X-Git-Url: https://jxself.org/git/?a=blobdiff_plain;f=misc.c;h=391b43c4d06eae816b5b6437f18614f6bf953480;hb=f5831dbf3920228bbb41b0ebf9ce2c3d0a3388d4;hp=15932ece7022d7c9a0aeb84a42b9a0c7d5667137;hpb=d93746d0789dc9bd7a9d1a380656680ce8be3c07;p=open-adventure.git diff --git a/misc.c b/misc.c index 15932ec..391b43c 100644 --- a/misc.c +++ b/misc.c @@ -7,14 +7,14 @@ /* hack to ignore GCC Unused Result */ #define IGNORE(r) do{if(r){}}while(0) -/* I/O ROUTINES (SPEAK, PSPEAK, RSPEAK, SETPRM, GETIN, YES) */ +/* I/O routines (SPEAK, PSPEAK, RSPEAK, SETPRM, GETIN, YES) */ #undef SPEAK void fSPEAK(long N) { long BLANK, CASE, I, K, L, NEG, NPARMS, PARM, PRMTYP, STATE; -/* PRINT THE MESSAGE WHICH STARTS AT LINES(N). PRECEDE IT WITH A BLANK LINE - * UNLESS BLKLIN IS FALSE. */ +/* Print the message which starts at LINES(N). Precede it with a blank line + * unless BLKLIN is false. */ if(N == 0)return; @@ -34,13 +34,13 @@ L30: LNPOSN=LNPOSN+1; L32: if(LNPOSN > LNLENG) goto L40; if(INLINE[LNPOSN] != 63) goto L30; {long x = LNPOSN+1; PRMTYP=INLINE[x];} -/* 63 IS A "%"; THE NEXT CHARACTER DETERMINE THE TYPE OF PARAMETER: 1 (!) = - * SUPPRESS MESSAGE COMPLETELY, 29 (S) = NULL IF PARM=1, ELSE 'S' (OPTIONAL - * PLURAL ENDING), 33 (W) = WORD (TWO 30-BIT VALUES) WITH TRAILING SPACES - * SUPPRESSED, 22 (L) OR 31 (U) = WORD BUT MAP TO LOWER/UPPER CASE, 13 (C) = - * WORD IN LOWER CASE WITH FIRST LETTER CAPITALISED, 30 (T) = TEXT ENDING - * WITH A WORD OF -1, 65-73 (1-9) = NUMBER USING THAT MANY CHARACTERS, - * 12 (B) = VARIABLE NUMBER OF BLANKS. */ +/* 63 is a "%"; the next character determine the type of parameter: 1 (!) = + * suppress message completely, 29 (S) = NULL If PARM=1, else 'S' (optional + * plural ending), 33 (W) = word (two 30-bit values) with trailing spaces + * suppressed, 22 (L) or 31 (U) = word but map to lower/upper case, 13 (C) = + * word in lower case with first letter capitalised, 30 (T) = text ending + * with a word of -1, 65-73 (1-9) = number using that many characters, + * 12 (B) = variable number of blanks. */ if(PRMTYP == 1)return; if(PRMTYP == 29) goto L320; if(PRMTYP == 30) goto L340; @@ -117,8 +117,8 @@ L40: if(BLANK)TYPE0(); void fPSPEAK(long MSG,long SKIP) { long I, M; -/* FIND THE SKIP+1ST MESSAGE FROM MSG AND PRINT IT. MSG SHOULD BE THE INDEX OF - * THE INVENTORY MESSAGE FOR OBJECT. (INVEN+N+1 MESSAGE IS PROP=N MESSAGE). */ +/* Find the skip+1st message from msg and print it. MSG should be the index of + * the inventory message for object. (INVEN+N+1 message is PROP=N message). */ M=PTEXT[MSG]; @@ -139,7 +139,7 @@ L9: SPEAK(M); void fRSPEAK(long I) { ; -/* PRINT THE I-TH "RANDOM" MESSAGE (SECTION 6 OF DATABASE). */ +/* Print the I-TH "random" message (section 6 of database). */ if(I != 0)SPEAK(RTEXT[I]); @@ -153,8 +153,8 @@ void fRSPEAK(long I) { void fSETPRM(long FIRST, long P1, long P2) { ; -/* STORES PARAMETERS INTO THE PRMCOM PARMS ARRAY FOR USE BY SPEAK. P1 AND P2 - * ARE STORED INTO PARMS(FIRST) AND PARMS(FIRST+1). */ +/* Stores parameters into the PRMCOM parms array for use by speak. P1 and P2 + * are stored into PARMS(FIRST) and PARMS(FIRST+1). */ if(FIRST >= 25)BUG(29); @@ -174,11 +174,11 @@ void fSETPRM(long FIRST, long P1, long P2) { void fGETIN(long *wORD1, long *wORD1X, long *wORD2, long *wORD2X) { long JUNK; -/* GET A COMMAND FROM THE ADVENTURER. SNARF OUT THE FIRST WORD, PAD IT WITH - * BLANKS, AND RETURN IT IN WORD1. CHARS 6 THRU 10 ARE RETURNED IN WORD1X, IN - * CASE WE NEED TO PRINT OUT THE WHOLE WORD IN AN ERROR MESSAGE. ANY NUMBER OF - * BLANKS MAY FOLLOW THE WORD. IF A SECOND WORD APPEARS, IT IS RETURNED IN - * WORD2 (CHARS 6 THRU 10 IN WORD2X), ELSE WORD2 IS -1. */ +/* Get a command from the adventurer. snarf out the first word, pad it with + * blanks, and return it in WORD1. Chars 6 thru 10 are returned in WORD1X, in + * case we need to print out the whole word in an error message. Any number of + * blanks may follow the word. If a second word appears, it is returned in + * WORD2 (chars 6 thru 10 in WORD2X), else WORD2 is -1. */ L10: if(BLKLIN)TYPE0(); @@ -209,8 +209,8 @@ long fYES(long X, long Y, long Z) { long YES, REPLY, JUNK1, JUNK2, JUNK3; -/* PRINT MESSAGE X, WAIT FOR YES/NO ANSWER. IF YES, PRINT Y AND RETURN TRUE; - * IF NO, PRINT Z AND RETURN FALSE. */ +/* Print message X, wait for yes/no answer. If yes, print Y and return true; + * if no, print Z and return false. */ L1: RSPEAK(X); GETIN(REPLY,JUNK1,JUNK2,JUNK3); @@ -230,25 +230,25 @@ L20: YES=false; -/* LINE-PARSING ROUTINES (GETNUM, GETTXT, MAKEWD, PUTTXT, SHFTXT, TYPE0) +/* Line-parsing routines (GETNUM, GETTXT, MAKEWD, PUTTXT, SHFTXT, TYPE0) */ -/* THE ROUTINES ON THIS PAGE HANDLE ALL THE STUFF THAT WOULD NORMALLY BE - * TAKEN CARE OF BY FORMAT STATEMENTS. WE DO IT THIS WAY INSTEAD SO THAT - * WE CAN HANDLE TEXTUAL DATA IN A MACHINE INDEPENDENT FASHION. ALL THE - * MACHINE DEPENDENT I/O STUFF IS ON THE FOLLOWING PAGE. SEE THAT PAGE - * FOR A DESCRIPTION OF MAPCOM'S INLINE ARRAY. */ +/* The routines on this page handle all the stuff that would normally be + * taken care of by format statements. We do it this way instead so that + * we can handle textual data in a machine independent fashion. All the + * machine dependent i/o stuff is on the following page. See that page + * for a description of MAPCOM's inline array. */ #define YES(X,Y,Z) fYES(X,Y,Z) #undef GETNUM long fGETNUM(long K) { long DIGIT, GETNUM, SIGN; -/* OBTAIN THE NEXT INTEGER FROM AN INPUT LINE. IF K>0, WE FIRST READ A - * NEW INPUT LINE FROM A FILE; IF K<0, WE READ A LINE FROM THE KEYBOARD; - * IF K=0 WE USE A LINE THAT HAS ALREADY BEEN READ (AND PERHAPS PARTIALLY - * SCANNED). IF WE'RE AT THE END OF THE LINE OR ENCOUNTER AN ILLEGAL - * CHARACTER (NOT A DIGIT, HYPHEN, OR BLANK), WE RETURN 0. */ +/* Obtain the next integer from an input line. If K>0, we first read a + * new input line from a file; if K<0, we read a line from the keyboard; + * if K=0 we use a line that has already been read (and perhaps partially + * scanned). If we're at the end of the line or encounter an illegal + * character (not a digit, hyphen, or blank), we return 0. */ if(K != 0)MAPLIN(K > 0); @@ -281,13 +281,13 @@ L42: GETNUM=GETNUM*SIGN; long fGETTXT(long SKIP,long ONEWRD, long UPPER, long HASH) { long CHAR, GETTXT, I; static long SPLITTING = -1; -/* TAKE CHARACTERS FROM AN INPUT LINE AND PACK THEM INTO 30-BIT WORDS. - * SKIP SAYS TO SKIP LEADING BLANKS. ONEWRD SAYS STOP IF WE COME TO A - * BLANK. UPPER SAYS TO MAP ALL LETTERS TO UPPERCASE. HASH MAY BE USED - * AS A PARAMETER FOR ENCRYPTING THE TEXT IF DESIRED; HOWEVER, A HASH OF 0 - * SHOULD RESULT IN UNMODIFIED BYTES BEING PACKED. IF WE REACH THE - * END OF THE LINE, THE WORD IS FILLED UP WITH BLANKS (WHICH ENCODE AS 0'S). - * IF WE'RE ALREADY AT END OF LINE WHEN GETTXT IS CALLED, WE RETURN -1. */ +/* Take characters from an input line and pack them into 30-bit words. + * Skip says to skip leading blanks. ONEWRD says stop if we come to a + * blank. UPPER says to map all letters to uppercase. HASH may be used + * as a parameter for encrypting the text if desired; however, a hash of 0 + * should result in unmodified bytes being packed. If we reach the + * end of the line, the word is filled up with blanks (which encode as 0's). + * If we're already at end of line when GETTXT is called, we return -1. */ if(LNPOSN != SPLITTING)SPLITTING = -1; GETTXT= -1; @@ -329,12 +329,12 @@ L15: /*etc*/ ; long fMAKEWD(long LETTRS) { long I, L, MAKEWD; -/* COMBINE FIVE UPPERCASE LETTERS (REPRESENTED BY PAIRS OF DECIMAL DIGITS - * IN LETTRS) TO FORM A 30-BIT VALUE MATCHING THE ONE THAT GETTXT WOULD - * RETURN GIVEN THOSE CHARACTERS PLUS TRAILING BLANKS AND HASH=0. CAUTION: - * LETTRS WILL OVERFLOW 31 BITS IF 5-LETTER WORD STARTS WITH V-Z. AS A - * KLUDGEY WORKAROUND, YOU CAN INCREMENT A LETTER BY 5 BY ADDING 50 TO - * THE NEXT PAIR OF DIGITS. */ +/* Combine five uppercase letters (represented by pairs of decimal digits + * in lettrs) to form a 30-bit value matching the one that GETTXT would + * return given those characters plus trailing blanks and HASH=0. Caution: + * lettrs will overflow 31 bits if 5-letter word starts with V-Z. As a + * kludgey workaround, you can increment a letter by 5 by adding 50 to + * the next pair of digits. */ MAKEWD=0; @@ -358,16 +358,16 @@ L10: MAKEWD=MAKEWD+I*(MOD(L,50)+10); void fPUTTXT(long WORD, long *sTATE, long CASE, long HASH) { long ALPH1, ALPH2, BYTE, DIV, I, W; -/* UNPACK THE 30-BIT VALUE IN WORD TO OBTAIN UP TO 5 INTEGER-ENCODED CHARS, - * AND STORE THEM IN INLINE STARTING AT LNPOSN. IF LNLENG>=LNPOSN, SHIFT - * EXISTING CHARACTERS TO THE RIGHT TO MAKE ROOM. HASH MUST BE THE SAME - * AS IT WAS WHEN GETTXT CREATED THE 30-BIT WORD. STATE WILL BE ZERO WHEN - * PUTTXT IS CALLED WITH THE FIRST OF A SEQUENCE OF WORDS, BUT IS THEREAFTER - * UNCHANGED BY THE CALLER, SO PUTTXT CAN USE IT TO MAINTAIN STATE ACROSS - * CALLS. LNPOSN AND LNLENG ARE INCREMENTED BY THE NUMBER OF CHARS STORED. - * IF CASE=1, ALL LETTERS ARE MADE UPPERCASE; IF -1, LOWERCASE; IF 0, AS IS. - * ANY OTHER VALUE FOR CASE IS THE SAME AS 0 BUT ALSO CAUSES TRAILING BLANKS - * TO BE INCLUDED (IN ANTICIPATION OF SUBSEQUENT ADDITIONAL TEXT). */ +/* Unpack the 30-bit value in word to obtain up to 5 integer-encoded chars, + * and store them in inline starting at LNPOSN. If LNLENG>=LNPOSN, shift + * existing characters to the right to make room. HASH must be the same + * as it was when gettxt created the 30-bit word. STATE will be zero when + * puttxt is called with the first of a sequence of words, but is thereafter + * unchanged by the caller, so PUTTXT can use it to maintain state across + * calls. LNPOSN and LNLENG are incremented by the number of chars stored. + * If CASE=1, all letters are made uppercase; if -1, lowercase; if 0, as is. + * any other value for case is the same as 0 but also causes trailing blanks + * to be included (in anticipation of subsequent additional text). */ ALPH1=13*CASE+24; @@ -403,8 +403,8 @@ L18: W=(W-BYTE*DIV)*64; void fSHFTXT(long FROM, long DELTA) { long I, II, JJ; -/* MOVE INLINE(N) TO INLINE(N+DELTA) FOR N=FROM,LNLENG. DELTA CAN BE - * NEGATIVE. LNLENG IS UPDATED; LNPOSN IS NOT CHANGED. */ +/* Move INLINE(N) to INLINE(N+DELTA) for N=FROM,LNLENG. Delta can be + * negative. LNLENG is updated; LNPOSN is not changed. */ if(LNLENG < FROM || DELTA == 0) goto L2; @@ -425,8 +425,8 @@ L2: LNLENG=LNLENG+DELTA; void fTYPE0() { long TEMP; -/* TYPE A BLANK LINE. THIS PROCEDURE IS PROVIDED AS A CONVENIENCE FOR CALLERS - * WHO OTHERWISE HAVE NO USE FOR MAPCOM. */ +/* Type a blank line. This procedure is provided as a convenience for callers + * who otherwise have no use for MAPCOM. */ TEMP=LNLENG; @@ -441,12 +441,12 @@ long TEMP; #define TYPE0() fTYPE0() -/* SUSPEND/RESUME I/O ROUTINES (SAVWDS, SAVARR, SAVWRD) */ +/* Suspend/resume I/O routines (SAVWDS, SAVARR, SAVWRD) */ #undef SAVWDS void fSAVWDS(long *W1, long *W2, long *W3, long *W4, long *W5, long *W6, long *W7) { -/* WRITE OR READ 7 VARIABLES. SEE SAVWRD. */ +/* Write or read 7 variables. See SAVWRD. */ SAVWRD(0,(*W1)); @@ -465,7 +465,7 @@ void fSAVWDS(long *W1, long *W2, long *W3, long *W4, long *W5, long *W6, long *W void fSAVARR(long ARR[], long N) { long I; -/* WRITE OR READ AN ARRAY OF N WORDS. SEE SAVWRD. */ +/* Write or read an array of N words. See SAVWRD. */ /* 1 */ for (I=1; I<=N; I++) { @@ -482,14 +482,14 @@ L1: SAVWRD(0,ARR[I]); void fSAVWRD(long OP, long *wORD) { static long BUF[250], CKSUM = 0, H1, HASH = 0, N = 0, STATE = 0; -/* IF OP<0, START WRITING A FILE, USING WORD TO INITIALISE ENCRYPTION; SAVE - * WORD IN THE FILE. IF OP>0, START READING A FILE; READ THE FILE TO FIND - * THE VALUE WITH WHICH TO DECRYPT THE REST. IN EITHER CASE, IF A FILE IS - * ALREADY OPEN, FINISH WRITING/READING IT AND DON'T START A NEW ONE. IF OP=0, - * READ/WRITE A SINGLE WORD. WORDS ARE BUFFERED IN CASE THAT MAKES FOR MORE - * EFFICIENT DISK USE. WE ALSO COMPUTE A SIMPLE CHECKSUM TO CATCH ELEMENTARY - * POKING WITHIN THE SAVED FILE. WHEN WE FINISH READING/WRITING THE FILE, - * WE STORE ZERO INTO WORD IF THERE'S NO CHECKSUM ERROR, ELSE NONZERO. */ +/* If OP<0, start writing a file, using word to initialise encryption; save + * word in the file. If OP>0, start reading a file; read the file to find + * the value with which to decrypt the rest. In either case, if a file is + * already open, finish writing/reading it and don't start a new one. If OP=0, + * read/write a single word. Words are buffered in case that makes for more + * efficient disk use. We also compute a simple checksum to catch elementary + * poking within the saved file. When we finish reading/writing the file, + * we store zero into WORD if there's no checksum error, else nonzero. */ if(OP != 0){long ifvar; ifvar=(STATE); switch (ifvar<0? -1 : ifvar>0? 1 : @@ -535,7 +535,7 @@ L32: N--; WORD=BUF[N]-CKSUM; N++; -/* DATA STRUC. ROUTINES (VOCAB, DSTROY, JUGGLE, MOVE, PUT, CARRY, DROP, ATDWRF) +/* Data struc. routines (VOCAB, DSTROY, JUGGLE, MOVE, PUT, CARRY, DROP, ATDWRF) */ #undef WORD @@ -544,12 +544,12 @@ L32: N--; WORD=BUF[N]-CKSUM; N++; long fVOCAB(long ID, long INIT) { long HASH, I, VOCAB; -/* LOOK UP ID IN THE VOCABULARY (ATAB) AND RETURN ITS "DEFINITION" (KTAB), OR - * -1 IF NOT FOUND. IF INIT IS POSITIVE, THIS IS AN INITIALISATION CALL SETTING - * UP A KEYWORD VARIABLE, AND NOT FINDING IT CONSTITUTES A BUG. IT ALSO MEANS - * THAT ONLY KTAB VALUES WHICH TAKEN OVER 1000 EQUAL INIT MAY BE CONSIDERED. - * (THUS "STEPS", WHICH IS A MOTION VERB AS WELL AS AN OBJECT, MAY BE LOCATED - * AS AN OBJECT.) AND IT ALSO MEANS THE KTAB VALUE IS TAKEN MOD 1000. */ +/* Look up ID in the vocabulary (ATAB) and return its "definition" (KTAB), or + * -1 if not found. If INIT is positive, this is an initialisation call setting + * up a keyword variable, and not finding it constitutes a bug. It also means + * that only KTAB values which taken over 1000 equal INIT may be considered. + * (Thus "STEPS", which is a motion verb as well as an object, may be located + * as an object.) And it also means the KTAB value is taken modulo 1000. */ HASH=10000; /* 1 */ for (I=1; I<=TABSIZ; I++) { @@ -577,7 +577,7 @@ L3: VOCAB=KTAB[I]; void fDSTROY(long OBJECT) { ; -/* PERMANENTLY ELIMINATE "OBJECT" BY MOVING TO A NON-EXISTENT LOCATION. */ +/* Permanently eliminate "OBJECT" by moving to a non-existent location. */ MOVE(OBJECT,0); @@ -591,8 +591,8 @@ void fDSTROY(long OBJECT) { void fJUGGLE(OBJECT)long OBJECT; { long I, J; -/* JUGGLE AN OBJECT BY PICKING IT UP AND PUTTING IT DOWN AGAIN, THE PURPOSE - * BEING TO GET THE OBJECT TO THE FRONT OF THE CHAIN OF THINGS AT ITS LOC. */ +/* Juggle an object by picking it up and putting it down again, the purpose + * being to get the object to the front of the chain of things at its loc. */ I=PLACE[OBJECT]; @@ -609,9 +609,9 @@ long I, J; void fMOVE(OBJECT,WHERE)long OBJECT, WHERE; { long FROM; -/* PLACE ANY OBJECT ANYWHERE BY PICKING IT UP AND DROPPING IT. MAY ALREADY BE - * TOTING, IN WHICH CASE THE CARRY IS A NO-OP. MUSTN'T PICK UP OBJECTS WHICH - * ARE NOT AT ANY LOC, SINCE CARRY WANTS TO REMOVE OBJECTS FROM ATLOC CHAINS. */ +/* Place any object anywhere by picking it up and dropping it. May already be + * toting, in which case the carry is a no-op. Mustn't pick up objects which + * are not at any loc, since carry wants to remove objects from ATLOC chains. */ if(OBJECT > 100) goto L1; @@ -630,8 +630,8 @@ L2: if(FROM > 0 && FROM <= 300)CARRY(OBJECT,FROM); long fPUT(OBJECT,WHERE,PVAL)long OBJECT, PVAL, WHERE; { long PUT; -/* PUT IS THE SAME AS MOVE, EXCEPT IT RETURNS A VALUE USED TO SET UP THE - * NEGATED PROP VALUES FOR THE REPOSITORY OBJECTS. */ +/* PUT is the same as MOVE, except it returns a value used to set up the + * negated PROP values for the repository objects. */ MOVE(OBJECT,WHERE); @@ -646,9 +646,9 @@ long PUT; void fCARRY(OBJECT,WHERE)long OBJECT, WHERE; { long TEMP; -/* START TOTING AN OBJECT, REMOVING IT FROM THE LIST OF THINGS AT ITS FORMER - * LOCATION. INCR HOLDNG UNLESS IT WAS ALREADY BEING TOTED. IF OBJECT>100 - * (MOVING "FIXED" SECOND LOC), DON'T CHANGE PLACE OR HOLDNG. */ +/* Start toting an object, removing it from the list of things at its former + * location. Incr holdng unless it was already being toted. If OBJECT>100 + * (moving "fixed" second loc), don't change PLACE or HOLDNG. */ if(OBJECT > 100) goto L5; @@ -673,8 +673,8 @@ L8: LINK[TEMP]=LINK[OBJECT]; void fDROP(OBJECT,WHERE)long OBJECT, WHERE; { ; -/* PLACE AN OBJECT AT A GIVEN LOC, PREFIXING IT ONTO THE ATLOC LIST. DECR - * HOLDNG IF THE OBJECT WAS BEING TOTED. */ +/* Place an object at a given loc, prefixing it onto the ATLOC list. Decr + * HOLDNG if the object was being toted. */ if(OBJECT > 100) goto L1; @@ -695,9 +695,9 @@ L2: if(WHERE <= 0)return; long fATDWRF(WHERE)long WHERE; { long ATDWRF, I; -/* RETURN THE INDEX OF FIRST DWARF AT THE GIVEN LOCATION, ZERO IF NO DWARF IS - * THERE (OR IF DWARVES NOT ACTIVE YET), -1 IF ALL DWARVES ARE DEAD. IGNORE - * THE PIRATE (6TH DWARF). */ +/* Return the index of first dwarf at the given location, zero if no dwarf is + * there (or if dwarves not active yet), -1 if all dwarves are dead. Ignore + * the pirate (6th dwarf). */ ATDWRF=0; @@ -720,13 +720,13 @@ L2: ATDWRF=I; -/* UTILITY ROUTINES (SETBIT, TSTBIT, RAN, RNDVOC, BUG) */ +/* Utility routines (SETBIT, TSTBIT, RAN, RNDVOC, BUG) */ #undef SETBIT long fSETBIT(BIT)long BIT; { long I, SETBIT; -/* RETURNS 2**BIT FOR USE IN CONSTRUCTING BIT-MASKS. */ +/* Returns 2**bit for use in constructing bit-masks. */ SETBIT=1; @@ -744,7 +744,7 @@ L1: SETBIT=SETBIT+SETBIT; long fTSTBIT(MASK,BIT)long BIT, MASK; { long TSTBIT; -/* RETURNS TRUE IF THE SPECIFIED BIT IS SET IN THE MASK. */ +/* Returns true if the specified bit is set in the mask. */ TSTBIT=MOD(MASK/SETBIT(BIT),2) != 0; @@ -758,10 +758,10 @@ long TSTBIT; long fRAN(RANGE)long RANGE; { static long D, R = 0, RAN, T; -/* SINCE THE RAN FUNCTION IN LIB40 SEEMS TO BE A REAL LOSE, WE'LL USE ONE OF - * OUR OWN. IT'S BEEN RUN THROUGH MANY OF THE TESTS IN KNUTH VOL. 2 AND - * SEEMS TO BE QUITE RELIABLE. RAN RETURNS A VALUE UNIFORMLY SELECTED - * BETWEEN 0 AND RANGE-1. */ +/* Since the ran function in LIB40 seems to be a real lose, we'll use one of + * our own. It's been run through many of the tests in Knuth vol. 2 and + * seems to be quite reliable. RAN returns a value uniformly selected + * between 0 and range-1. */ D=1; @@ -783,10 +783,10 @@ L2: R=MOD(R*1093L+221587L,1048576L); long fRNDVOC(CHAR,FORCE)long CHAR, FORCE; { long DIV, I, J, RNDVOC; -/* SEARCHES THE VOCABULARY FOR A WORD WHOSE SECOND CHARACTER IS CHAR, AND - * CHANGES THAT WORD SUCH THAT EACH OF THE OTHER FOUR CHARACTERS IS A - * RANDOM LETTER. IF FORCE IS NON-ZERO, IT IS USED AS THE NEW WORD. - * RETURNS THE NEW WORD. */ +/* Searches the vocabulary for a word whose second character is char, and + * changes that word such that each of the other four characters is a + * random letter. If force is non-zero, it is used as the new word. + * Returns the new word. */ RNDVOC=FORCE; @@ -815,30 +815,30 @@ L8: ATAB[I]=RNDVOC+J*J; #undef BUG void fBUG(NUM)long NUM; { -/* THE FOLLOWING CONDITIONS ARE CURRENTLY CONSIDERED FATAL BUGS. NUMBERS < 20 - * ARE DETECTED WHILE READING THE DATABASE; THE OTHERS OCCUR AT "RUN TIME". - * 0 MESSAGE LINE > 70 CHARACTERS - * 1 NULL LINE IN MESSAGE - * 2 TOO MANY WORDS OF MESSAGES - * 3 TOO MANY TRAVEL OPTIONS - * 4 TOO MANY VOCABULARY WORDS - * 5 REQUIRED VOCABULARY WORD NOT FOUND - * 6 TOO MANY RTEXT MESSAGES - * 7 TOO MANY HINTS - * 8 LOCATION HAS COND BIT BEING SET TWICE - * 9 INVALID SECTION NUMBER IN DATABASE - * 10 TOO MANY LOCATIONS - * 11 TOO MANY CLASS OR TURN MESSAGES - * 20 SPECIAL TRAVEL (500>L>300) EXCEEDS GOTO LIST - * 21 RAN OFF END OF VOCABULARY TABLE - * 22 VOCABULARY TYPE (N/1000) NOT BETWEEN 0 AND 3 - * 23 INTRANSITIVE ACTION VERB EXCEEDS GOTO LIST - * 24 TRANSITIVE ACTION VERB EXCEEDS GOTO LIST - * 25 CONDITIONAL TRAVEL ENTRY WITH NO ALTERNATIVE - * 26 LOCATION HAS NO TRAVEL ENTRIES - * 27 HINT NUMBER EXCEEDS GOTO LIST - * 28 INVALID MONTH RETURNED BY DATE FUNCTION - * 29 TOO MANY PARAMETERS GIVEN TO SETPRM */ +/* The following conditions are currently considered fatal bugs. Numbers < 20 + * are detected while reading the database; the others occur at "run time". + * 0 Message line > 70 characters + * 1 Null line in message + * 2 Too many words of messages + * 3 Too many travel options + * 4 Too many vocabulary words + * 5 Required vocabulary word not found + * 6 Too many RTEXT messages + * 7 Too many hints + * 8 Location has cond bit being set twice + * 9 Invalid section number in database + * 10 Too many locations + * 11 Too many class or turn messages + * 20 Special travel (500>L>300) exceeds goto list + * 21 Ran off end of vocabulary table + * 22 Vocabulary type (N/1000) not between 0 and 3 + * 23 Intransitive action verb exceeds goto list + * 24 Transitive action verb exceeds goto list + * 25 Conditional travel entry with no alternative + * 26 Location has no travel entries + * 27 Hint number exceeds goto list + * 28 Invalid month returned by date function + * 29 Too many parameters given to SETPRM */ printf("Fatal error %ld. See source code for interpretation.\n", NUM); @@ -849,41 +849,41 @@ void fBUG(NUM)long NUM; { -/* MACHINE DEPENDENT ROUTINES (MAPLIN, TYPE, MPINIT, SAVEIO) */ +/* Machine dependent routines (MAPLIN, TYPE, MPINIT, SAVEIO) */ #define BUG(NUM) fBUG(NUM) #undef MAPLIN void fMAPLIN(FIL)long FIL; { long I, VAL; static FILE *OPENED = NULL; -/* READ A LINE OF INPUT, EITHER FROM A FILE (IF FIL=.TRUE.) OR FROM THE - * KEYBOARD, TRANSLATE THE CHARS TO INTEGERS IN THE RANGE 0-126 AND STORE - * THEM IN THE COMMON ARRAY "INLINE". INTEGER VALUES ARE AS FOLLOWS: - * 0 = SPACE [ASCII CODE 40 OCTAL, 32 DECIMAL] - * 1-2 = !" [ASCII 41-42 OCTAL, 33-34 DECIMAL] - * 3-10 = '()*+,-. [ASCII 47-56 OCTAL, 39-46 DECIMAL] - * 11-36 = UPPER-CASE LETTERS - * 37-62 = LOWER-CASE LETTERS - * 63 = PERCENT (%) [ASCII 45 OCTAL, 37 DECIMAL] - * 64-73 = DIGITS, 0 THROUGH 9 - * REMAINING CHARACTERS CAN BE TRANSLATED ANY WAY THAT IS CONVENIENT; - * THE "TYPE" ROUTINE BELOW IS USED TO MAP THEM BACK TO CHARACTERS WHEN - * NECESSARY. THE ABOVE MAPPINGS ARE REQUIRED SO THAT CERTAIN SPECIAL - * CHARACTERS ARE KNOWN TO FIT IN 6 BITS AND/OR CAN BE EASILY SPOTTED. - * ARRAY ELEMENTS BEYOND THE END OF THE LINE SHOULD BE FILLED WITH 0, - * AND LNLENG SHOULD BE SET TO THE INDEX OF THE LAST CHARACTER. +/* Read a line of input, either from a file (if FIL=true) or from the + * keyboard, translate the chars to integers in the range 0-126 and store + * them in the common array "INLINE". Integer values are as follows: + * 0 = space [ASCII CODE 40 octal, 32 decimal] + * 1-2 = !" [ASCII 41-42 octal, 33-34 decimal] + * 3-10 = '()*+,-. [ASCII 47-56 octal, 39-46 decimal] + * 11-36 = upper-case letters + * 37-62 = lower-case letters + * 63 = percent (%) [ASCII 45 octal, 37 decimal] + * 64-73 = digits, 0 through 9 + * Remaining characters can be translated any way that is convenient; + * The "TYPE" routine below is used to map them back to characters when + * necessary. The above mappings are required so that certain special + * characters are known to fit in 6 bits and/or can be easily spotted. + * Array elements beyond the end of the line should be filled with 0, + * and LNLENG should be set to the index of the last character. * - * IF THE DATA FILE USES A CHARACTER OTHER THAN SPACE (E.G., TAB) TO - * SEPARATE NUMBERS, THAT CHARACTER SHOULD ALSO TRANSLATE TO 0. + * If the data file uses a character other than space (e.g., tab) to + * separate numbers, that character should also translate to 0. * - * THIS PROCEDURE MAY USE THE MAP1,MAP2 ARRAYS TO MAINTAIN STATIC DATA FOR - * THE MAPPING. MAP2(1) IS SET TO 0 WHEN THE PROGRAM STARTS - * AND IS NOT CHANGED THEREAFTER UNLESS THE ROUTINES ON THIS PAGE CHOOSE - * TO DO SO. + * This procedure may use the map1,map2 arrays to maintain static data for + * the mapping. MAP2(1) is set to 0 when the program starts + * and is not changed thereafter unless the routines on this page choose + * to do so. * - * NOTE THAT MAPLIN IS EXPECTED TO OPEN THE FILE THE FIRST TIME IT IS - * ASKED TO READ A LINE FROM IT. THAT IS, THERE IS NO OTHER PLACE WHERE - * THE DATA FILE IS OPENED. */ + * Note that MAPLIN is expected to open the file the first time it is + * asked to read a line from it. that is, there is no other place where + * the data file is opened. */ if(MAP2[1] == 0)MPINIT(); @@ -907,8 +907,8 @@ L25: if(INLINE[I] != 0)LNLENG=I; } /* end loop */ LNPOSN=1; if(FIL && LNLENG == 0) goto L15; -/* ABOVE IS TO GET AROUND AN F40 COMPILER BUG WHEREIN IT READS A BLANK - * LINE WHENEVER A CRLF IS BROKEN ACROSS A RECORD BOUNDARY. */ +/* Above is to get around an F40 compiler bug wherein it reads a blank + * line whenever a crlf is broken across a record boundary. */ return; } @@ -919,9 +919,9 @@ L25: if(INLINE[I] != 0)LNLENG=I; void fTYPE() { long I, VAL; -/* TYPE THE FIRST "LNLENG" CHARACTERS STORED IN INLINE, MAPPING THEM - * FROM INTEGERS TO TEXT PER THE RULES DESCRIBED ABOVE. INLINE(I), - * I=1,LNLENG MAY BE CHANGED BY THIS ROUTINE. */ +/* Type the first "LNLENG" characters stored in inline, mapping them + * from integers to text per the rules described above. INLINE(I), + * I=1,LNLENG may be changed by this routine. */ if(LNLENG != 0) goto L10; @@ -963,7 +963,7 @@ L22: J--; L20: /*etc*/ ; } /* end loop */ MAP1[128]=MAP1[10]; -/* FOR THIS VERSION, TAB (9) MAPS TO SPACE (32), SO DEL (127) USES TAB'S VALUE */ +/* For this version, tab (9) maps to space (32), so del (127) uses tab's value */ MAP1[10]=MAP1[33]; MAP1[11]=MAP1[33]; @@ -983,13 +983,13 @@ L30: if(I >= 64)MAP2[VAL]=(I-64)*('B'-'A')+'@'; void fSAVEIO(OP,IN,ARR)long ARR[], IN, OP; { static FILE *F; char NAME[50]; -/* IF OP=0, ASK FOR A FILE NAME AND OPEN A FILE. (IF IN=.TRUE., THE FILE IS FOR - * INPUT, ELSE OUTPUT.) IF OP>0, READ/WRITE ARR FROM/INTO THE PREVIOUSLY-OPENED - * FILE. (ARR IS A 250-INTEGER ARRAY.) IF OP<0, FINISH READING/WRITING THE - * FILE. (FINISHING WRITING CAN BE A NO-OP IF A "STOP" STATEMENT DOES IT - * AUTOMATICALLY. FINISHING READING CAN BE A NO-OP AS LONG AS A SUBSEQUENT - * SAVEIO(0,.FALSE.,X) WILL STILL WORK.) IF YOU CAN CATCH ERRORS (E.G., NO SUCH - * FILE) AND TRY AGAIN, GREAT. DEC F40 CAN'T. */ +/* If OP=0, ask for a file name and open a file. (If IN=true, the file is for + * input, else output.) If OP>0, read/write ARR from/into the previously-opened + * file. (ARR is a 250-integer array.) If OP<0, finish reading/writing the + * file. (Finishing writing can be a no-op if a "stop" statement does it + * automatically. Finishing reading can be a no-op as long as a subsequent + * SAVEIO(0,false,X) will still work.) If you can catch errors (e.g., no such + * file) and try again, great. DEC F40 can't. */ {long ifvar; ifvar=(OP); switch (ifvar<0? -1 : ifvar>0? 1 : 0) { case -1: