1 What: /sys/devices/platform/kim/dev_name
4 Contact: "Pavan Savoy" <pavan_savoy@ti.com>
6 Name of the UART device at which the WL128x chip
7 is connected. example: "/dev/ttyS0".
8 The device name flows down to architecture specific board
9 initialization file from the SFI/ATAGS bootloader
10 firmware. The name exposed is read from the user-space
11 dameon and opens the device when install is requested.
13 What: /sys/devices/platform/kim/baud_rate
16 Contact: "Pavan Savoy" <pavan_savoy@ti.com>
18 The maximum reliable baud-rate the host can support.
19 Different platforms tend to have different high-speed
20 UART configurations, so the baud-rate needs to be set
21 locally and also sent across to the WL128x via a HCI-VS
22 command. The entry is read and made use by the user-space
23 daemon when the ldisc install is requested.
25 What: /sys/devices/platform/kim/flow_cntrl
28 Contact: "Pavan Savoy" <pavan_savoy@ti.com>
30 The WL128x makes use of flow control mechanism, and this
31 entry most often should be 1, the host's UART is required
32 to have the capability of flow-control, or else this
33 entry can be made use of for exceptions.
35 What: /sys/devices/platform/kim/install
38 Contact: "Pavan Savoy" <pavan_savoy@ti.com>
40 When one of the protocols Bluetooth, FM or GPS wants to make
41 use of the shared UART transport, it registers to the shared
42 transport driver, which will signal the user-space for opening,
43 configuring baud and install line discipline via this sysfs
44 entry. This entry would be polled upon by the user-space
45 daemon managing the UART, and is notified about the change
46 by the sysfs_notify. The value would be '1' when UART needs
47 to be opened/ldisc installed, and would be '0' when UART
48 is no more required and needs to be closed.