                        # show the number of allocation failure due to HugeTLB usage limit
32  hugetlb.<hugepagesize>.numa_stat                      # show the numa information of the hugetlb memory charged to this cgroup
33
34 For a system supporting three hugepage sizes (64k, 32M and 1G), the control
35 files include::
36
37   hugetlb.1GB.limit_in_bytes
38   hugetlb.1GB.max_usage_in_bytes
39   hugetlb.1GB.numa_stat
40   hugetlb.1GB.usage_in_bytes
41   hugetlb.1GB.failcnt
42   hugetlb.1GB.rsvd.limit_in_bytes
43   hugetlb.1GB.rsvd.max_usage_in_bytes
44   hugetlb.1GB.rsvd.usage_in_bytes
45   hugetlb.1GB.rsvd.failcnt
46   hugetlb.64KB.limit_in_bytes
47   hugetlb.64KB.max_usage_in_bytes
48   hugetlb.64KB.numa_stat
49   hugetlb.64KB.usage_in_bytes
50   hugetlb.64KB.failcnt
51   hugetlb.64KB.rsvd.limit_in_bytes
52   hugetlb.64KB.rsvd.max_usage_in_bytes
53   hugetlb.64KB.rsvd.usage_in_bytes
54   hugetlb.64KB.rsvd.failcnt
55   hugetlb.32MB.limit_in_bytes
56   hugetlb.32MB.max_usage_in_bytes
57   hugetlb.32MB.numa_stat
58   hugetlb.32MB.usage_in_bytes
59   hugetlb.32MB.failcnt
60   hugetlb.32MB.rsvd.limit_in_bytes
61   hugetlb.32MB.rsvd.max_usage_in_bytes
62   hugetlb.32MB.rsvd.usage_in_bytes
63   hugetlb.32MB.rsvd.failcnt
64
65
66 1. Page fault accounting
67
68 hugetlb.<hugepagesize>.limit_in_bytes
69 hugetlb.<hugepagesize>.max_usage_in_bytes
70 hugetlb.<hugepagesize>.usage_in_bytes
71 hugetlb.<hugepagesize>.failcnt
72
73 The HugeTLB controller allows users to limit the HugeTLB usage (page fault) per
74 control group and enforces the limit during page fault. Since HugeTLB
75 doesn't support page reclaim, enforcing the limit at page fault time implies
76 that, the application will get SIGBUS signal if it tries to fault in HugeTLB
77 pages beyond its limit. Therefore the application needs to know exactly how many
78 HugeTLB pages it uses before hand, and the sysadmin needs to make sure that
79 there are enough available on the machine for all the users to avoid processes
80 getting SIGBUS.
81
82
83 2. Reservation accounting
84
85 hugetlb.<hugepagesize>.rsvd.limit_in_bytes
86 hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes
87 hugetlb.<hugepagesize>.rsvd.usage_in_bytes
88 hugetlb.<hugepagesize>.rsvd.failcnt
89
90 The HugeTLB controller allows to limit the HugeTLB reservations per control
91 group and enforces the controller limit at reservation time and at the fault of
92 HugeTLB memory for which no reservation exists. Since reservation limits are
93 enforced at reservation time (on mmap or shget), reservation limits never causes
94 the application to get SIGBUS signal if the memory was reserved before hand. For
95 MAP_NORESERVE allocations, the reservation limit behaves the same as the fault
96 limit, enforcing memory usage at fault time and causing the application to
97 receive a SIGBUS if it's crossing its limit.
98
99 Reservation limits are superior to page fault limits described above, since
100 reservation limits are enforced at reservation time (on mmap or shget), and
101 never causes the application to get SIGBUS signal if the memory was reserved
102 before hand. This allows for easier fallback to alternatives such as
103 non-HugeTLB memory for example. In the case of page fault accounting, it's very
104 hard to avoid processes getting SIGBUS since the sysadmin needs precisely know
105 the HugeTLB usage of all the tasks in the system and make sure there is enough
106 pages to satisfy all requests. Avoiding tasks getting SIGBUS on overcommited
107 systems is practically impossible with page fault accounting.
108
109
110 3. Caveats with shared memory
111
112 For shared HugeTLB memory, both HugeTLB reservation and page faults are charged
113 to the first task that causes the memory to be reserved or faulted, and all
114 subsequent uses of this reserved or faulted memory is done without charging.
115
116 Shared HugeTLB memory is only uncharged when it is unreserved or deallocated.
117 This is usually when the HugeTLB file is deleted, and not when the task that
118 caused the reservation or fault has exited.
119
120
121 4. Caveats with HugeTLB cgroup offline.
122
123 When a HugeTLB cgroup goes offline with some reservations or faults still
124 charged to it, the behavior is as follows:
125
126 - The fault charges are charged to the parent HugeTLB cgroup (reparented),
127 - the reservation charges remain on the offline HugeTLB cgroup.
128
129 This means that if a HugeTLB cgroup gets offlined while there is still HugeTLB
130 reservations charged to it, that cgroup persists as a zombie until all HugeTLB
131 reservations are uncharged. HugeTLB reservations behave in this manner to match
132 the memory controller whose cgroups also persist as zombie until all charged
133 memory is uncharged. Also, the tracking of HugeTLB reservations is a bit more
134 complex compared to the tracking of HugeTLB faults, so it is significantly
135 harder to reparent reservations at offline time.