The MDL Programming Environment

P. David Lebling

May, 1980

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02130

The MDI. Programming Environment

Table of Contents

1. Overview of the MDL Prugramming' Environment

2. The Package System

2.1.
2.2,

2.3

The Theory of Lexical Blocking in MDL
Package System Overview
2.2.1. Sample PACKAGE
PACKAGE

2.3.1. ENTRY

2.3.2. USE

2,313 USE-DATUM

2.34. DROP and |.-UNUSE
2.3.5. ENDPACKAGE

2.3.6. PACKAGL: Restrictions
2.3.7. ENTRY Name Conflicts

3. Program Writing and Debugging Aids

3.1.

3.2

3.3.

Pretty-Printing
3.1.1. PPRINT Control Switches
3.1.2. Lower-level Pretty Printing
J.1.3. Ampersand Printing
3.1.4. Fxamining the Stack
‘The MIDI. Editor
3.2.1. "The Edit "LISTEN Loop'
3.2.1.1. ‘The Reader
3.2.1.2. The Ampersand Printer
3.2.2. Fdit Commands
3.2.2.1. General
3.2.2.2. General Commands
3.2.2.3. Movement Commands
3.2.2.4. Printing Commands
3.2.2.5. Editing Commands
3.2.2.6. Macro Facility
3.2.2.7. Cursors
3.2.2.8. Breakpoints
3.2.29. Edit Monitors
3.2.2.10. User-defined lidit Commands
3.2.3. Examples
3.23.1. Simple Kditing
3.2.3.2. X and G Commands
3.2.3.3. Unconditional Breakpoints
3.2.34. Conditional Breakpoints
3.2.4. lidit Command Summary
Dcbugging and the Interpreter

Table of Contents

10
11
11
12
13
13
13
13
14
14

15

15
16
17
13
|18
19

21
21
21

23
24
25
27

29

31
3l
L}
32
33

36
37

34,
5.5

3.6.

3

3.8,

3.9.

L.oading and Dumping

The One-step Debugger

3.3.1. MDI. Debugger Command Summary
3.5.2. MDL Debugger Special Features
Fxccution Tracing

3.6.1. Using TRACE

3.6.2. Understanding TRACE

Monitors

3.7.1. Monitor Internals

3.7.2. Creating MONITORs

3.1.3. Monitor Events

3.74. Killing Monitors

3.7.5. Other Monitor Routines

3.7.6. What You Can't Do with Muonitors
FINDATOM

"PINFO"

3.10. Debugging in a Run-time Environment

J.10.1, DFL
3.10.2. RDFL
3.10.3. UN-DFL
3.10.4. UNLINK

3.11. CRITIC

3.1L.1. Global problems with the Group
3.1L.2. Parameuer list problems

3.11.3. Unused ATOMs

3.114. Function calling errors

3.1L5. SPECIAL/UNSPECIAL problems
3.1L6. DECLing problems

3.1L7. Miscellancous

3.12. Program Environments

- The Library System

4.1.

4.2,

Program libraries

4.1.1. Library Searching

4.1.2. Dynamic [oading

4.1.3. USE-DEFER

4.14. USE-TOTAL

4.1.5. Translations

4.1.6. "The Library Data File
4.1.7. Run-time Switches
4.1.8. Library Utility Functions
4.1.9. Internal Library Functions
4.1.10. Library Maintenance
I'he Pure-mapping Library
4.2.1. The Demon

Table of Contenis

‘the MDL Programming Environment

i ‘I'he MDL Programming Environment

4.2.2. User Programs 74
422.1. Listing Functions T4

4.2.2.2. Find Functions 75

4.2.2.3. Other Functions ¥4

4.2.3. Using DBMAIN 76
42.4. Garbage Collection 76
4.2.5. Internal Structure T

5. The Compiler 79
5.1. Interfacing to the Compiler 79
5.1.1. Compiler Functions 7
5.1.2. Compiler Switches 80

5.2. COMBAT 83
5.2.1. Usecr interface 83
5.2.1.1. Symbulic input 34

5.2.1.2. File names 84

5.2.1.3. Text 85

5.2.2. Combat Questions 85
5.2.3. Requesting Compilations 87
5.2.4. 'How o Run’ Options 90
5.2.5. User lailoring 90
5.2.5.1. Tailor files 91

5.2.5.2. Creatc type 91

5.2.5.3. Print type 92

5.2.54. Delete type 92

5.2.5.5. Alter type 92

5.2.5.6. Load wilor, Replace tailor 92

5.2.5.7. Xcrox tailor 22

5.3. The Compiler (Internals) 92
5.3.1. How it Works 93
5.3.1.1. COMPILE and COMPILE-GROUP 93

5.3.2. Modecling Pass 94
5.3.3. Analysis Pass 95
5.34. ‘The Type Analysis Model 96
5.3.5. Life-and-Dcath Analysis 97
5.3.6. ‘Ihe Variable Allocation Pass 97
5.3.7. ‘The Code Generation Pass 98

6. Making It Run Faster 103
6.1. GLUE 103
6.1.1. How to Glue 103
6.1.2. GI1.UE as a Program 104
6.2. Gluc Bits 105
6.3. PDUMP 105
6.4. SUBRFY 106

Table of Contents

e

iv ' The ML Programming Fnvironment

6.5. Purification 107
6.5.1. Purifying RSUBRs 108

6.5.2. Purifying an Environment: 109

6.5.3. Purification Summary ' 110

6.6. TEMPI.ATEs 110
6.6.1. Usc of TEMPLATEs 111

6.6.2. Assembly of TEMPILATEs 113

7. The Assembler 115
1.1. The Assembler 115
1.1.1. General Organization 115

7.1.2. The Asscinbler as a Program 116

T.1.3. Format of Assembler's Source 116

LLA4. Instruction Asscmbly 116

1.1.5. Initial Symbols 117

7.1.6. Macro Writing 111

.17, Pseudo Operations 118

1.L.8. The T'ype RSUBR 120

1.1.9. Writing Gluable RSUBRs 121

7.2. Debugging Binary Code 121
1.3. Unassembling Binary Code 122

8. Informational Aids 125
8.1. File Comparison and Checking with MUDCOM 125
8.2. The MDI. Listing Program MAT 126
8.2.1. MATT Switches 127

8.2.2. Subtitles 128

8.2.3. MA'T Definition 128

8.2.4. MA'T Record Files 131

8.3, The MDL-IPC Device Interface MUDINQ 131
Index 135

Table of Contents

The MDL. Programming Environment - L

INTRODUCTION

The M. language is described in “The Ml.}r_ Programming l.anguage’ [3]. but in addition w the language
itself, there is a rich and varicd collection of software written in the language which facilitates the writing of
programs and systems of programs in MDL. The information describing this programming environment has
been contiined in various documents, some out of print or out of date, and in supplemental disk files
describing changes and additions. Some of the packages of functions used to deal with M1 code have never

been formally documented. This manual brings together some of that scattered documentation.

The document’s purpose is to flesh out the description of the language contained in “IThe MbL
Programming [.anguage.” giving a fuller description of the program writing and debugging aids available o
MDIL. users, to describe the methods for producing code usable by others, to describe the Min compiler and

the many other technigues for producing and speeding up MDI. object code.,

The imagined reader of this document is someone who has read “Ihe MDI. Programming |.anguage,” and
now proposcs to write programs in MDL, possibly even very large programs. MDL. packages that he would
find useful in the process of doing so arc documented here: editors, debuggers, ete. Packages that he might

wish to use within his program are not included: data-management systems, command interpreters, etc.

This document is of necessity highly self-referent, as many of the components of the MDI programming

environment refer to cach other and adhere to the same conventions. Additionally, this document assumes

that the reader is familiar with the language itself (at least to some degree) and with the 1S, TENEX, or
1'0OPS-20 operating systems.

INTRODUCTION

Fhe M1 Programming Environment

ACKNOWLEDGMENTS

The MDL. Programming Fnvironment 3

ACKNOWLEDGMENTS

The programs described in this document are the products of many man-years of effort by many people.

Most have been “touched” by several programmers, added 1o and improved over the years.

Some of the people responsible for the programs mentioned in this document arc: Chris Reeve (M1, the
compiler. GLUE): Brian Berkowitz (Mpi1, the compiler, TEMPLATE, SUBRFY): Bruce Danicls (Mbi, the
compiler. PACKAGE. PPRINT, DEBUGR, ASSEM); Iim Anderson (PACKAGE, the Library. FINDATOM. DFL.
Compat, MubIng): Neal Ryan (EDIT. PDUMP, the IPC interface): Mare Blank (MAT, MUDCOM, MONITR,
CoMBal, EDIT, CURSOR). David 1.chling tEHI.‘EIE. EDIT); Michael Broos (the Library): Roger Banks
(TRACE); Gireg Phster (PPRINT): Jocl Berez (EDIT).

(Mast of the documentation subsumed in this manual is from published and unpublished memos of the
Programming Technology Division of the M.LT. Laboratory for Computer Science. As a general rule,

updates and revisions to this and other PI'D documents concerning MbL are available online in the directory
"MUDMAN" at MI'T-1DMS).

ACKNOWI.EDGMENTS

the M. Programming Environment

NOTATION

The MDIL Programming Environment

i

NOTATION

Anything which is written in the MBI language or which is typed on a computer console appears herein in
a Lypewriter font, as in PPRINT. A metasyntactic variable -- something to be replaced in actwal use by
somcthing clse -- appears as channel, in an italic font. Where a meta-syntactic variable is being used to denote

a required argument to some function, it appears as before, but underlined, as channel,

In the argument templates of M1 functions, the individual arguments are often given in the form
argument:iype, where argiment is a “descriptive’ name for the argument, and fype is its MDIL type (or range of
types). In such cases, the ‘type” bonlean indicates an arguiment that is only examined for tnuth or falsity, and

not for any of its other qualitics. Such arguments in M1, are ofien declared "¢OR ATOM FALSEZ'.

Finally, file names are given as though for the I'I'S operating system:
device: sname; fionl fum2
The analogous specification for TENEX or TOPS-20 would be
device: <sname>fuml . fum2
Note that in the TENEX/TOPS-20 version of ML, the fam?2 (which may include the generation number,

protection and acce-mi fields) is by default "MUD™ as opposed o "> " for the I'1'S version.

NOTATION

10

the MBI, Programming Fravironment

—

=]

The MDIL. Programming Environment -

i. Overview of the MDL Programming
Environment

‘The parts of the Mpl. programining environment described in this document are primarily those dealing
with the writing. debugging, sharing, and maintenance of code and programs written in M. Must of the
packages described herein are written in MDI themselves: some are asscmbly language programs useful to

MDDl programmers,

‘I'e document is divided into chapters dealing with the major issues facing the novice (or even the

cxperienced) MDI. programmer.

- “I'he Puckage System’ introduces the stondard mechanism for lexical blocking and therefore,
sharing of ML code. Understanding its usc is fundamental o writing M1 programs,

— *Program Writing and 1)ebugging Aids” is the largest chapier. It covers mechanisms for loading,
dumping. editing. and debugging M. code. whether interpreted or compiled. in a development
or 4 production environment.

— “I'he Library System® discusses the usage of libraries of MDIL programs.,

— *The Compiler’ includes the specifics of interaction with the Ml compiler, as well as an overview
of the theory behind its operation.

— *Making It Run Faster’ covers the various methods for speeding up “production” MDI. code by
remuoving mediated calls and compacting data structures.

— *The Asscmbler’ documents the Ml assembler and some methods of debugging binary code,

— ‘Informational Aids’ discusses a few programs, most written in assembly language rather than
MbL, which are useful w the MD1. programmer.

1.0

I'he M1, Programming LEnvironment

20

The MDIL. Programming Environment 9

2. The Package System
The portion of the ML environment which-provides a uniform facility for lexical blocking is known as the
Package System. In one sense it is the most basic part of the environment, since it enables many programmers

o use cach other’s code without identifier conflicts.

In addition, the Package System is interfaced to a library fadlity (see section 4) by which Ml code may

he stored and later loaded as needed.

The Package System is su basic o use of the MDL environment that (with a few cxceptions) every

subsystem or family of M1 functions described in this document is a "package’.

2.1. The Theory of Lexical Blocking in MDL
I.exical blocking is implemented in MDI by means of OBLISTs and LISTs of OBLISTs. Changes of
lexical context are perfurmed using the SUBRs BLOCK and ENDBLOCK. The Puckage System provides a

high-level interface to these low-level constructs.

The primary gual of a lexical blocking scheme is the prevention of identifier conflicts. Specifically, when
your program references the variable X, it should be your X wnd not that of some other program. At the same
time, it should not be necessary for a prugrammer to scarch every program previously written to verify that an

identificr he wishes to use is not already ‘taken’.

It should be clear that the simplest solution, a single OBLIST, will not satisfy cither of these goals. With
only one OBLIST there would necessarily be identifier conflicts. necessitating exhaustive searching for unique

identifiers.

Obviously, programmers could put their program’s identifiers on an OBLIST unique to that program.
Unfortunately, such a solution addresses only half the problem. What happens when some other programmer
wishes to use some of this code? He could insert the unigue OBLIST for that program into the OBLIST path
for his program; but the moment that is done he gets all the identifiers for that program, including local

virriables, internal data structures, and s0 on.

Consequently. we move to a situation where cach program uses two OBLISTs: one for the identifiers that
arc local w the program, and one for the identifiers that are to be used by other programs. In the Package

System, these are known as the “internal’ OBLIST and the "entry’ OBLIST.
Most of the identifiers in a program are local to it, and want to be placed on the internal 0BLIST.

20

0 ' The M1 Programming Environment

Merefore, in terms of an argument o the BLOCK SUBR, when a program is being lvaded into Mni, the
OBLIST path wanis to be:

(internal-oblist
entry-oblist
¢ROOT>)

With this GBLIST path, most ATOMs (identifiers) will be on the internal OBLIST (as READ puts unknown
identifiers on <1 ,0BLIST>), but the ATOMs for the entrics and the ATOMs fur the usual SUBRs will be

available.

‘The only issuc yet to be addressed is that of using an entry of a different program in your program. This is
accomplished by adding the entry 0BLISTs of any such programs (o the path after ROOT:

(internal-oblist
entry-oblist
<ROOT>
other-program-entry-oblist
yet-another-progrant-cntry-oblist

As only the entry OBLIST, and not the internal OBLIST, of the program being used is added to the path,

the chance of identifier conflict is lessened.

All that remains is to introduce the functions by which these various operations are performed.

2.2. Package System Qverview
The functions which make up the Package System are: ;

— PACKAGE. This indicates the start of a package of functions.
— ENDPACKAGE. "This indicutes the end of the package of functions.

— ENTRY. This indicates an ATOM which is to be made available outside the definition of this
package of functions. All uther ATOMs will not be directly available outside the package.

— USE. This indicates a reference by name to another package of functions,
— USE-DATUM. This indicates a reference by name to a data set

— DROP and L-UNUSE. These undo the effects of USE and USE-DATUM,

These functions are themselves part uf a package named "PKG", which is preloaded into MpL.

The Theory of Lexical Blocking in MDL 21

I'he ML Programming Environment 11

2.2.1. Sample PACKAGE

A sample ML PACKAGE is given with comments in order to demonstrate the usage of these functions.
<PACKAGE "HOUR-STRING"> |

:"PACKAGE begins the package called HOUR-STRING."
CENTRY TIME-STRING>

:"The atom TIME-STRING is an entry to this package;
it may be referenced by other packages by
USEing HOUR-STRING."

<USE "DATIME">

:"Indicate that the package DATIME is
used within the current package."

{DEFINE TIME-STRING ()
{STRING <UNPARSE <HOURS>> " o'clock">>

v"Define this little function which returns a string
telling the last hour in a strange format."

CDEFINE HOURS () <1 <RTIME>>>

:"Define an internal function which is available
only within the HOUR-STRING package, since its
name is not in any ENTRY statement.

Note that this function refers to RTIME,

which is an ENTRY in the DATIME package."

{ENDPACKAGE>

:"The end of this little demonstration package."

2.3. PACKAGE
This function delimits the beginning of a package of functions. It takes onc required argument, a STRING,
which is the name of the package. "This STRING uniquely identifies the package within a library of packages

(sce section 4).

In a PACKAGE those ATOMs which are specified as entries live in a scparale OBLIST of their own, called
the entry OBLIST, 'The ATOM naming this OBLIST is on the PACKAGE OBLIST and has the same name as
the PACKAGE itself. ‘Thus. am entrv. *X" of a PACKAGE 'Y would have as its “full-trailer’ name:
X!-Y!-PACKAGE |- .

PACKAGE blocks (sets up) the current OBLIST path so that the ATOMs which arc internal to the PACKAGE

2.2 Package System Overview

12 'he MDL. Progranuning Environment

fll int an OBLIST which is not otherwise used. The ATOM nanmg this OBLIST is on the entry OBLIST of
the PACKAGE. and is by default given a name created by putting the character *1" at the beginning of the
PACKAGE's name, An internul ATOM ‘Z' in the PACKAGE ‘Y° previously mentioned would have as its
"full-trailer’ name: 21 -1Y!-Y1-PACKAGE! -

PACKAGE also keeps track of the Fact that the particulur PACKARE named has been defined in this MDL
prucess, by putting its name un the PACKAGE OBLIST.

‘PACKAGE Hame:siring

iname:string
size:fix
isize:fix>
PACKAGE takes three optional arguments in addition to the required une (the optional arguments are

ignored if name is already 1 PACKAGE):

mutinte 15 the name of the internal 0BLIST of the PACKAGE: by default it is the name of the PACKAGE with
the letter *I” prefixed.

size is the number of buckets in the entry ublist: by default 19,

isize is the number of buckets in the internal ublist; by default 23.

In addition w PACKAGE, there exists the obsulete function RPACKAGE, documented here only because
soine programs still use it. The difference between them is that the entry OBLIST for an RPACKAGE is the
ROOT OBLIST. The implication of INSerting an entry into the ROOT is that this requires that the name of the
entry be unique over all PACKAGES, because the entry is, in effect, being promoted to the status of a SUBR. [t
is (in rare cases) useful to do this, but the corroet wity is with the function RENTRY (see section 2.3.1).

2.3.1. ENTRY

The ENTRY function applied to one or mure ATOMs declares that these ATOMs are to be put inio the
OBLIST reserved for entries in this particular PACKAGE. Only ATOMs declared in this way will be accessible

(in the normal course of evenis) w functions outside this PACKAGE.

It is possible to place some entries of a PACKAGE on the ROOT OBLIST using the function RENTRY. Itis

recommended that instead of using RPACKAGE in those rare cases where entrics must go on the ROOT,
RENTRY be uscd instead.

All ENTRY statements should appear immediatcly after the PACKAGE or RPACKAGE statement. Note:
never put a USE statement before the ENTRY statements; if you do. you may get the ERROR message

PACKAGE 2.3

The MDI. Programming Environment 13

ALREADY-USED-ELSEWHERE, meaning that the name of an entry is conflicting with an ENTRY in one of the
PACKAGEs you USEd. ENTRY will also give an ERROR if it is used outside the body of a PACKAGE.

2.3.2. USE

Ihis function takes as arguments one or more STRINGs which arc the names (as given to PACKAGE) of
other PACKAGEs. EXTERNAL is a svnonym of USE. USE causcs the entry OBLISTs of the PACKAGEs named
to be spliced into the current OBLIST path. ‘Thus, references to entrics of those PACKAGEs may be made

afier the USE, until the next ENDPACKAGE (or the next DROP or L-UNUSE if USE is being invoked outside a
PACKAGE to load a file),

USE is conseguently the mechanism for sharing code. If the PACKAGE heing used is already loaded. its
entries are made availuble: il nol the PACKAGE is loaded first (sce section 4.1 for details on how this is

accomplished).

2.3.3. USE-DATUM

USE-DATUM requires onc STRING argument, the name of a data set. If the data sct 1s not loaded,
USE -DATUM loads it and creates an ATOM of the same name, on the USE-DATUM OBLIST, whose GVAL is the
data set. USE-DATUM always EVALS to the data set named, regardicss of whether it had to be loaded or not.

2.3.4. DROP and L-UNUSE
These functions take the same arguments as USE and USE-DATUM and undo their effects.

DROP simply splices the named PACKAGEs out of the current OBLIST path. A USE of a DROPped
PACKAGE will not reload the PACKAGE but simply splice it back inwo the OBLIST path.

L-UNUSE splices the PACKAGE out and removes its name from the PACKAGE OBLIST, which will cause
the entire PACKAGE to be reloaded if it is USEd again. L-UNUSE of a data scl will remove its ATOM from the
USE-DATUM OBLIST.

2.3.5. ENDPACKAGE

‘The ENDPACKAGE function of no arguments terminates the definition of the current PACKAGE and
undoes the lexical blocking done by the PACKAGE function. 'I'he ENDPACKAGE statement should be the last

one in the file.

2.3 PACKAGE

14 The MIN. Programming Environment

2.3.6. PACKAGE Restrictions

There are some restrictions on what the user may do inside a PACKAGE. ‘These are enforced by the l.ibrary

Systemn when the user attempts to submit a PACKAGE to a library.

A PACKAGE should not FLOAD or LOAD any file to obtain parts of itself. All such environment setup
should be done with USE and USE-DATUM.

A PACKAGE may not reference any ATOM whose 0BLIST path goes through the INITIAL 0BLIST. All
uf a PACKAGE's non-entry ATOMs should fall naturally into the PACKAGE 's internal 0BL IST.

As mentioned before, the RENTRYs of a PACKAGE have the same OBLIST status as SUBRs, i.c.. they must
be unigue among both all SUBRs and all PACKAGE entries,

2.3.7. ENTRY Name Conflicts
Itis pussible to have two or more PACKAGEs (nut RPACKAGESs) which have entrics (not RENTRYs) with the
saime PNAME. If the user needs both PACKAGESs at the same time. he may USE them both and refer to the

ambiguous entries by their *full trailer’ names. All of the non-ambiguous entrics in both PACKAGESs may still
be referenced by PNAMF only.

PACKAGE 23

e ML Programming Environment 15

3. Program Writing and Debugging Aids

This chapter concentrates on editing and debugging aids for MDI programming. The basis for editing and
debugging in MDL is twofold: First, MDL is an interpreter, which permits interactive testing and debugging
of sofiware, Secondly, Mt programs {even compiled M1 programs) are structures and therefore may be

manipulated by other MDI. programs.

Packages useful in editing and debugging range from EDIT and PPRINT, which are preloaded. and which
furm the core of most editing or debugging systems, o more sophisticated aids such as DEBUGR and TRACE,

which are more powerful, and uscful for more complicated debugging.

It should be noted that, in addition to the editors discussed below, Rymone [5] and 1EMAcs [2]. TiECO based

text editors, understand much of the syntax and many of the conventions of M1 programs.

3.1. Pretty-Printing

The purpose of pretty printing is to clarify the structure of M1 objects by printing them in a more
human-readuble format than that provided by the SUBRs PRINT, PRIN1, ctc. Objects are pretty-printed
through the judicious insertion of spaces, tabs, and new-lines between tokens. Pretty-printed objects are
readable by the MDI. Reader. Pretty printing is an aid to understanding and debugging M1 FUNCT IONs or
other objects. You will probably lind pretty printing to be extremely helpful, especially if vou are working
without a listing or with an old listing. In fact, pretty-printing is one way tw make a new preity listing after
cditing. PPRINT is pre-loaded in most initial MIs. The name of the package containing PPRINT is "PP",

{PPRINT any channel>

pretty-prints any on channel. The second argument is optional, by default .QUTCHAN . If auy is an ATOM,
PPRINT will enclose it in an application of DEFINE, DEFMAC, SETG, or SET, as sceins appropriate.
COMMENTs found inside any are right-justificd. PPRINT cannot output an RSUBR without F IXUPs (that is,
one that was READ in whilc KEEP-FIXUPS (sce scction 3.4) had no LVAL or had o FALSE LVAL); it will
give the ERROR message CAN-NOT-BE-DUMPED. PPRINT rcturns ,NULL, which is an ATOM whosec PNAME
is a single rubout, invisible on normal consoles,

<PPRINF ju:string-vr-alom-or-list ouifile:string
width:fix vval?:boolean?

pretty-prints all the contents of in into ouifile.

Ifinisan ATOM or a LIST of ATOMs, its VALUE(s) are the objects to be PPRINTed. In this case, outfile is

by default a file whose first name is produced by taking the PNAME of in (or in's first clement, if inisa LIST).

30

16 ' Ihe M. Programming nvironment

If in is a STRING, if specifies a file containing objects to PPRINT. In this case, oulfile is by default
*TPL:™.

width is the maximum width of output lines (although output lines are prevented from being extremely

lung); itis optional, by default <13 ,OUTCHAN>.

eval? ells PPRINF whether or not to EVAL everything in the file; it is optional, by default a FALSE (don't
EVAL). evul? is meaningless if inis nota STRING.

PPRINF returns cither "DONE™ or u FALSE if it couldn’t open infife or vutfile. PPRINF inserts page
boundaries in eutfile, between ubjects, every 60 lines or fewer: you may want th move those afterward to more
logical places. PPRINF binds KEEP-FIXUPS and REDEFINE tw T. and QUICKPRINT (sec helow) to a
FALSE.

3.1.1. PPRINT Control Switches

PPRINT’s output is affected by the local values of several ATOMs. Each value is examined only for truth,
QUICKPRINT

If this ATOM's LVAL is a FALSE, you arc in slow mode; otherwise (including the case of no LVAL), you are in
fust mode. The behavioral difference is this: in fast mode, there may be COMMENTs in the pretty-printed
object{s) which PPRINT misses. Also, fast mode is indeed faster than slow mode. Fast mode is the default
that is, QUICKPRINT is initially truc. The modes are really distinguished by the depth of recursion to which
PPRINT resorts. In slow mode, it recurses all the way down to every monad in the thing pretty-printed; in

fast mode, it goes down only far cnough to find something that will fit on a line.
. LOOXAHEAD

PPRINT uses full recursive lookahead to avoid packing things against the right margin and, as a result, not
being able to fit things within the right margin. The lookahead results in very good formatting of
deeply-nested MAPFed and FUNCT IONs: all but the most bizarre cases should be very legible. However, it
can resultin noticeable "pauses’ in the printing operation and, in some cases, a net speed slightly less than with
limited lovkahead. Since this can be a disadvantage when using PPRINT interactively on a heavily-loaded
system, the lookahead can be disabled: if the LVAL of LOOKAHEAD is a FALSE, no lookahead will be

performed; otherwise it happens. LOOKAHEAD is initially true, that is, loukahecad happens by default.
.VERTICAL

IF LOOKAHEAD is a FALSE, the formatting can cause oo many objects to be squeczed against the right
margin. So that particular cases can be made legible, the format when lookahead is not in use can be

manually set: if the LVAL of VERTICAL is non-FALSE, PPRINT will indent very little whenever indenting is

Pretty-Printing 3.1

1he M. Programming Environment 17

called for, (VERTICAL being true means a ‘'more vertical’ format.) VERTICAL is initially FALSE . The value

of VERTICAL is ignored when LOOKAHEAD i truc; the lookahead effectively chooses different values for
VERT ICAL for different parts of the object pretty-printed.

3.1.2. Lower-level Pretty Printing
It is sumetimes desirable to use some of the functions that PPRINT usecs, but in a different wa:.r.' For

cxample, a specialized pretty-printer for Program Abstracts would want to insert indented ficld names into
the output and pretty-print field values with the same indentation, ‘The names of lower-level pretty-print
functions are included in the ROOT OBLIST for such purposes.

<EPRINT gny lefi-margin:fix>
prety-prints any on . OUTCHAN to the right of feft-murgin. The second argument is optional, by default
<VALUE LEFT-MARGIN> (scc below).

CEPRINY any left-margin:fix>

EPRINL isto EPRINT as PRINT isto PRINT.
LEFT-MARGIN

This is the ATOM that EPRINT binds to its sccond argument. You can SET it outside calls to EPRINT in order
o make a permanent left margin, Its initial LVAL is 0.
CINDENT-TO columun:fix channel?

outputs tabs and/or spaces o advance the output column (<14 channel>) to colwmn, if it is not already past.

CCOLPP any
channel

lefi-margin: fix
right-margin:fix>

preiy-prints any on channel (by default .QUTCHAN) between the margins Jeff-margin (by default
<14 channel>, the current column) and right-margin (by default <13 channel>, the rightmost column). All
arguments but the first are optional. COLPP returns . NULL. For cxample,

<{COLPP any .OUTCHAN 10 70> would lcave a 10-character margin at left and right on an 80-column
OUTCHAN. Also,
CPROG () <PRINT AAAAAAAAAAAAAAA> <COLPP ,FOO>>

wonild result in output like

AAAAAAAAAAAARAA #FUNCTION ((X GGGGGGGGGGGGGGGGGGGGEE)
¢+ X 1))

EPRINT, EPRINI, and COLPP arc affected by the truth of .QUICKPRINT, .LOOKAHEAD, and
VERTICAL.

3.1 Pretty-Printing

13 I'he ML Programming Favironment

3.1.3. Ampersand Printing
"Ampersand printing’ consists of printing any object on a single line by using the character & (ampersand)

o mean “There’s more stuff here.” (This technique is borrowed from the Interlisp editor.)

There are two ways in which & is used by this printer as an abbreviation:

l. An & appearing between some varicty of brackets indicates *thut there is a big vbject of the
indicated TYPE there.

1. The characters . . & or &. . on the left or right of a structure mean that there are more objects to
the left or right which have not been printed.

Fxamples:
#FUNCTION ((A B C D) <&>)
This is o FUNCTION with four arguments in its argument LIST, and the FUNCTION body contains onc FORM

which was too big to print in the remainder of the line.
{PROG () <KRK <+ .A 5>> <PRINC .Q> <SET BAR <ORG>> <&> &..>

This is a large FORM, namely, a PROG. In addition t the clements printed, there are more clements to the

right, and there is one FORM which was too big to fit.

Ampersand printing is effected by two pure RSUBRs: &, analogous to PRINT, and &1, analogous to
PRIN1. A rclated RSUBR, &L IS, can be applied to no arguments to put you into an cndless READ-EVAL -&
loop. instcad of the normal READ-EVAL-PRINT loop.

3.1.4. Examining the Stack

{FRM fix>
returns the fixth FRAME down from the top application of ERROR or LISTEN.

(FRAMES how-many.fix stari:fix>
pretty-prints Aow-many FRAMEs (by printing the FRAME number (suitable as an argument to FRM), FUNCT,
and ARGS of the FRAME), starting with <FRM star> . Both arguments arc optional; start defaults to 0, and
how-many defaults to a large integer. A FRAME whuse FUNCT is an ATOM whuse VALUE is an FSUBR is not
printed. if the same information is found in the next lower FRAME .

{FR& how-many.fix stari:fix>
is like FRAMES but uses ampersand printing instead of pretty printing. It is handy for summarizing FUNCTs
and ARGS that arc large or unprintable (like RSUBRs with no fixups).

Pretty-Printing il

I'he ML, Programming Environment - 19

CFRATM how-many:fix start:fix>
is like FRAMES but gives an abbreviated view of the stack. It prints FUNCTs only, and only fur FRAMES
connected with named FUNCT IONs, RSUEHE.P&H{! RSUBR-ENTRYs. It is handy when a FRAME contains a
nun-LEGALT object.

<FRLVAL atom
how-many:fix
start:fix>

prints vut the stacked bindings of wiom, going through how-many FRAMES, starting with <FRM siar>. The
two numeric arguments are optional; how-many defaults to a large integer, and starf defaults to 0. The
format of the printing is two columns: the first column is the number of the FRAME in which wiom has a

binding; the second column is the value bound. or a message procliiming the lack of a value.

{FR&VAL aiom
how=-many:fix
start:fix>

is precisely the same as FRLVAL, except that the values are ampersand printed instead of PRINTcd.

Finally, the "FRMSP" PACKAGE contains analogues of many of the preceding functions, but cach takes as
its first argument a PROCESS, by default <ME>. These arc all named by adding a ‘P’ to the end of the usual

name. For example,
<FR&P <MAIN:>

does a <FR&> in the PROCESS MAIN.

There is one additional function of interest in " FRMSP".
CFRTYPE how-many:fix siart:fix>

is likc FRAME S, but gives only the TYPEs of the arguments to cach. This is uscful in those situations when the

stack shows illegal FRAMEs or other unprintable objects.

3.2. The MDL Editor
EDIT allows a ML user to make incremental changes in ML structured objects, without leaving MDL
and with the ability to save the results in a file, and to set or clear conditional breakpoints of various sorts in

objects that will be evaluated, such as FUNCT I0Ns.

EDIT is an cditor/dchugger written in, written for, and running under MDIL. It compriscs the package
"EDIT" and several smaller packages which will be mentioned later in this section. EDIT is preloaded in

most initial MDLs.
To start editing, apply EDIT to no arguments or to the name of the object you wish to edit: <EDIT?

31 Pretty-Printing

il ‘Ihe MI). Programming Environment

causcs entry into EDIT and opens the last object edited; CEDIT objecs> causes entry into EDIT and opens
object for editing. Permissible objecss include:

— ATOMs. ‘The GVAL (preferably) or the LVAL of the ATOM is opened. IF it has no value, EDIT
returns a FALSE.

— APRIMTYPE LIST. The PRIMTYPE LIST is opened.

— A FIX. The stack frame with that number is opened (i.c.. ¢<ARGS ¢FRM fix>>).

Part of EDIT's efficiency comes from furbidding it to delve into objects that are not of PRIMTYPE LIST,
that is. not LISTs. FORMs. FUNCTIONs, ctc. Attempts to edit objects of uther PRIMTYPEs will result in error
messages. These objects can, however, be treated as units when inserting, searching, ctc.; or they can be

changed into LISTs, edited, and then changed back to their original types.

3.2.1. The Edit 'LISTEN Loop’

3.2.1.1. The Reader

When in EDIT. you are typing at a special, non-standard, input function: The EDIT Reader.

I'he Reader allows you to type EDIT comimands and have them exccuted, and also to evaluate MDL

expressions normally. Its characteristics are as follows:

= Asin the normal MbL Reader, nothing is done until you type ESC. DEL, tL, D, +G. and 1S also
work normally.

= All EDIT commands are terminated when an ESC is encountered in the input stream. In
addition, most commands will terminate whenever the maximum number of arguments required
hits been input or whenever an argument of the wrong type is encountered. In the former case the
next object is taken as a new command: in the latter case the object of the Wrung type is taken as a
new command. EDIT commands may be typed in cither upper or lower case.

— If you type something that EDIT docs not recognize as a command. normal MDL. evaluation and
printing arc performed on that something. This evaluation will have no effect on your position in
the object you are editing.

— While cditing a function which is part of a PACKAGE (determined from an examination of the
OBLIST containing the ATOM whose value is the function), EDIT causes the OBLIST path to be
set up o what it was in the environment of that PACKAGE. This has the advantage of reducing the
number of trailers printed, and causes newly entered ATOMs to [ull on the correct OBLIST (the
internal OBLIST of the PACKAGE). It has the slight disadvantage that it disables the dynamic
loader (which depends on unbound variables falling on the INITIAL OBLIST). If the GVAL of
E-PKG is a FALSE, this feature is disabled, and the normal OBLIST path is in effect during

The MDL Editor 1.2

e ML, Programming Environment 21

editing.

Fxamples:
R 5%

Causes execution of EDIT command R, with argument 5.
<R &5>3%

Causes application of the function R 1o 5.

3.2.1.2. The Ampersand Printer
Your current pusition is displayed by “ampersand printing” (see section 3.1 3). “This consists of printing any

ohject on a single line by using the character & (ampersand) 1o mean “I'here’s more suff here.

‘I'he ampersand printer used in EDIT is much like the standard one, with the addition that your current

position (see below) is displayed by the glyph B,

When you initially enter EDIT. you arc in a mode called "'non-verbose.” in which ampersand printing is not
antomatically done following exccution of EDIT commands. The V command is used to toggle you in and out

ol verbose mode (sce below).

Examples:
#FUNCTION (B (A B C D) <&3>
Indicates that vour position is just to the left of a FUNCTION's argument list, and the FUNCTION body

contains one FORM which was too big to print.
{..& <KRK <+ .A 5>> B <SET BAR <ORG>> <&> &..>

Indicates that you are in the middle of a large FORM (c.g., a REPEAT or a PROG), positioned just to the left of
the <SET BAR <ORGY>. In addition to the objects printed, there are more objects to both the left and the
right, and there is one FORM which was too large o fit on the line.

3.2.2. Edit Commands

3.2.2.1. General

A sequence of EDIT commands is exccuted as suon as you type ESC. [f one command Fails, subscquent
commands up to the ESC are ignored, and EDIT types out an appropriate Crror message. A failing EDIT

command generally has no effect whatsoever; but see individual descriptions.

Note that afl arguments t EDIT functions must be legal MDI. objects. In particular, you can't scarch for

3.2 e ML Editor

22) The M. Programming Environment

¢SET .since the <>'s aren’t balanced. Norcan you insert it. (But you can, for instance, search for and insen
{SET THING 1>))

Ifa command expects an argument and doesn't get one, an error message will be printed.

Many EDIT commands take FIXes as arguments, Those that do interpret the ATOM * as an argument to

mean ‘as many as pussible’,

Whenever you are in EDIT, you have a well-defined 'position’. A position is a ‘place’ iuside a Mni,
structure; this “place’ is cither berween two clements of the structure, or beiween an clement and cither end of
the structure, ur inside an cmpty structure. All editing, movement. and printing commands operate relative to
your current position. The term “cursor” is used in the following descriptions to refer to an embodiment of a

position.

The format used in cach of the following command descriptions is:

Command as Typed Fnglish Name

Description

3.2.2.2. General Commands
'« duh?

Causes a short summary of all EDIT commands to be typed out. The same suminary appears later in this

chapter.
T? huh?

Similar to the above, but the summary is even shorter, and should fit entircly on the screen of an Imlac

terminal.

Q Quit

Leave EDIT and return to MDI. (Causes EDIT to return the ATOM T.)

QR fix Quit and Retry

Quit from EDIT and then retry the frame specified, or by default, the one originally given to an open

command or, if none was given, the frame bencath the last ERROR or LISTEN frame.

+F Control-F

This is not really an EDIT command; rather, it is a character, obtained from the input stream at interrupt

The MDIL. Editor 32

I'he M. Programming Envirenment 23

level. which is used to return you to the EDIT Reader from some higher level of application, ¢.g.. an ERROR’s

LI1STEN. Itis the EDIT equivalent of ERRET with no arguments.

+F {or 15) typed during cxecution of an EDIT command is similar to normal MDL +5 but returns to the

[D1T Reader instead of the M, LISTEN loop.

0 whject _ Open
FFquivalent to Q followed by <EDIT object>. Positions the cursor just to the Teft of the first clement of the

entire vhject specified.

01 Open This

I the object to the right of the cursor is an ATOM, or a TORM whose first element is an ATOM, and the

ATOM's value is openable. then it is opened. This command is useful when tracing a calling sequence through

severul functions.

3.2.2.3. Movement Commands

ut Up to the Top

Places the curse: at the position it had following an 0.

R fix Right

Maves the cursor fix ubjects to the right, by default one. If fix is too large, i.c., there are not that many

positions to the right of the current position, EDIT prints an error cominent and the cursor stays where it is.

8 Back

Moves the cursor as far to the right as possible.

L fix Left

Muaves the cursor fix positions t the left, by defaultone, 1T fixis wo large, ED IT prints an error message.

F Front

Muves the cursor as far to the lefi as possible,

DL Down Left

Pusitions the cursor just to the right of the rightmost element within the object Lo the left of the cursor, if

that objectis of PRIMTYPE LIST, Visually, the cursor moves left over une ‘close bracket.

3.2 The M. Editor

24 The M. Programming Lnvironment

DR Down Right

Positions the cursor just to the left of the lefimost element within the object to the right of the cursor, if
that object is of PRIMTYPE LIST. Visually, the cursor moves right over one "open bracket’. If the cursor is

to the left of an clement that is not of PRIMTYPE LIST.EDIT prints an error message.

D Down

Equivalent to DR.

UR fix Up Right

Positions the cursor just to the right of the object the cursor is currently within, Dues so fix times, by

default once.

UL fix Up Left

Positions the cursor just to the left of the object the cursor is currently within. 1Does so fix times. by default

once.

U fix Up
Identical w UL.

S object Search

Poes a depth-first, left-first tree-walk, (i.c., lefi-to-right) starting with the object to the right of the cursor,
until the cursor is just to the right of an vbject structurally equal (i.c., =7) to its argument. An occurrence of
the object will not be found if it is inside anything not of PRIMTYPE LIST. On failure, the cursor docs not
move. [fthe argument is omittad, the last object searched for is used.

SR object Search Right
Same as 'S,
SL object Search Left

Same as S, but the tree-walk is depth-first, right-first (i.c., right-to-left) and you end up to the left of the

vhject fur which you were searching,

3.2.2.4. Printing Commands

The Empty Command

The MDL Editor 32

Phe M. Programming Environment 25

Causes the normal “ampersand print’ to be done. This is principally uscful when vou are in ‘silent” mode:

see the V connmand.
By the way, an ‘emply” command is typed by typing ESC without having typed any visible characters
before it
P Print
PPRINTs (not "ampersand prints’) the object to the right of the cursor.

U Print Up

PPRINTs the object the cursor is in. "This is similar 10 doing a U and then a P, although the cursor is not
maoved.

P1 Print Top
PPRINTS the whole object you have open.
Verbosity

Toggles the verbosity mode between *verbose’ (most commands cause ampersand printing) and “silent’

(printing of any sort is done only when some explicit print command is used. or when an error accurs). The

current state of verbosity is the GVAL of E-VERBOSE.

In silent mode, absolutely nothing is printed after cach command, not even new-lines or prompis.

However, normal MDi. evaluation still causes normal MDL printing.

3.2.2.5. Editing Commands

I gny ... Insert

Inserts all its arguments immediately to the right of the cursor. None of its argumenis arc evaluated; you

can insert unevaluated FORMs without using QUOTE. ‘The cursor ends up to the right of the last object
mseried.

G gav ... Get

Same as 1, but its arguments arc evaluated. This is useful in conjunction with the X command (sce below),

1: yperalom fix Insert Type

Grabs fix objects 1o the right of the cursor, inserts them into a newly created object of TYPE 1ype, deletes

them from the original structure, and inserts the newly created object in their place. In other words, it *inserts’

32 The MDI. Editor

26 The MDI. Programming Invironment

the appropriate open and close brackets for fype at the cursor and fix objects to the right.

By default fix is one, fype is LIST. An crror message is printed if fix is larger than the number of objects
to the right of the cursor,

There is no way to directly insert or delete single parentheses, brackets, ctc., using EDIT. Instcad, usc K:

(sec below) to remove pairs of brackets, and I : to insert them.

I* indicator:alom new-siruclure Imbed

Imbed looks for all occurrences of indicator in new-siructure and replaces these occurrences with objects

tuken and deleted from the right of the cursor, 1t then inserts the result.

IFonly new-structure is given, the indicator is the ATOM *. If there aren’t enough objects to the right of the
cursor t replace cach indicator, remaining indicators are lefl untouched and a warning incssage is printed. If

no indicators are found, the new structure is inserted, but a warning message is printed.

[* is generally used to insert one or more structures into another complex structure in one operation,
instead of several. For example:

CSET X B <12 .Y>>
I* <COND (<NOT <LENGTH? .Y 11>> *)>$
CSET X <COND (<NOT <LENGTH? .Y 11>> <12 .¥>)> & >

places a protective conditional around an NTH to prevent an out-of-bounds error.

IG any.. Insart into Group

Inserts into a group. 16 is similar to I, but assumes that tl'u-: object you are in is a group (as produced by
GROUP-LOAD). Arguments to [G which arc not ATOMs arc inserted as in I. Objects which are ATOMs and
which have a value insert a FORM which DEF INEs, SETGs, or SETs the ATOM as appropriate. Thus, to add a

new function F to a group G, one could type
0 GSIG F3QS

K fix Kill

Deletes fix objects to the right of the cursor. Defaults to one. Negative fix causes deletion to the left of the
Cursor.

C any Change

Changes the one object to the right of the cursor to its single argument. Does not move the cursor. Does

not evaluate its argument. C is morc cfficient than K plus I,

The MDL Editor 32

A W Mt

Ihe ML Programming Environment 27

C: Iype:atom Change Type

Changes the type of object to the right of-the cursor to fype. Attempts to do something reasonable for

cvery type change. IF you tell it to change a STRING to a LIST, you get a LIST of CHARACTERs. If you
attiempt to change a structure whose elements are other than CHARACTERs and STRINGs to a STRING, vou

will get a MDIL. error.

K: Kill Type
Peletes the brackets around the object to the right of the cursor. Le.. kills the object and inserts its

clements into the structure of which it was a part.

SU new old Substitute

The Substitute command takes two arguments. Al occurrences of ofd from the current location o the end
ol the upen object (actually a search-right is done) are replaced by new. Once the scarch for old Fails, the

command terminates, and the number of substitutions performed is printed. The cursor is left after the last

ohject replaced.
X qlom Transfer
SETs the afom to the object to the right of the cursor. X can be used with K and G to meve things around

within the object being edited.

SW swap

Swaps the two objects to right of the cursor, leaving the cursor pointing at the same object. The effect is to

move the cursor and the object it points at one object to the right. Repeated SWs move cursor and object

further and further to the right.

3.2.2.6. Macro Facility

M macrg Macro

‘T'akes cither a STRING or something which EVALs to a STRING and performs all of the commands in the

STRING. For complete assurance that your commands will be done properly, put an ESC between

commands.

1T fix macrg Iterate

This command (also called DO) takes a fix and macro as if an argument to M. This command will loop

through the macre fix times or until an crror is gencrated. When the iteration ends, the user is told how many

52 The MDL. Editor

23 j I'he ML Programming Environment

complete passes have been made of the macro,

In both of the above commands, if an EDIT error is generated, the macro will be terminated, and the
macro itself will be printed, with an arrow pointing to the offending command. The cursor will remain at the

place where the last legal command left it

The 5U command is, internally:
DO * "S oldSLSC news™

3.2.2.7. Cursors.

Cursors are locations in objects being EDITed. In addition to the main cursor, which is where editing
pecurs, ather locations (also called cursors) may be remembered. The main cursor may be moved to anather
curser in a single operation, potentially saving many motion commands. In large FUNCT IONs cursors may

also reduce confusion by distinguishing among several similar arcas of code.,

UC Use Cursors

The PACKAGE for dealing with cursors is not normally loaded in an initial MDL, so the UC command loads

it and makes the cursor commands availablo. ‘The PACKAGE lvaded is "CURSOR™.

CU glom ' Cursor

CU takes an ATOM argument and SETs the ATOM to an object of type CURSOR, which tries to be clever in
the event you change the object. Also, if you use the X command to name a substructure and then move copy

it with G or I, the cursors in the substructure will fullow to the new location.

There are some restrictions, Cursors in empty LISTs are okay but they will not follow the object to new
locations. Also this ‘following” feature is effective unly at the first G or I after the X. To move the substructure
again you have to X again,

I'* is somewhat incompatible with CURSORs. Cursorsin Imbedded structures will sometimes disappear.
GO cursor Go
GO takes a cursor (normally the LVAL of an ATOM previously given as an argument to CU) and GOes to that

position. [F the cursor is illegal (not in the current top-level structure). an error message will be printed and

you will remain in your previous position.

KC alom Kill Cursor

The MDL Editor 32

‘Ihe ML Programming Environment 29

Kill the cursor assigned 1o atom.

PC . Print Cursors

Prints all cursors in the structure to the right of the main cursor,

PA Print Al11 Cursors

Prints all cursors in the currently open structure.

3.2.2.8. Breakpoinis

BK predicate any ... Breakpoint

Inserts a breakpoint “around’ the object o the right of the cursor. ‘Takes any number of arguments.

Subsequently, whenever that object would have been evaluated. you instead hit a breakpoint function which:

1. Evaluates predicate. If the value is FALSE, evaluation continues as if there were no breakpoint., IF
the value is non-FALSE, or if BK was given no argumenis:

2. Types **BREAK®*.

1. For cach argument after the first that you gave BK, types
arg = EVAL ofarg

4. Enters LISTEN.

You continue by applying ERRET to onc argument, just as from an ERROR; the argument’s value is ignored.

Breakpoints are implemented by inserting a BREAKR (2 PRIMTYPE LIST with APPLYTYPE FORM)
which consists of the function BREAKR and arguments, including the object breakpointed. A breakpoint

prints as a glyph similar to the cursor:

Bobject
If the ATOM SHORT-PRINT is assigned and FALSE, the actual BREAKR LIST is printed.

‘The breakpoint function returns EVAL of the thing it is put “around,” and there are cases where this does

not work. There arc always equivalent places that do work.

1. Breakpoint on the first clement of 2 FORM does not work. Put it on the whole FORM.

2. Breakpoint on a LIST which is an argument to a COND does not work. Put it on the first FORM in
the LIST.

BA predicate any ... Ereak After

32 The ML Editor

i0 The ML Progriamming Environment

similar to BK, but puts the breakpoint affer the object at the cursor. Its action is like that of 8K except that

the break occurs after the object it is on is EVALed,

‘T'his sort of breakpoint prints like the *before’ sort, but with the glyph after the object broken:

ubfect
The predicate for a BA breakpoint may check the value returned by FVAL for the object the breakpoint is on.
This value is assigned by BREAKR to the ATOM VALUE.

KT Kill This

Removes the breakpoint (if imy) from the ubject to the right of the cursor.

KB Kill Breakpoints

Removes all breakpoints in the currently open object.

3.2.2.9. Edit Monitors
Ihere are several commands in EDIT which provide a simple interface to the "MONITOR" PACKAGE.

ITese allow placing of monitors on references to or modifications of LVALS in interpreted MDI. code.,

For a more complete discussion of the use of maonitors, see section 3.7,

UM Use Monitors

The PACKAGES for dealing with monitors are not normally loaded in an initial MDL, so the UM command
loads them and makes the three commands for creating monitors available. ‘I'e PACKAGES loaded are
"MONITR", which is the general monitor PACKAGE, and "EMONIT", which is the interface between EDIT
and "MONITR",

RW atom predicate any . . . Read-write Monitor

The most general type of monitor that can be sct is a read-write monitor. It will catch any reference to or
attempt to modify the LVAL of the arom specified. The restrictions on placement of breakpoints lso apply to
monitors, with the addition that a monitor on an LVAL must be placed after that LVAL has become
ASSIGNED?,

The second, third (and so on) arguments 1 RW arc the same as those for BK. The predicate may be
dependent on cither the new or old value of the variable: These are available as the LVALs of NEWVAL and
OLDVAL, respectively.

‘The ML, Editor 3.2

IThe MIDL. Programming Environment - 3]

When a maonitor is triggered, it prints the type of monitor, the variable being monitored, and any other

mformation requested by the user, and then calls LISTEN.

A monitor prints as yet another glyph:
M[alom] object

where atom is the ATOM being monitored. and obyject is the object on which the call (o MONITOR is placed.

Edit monitors are objects of type BREAKR, and thus they are killed by the same commands that kill normal

breakpoints: KB, KT, and so on.

RM aiom predicate any ... Read Monitor

RM is analogous to RW, but is only triggered by reading the variable,

WM aion) predicate any . .. ‘Write Monitor

WM is analogous o RW, but is only triggered by writing the variable,

3.2.2.10. User-defined Edit Commands

It is possible to add user-defined commands to EDIT. The valuc of EDIT-TABLE should be a VECTOR of
STRINGs (commands) and APPLICABLE objects. EDIT will scarch EDIT-TABLE before its own command
iable. If a match is found, the APPLICABLE will be applied to three arguments: the command string, the
LOCATIVE containing the item currently being edited (the immediately surrounding object) and the position

in that item.

Mote that user-defined commands should not be added except by constructing a new value of
[DIT-TABLE from the commands to be added and the old value. Otherwise, any cxisting uscr-defined

commands may be lost when new ones are added.

The Monitor commands described in section 3.2,2.9 are effectively “installed” user-defined commands.

ey add elements o EDIT-TABLE when loaded by the UM command.

3.2.3. Examples

3.2.3.1. Simple Editing
Suppose you have the FUNCTION

3.2 ‘The MDL Editor

R Phe MDIL. Programming Environment

AFUNCTION (('A) <EVAL .A>)

18 the global value of the ATOM SIMP. and you wish to change it to
#FUNCTION (("BIND" B 'A) (<EVAL .A .B> .A))

using EDIT. The tollowing example does just that: it includes duoing the cditing and applying of SIMP to an
wrgument. Console input and output are shown below exactly as they would be in non-silent mode. {Console
input consists of thuse characters to the left of every 8} Note that there is nothing in SIMP which is big

cnough to warrant use of an &.

CEDIT SIMP>S

Vs

#FUNCTION (B ('A) <EVAL .A>)

DS

(1A

I "BIND" BS

("BIND" B R 'A)

S .AS

{EVAL .A § >

I .BS

CEVAL .A B 1 >

URS

#FUNCTION (("BIND™ B 'A) <EVAL .A .B> 8)

I .AS

A#FUNCTION (("BIND" B 'A) <EVAL .A .B> .A &)
L 2%

#FUNCTION (("BIND" B 'A) ® <EVAL .A .B> A)
I: LIST 2%

#FUNCTION (("BIND" B "A) ® (<EVAL .A .8 A))
CSIMP (+ 1 2>>$

(3 <+ 1 23)

#FUNCTION (("BIND" B 'A) ® (<EVAL .A .B> LA))
QST

3.2.3.2. X and G Commands

En this exaniple we have the FUNCTION

(DEFINE F (X)
G .X 10>
CH 23 <= X 13>>%

3y applying the X and G commands to the appropriate FORMs. we are able to swap thc FORMs within the
FUNCTION.

The MDD, Editor 3.2

I'he MY Programming Environment

% i

<DEFINE F

(X)

<G .X 10>

<H 23 «-

f

<EDIT F>§
%
#FUNCTION
RES
#FUNCTION
% MOVERE
#FUNCTION
K3
#FUNCTION
R33
H#FUNCTION

G .MOVER::

#TUNCTION
Q%1
.MOVERE
<G .X 102

(B (X) <G .X 10> <H 23 <-
((X) B <G .X 10> <H 23 <-
((X) B <6 .X 10> <H 23 <-

((X) B <H 23 <-

((X) <H 23 «<-

{((X) <H 23 «

LA 1550)

XO133)

X133 R)

K122 <6 X

3.3. Unconditional Breakpoints

X 13)

10 §

Lt
2

Loinsert unconditional breakpoints into the FUNCT ION in the nexi example, do the following:

1

Fed

et

I

- Inseri the breakpoint.

during this run.

- Define FIB and test the FUNCTION a few times.

. Enter EDIT and position the cursor appropriately,

3.2

leave EDIT and run the FUNCTION again for the value 2. The breakpoint is exercised 5 times

The MDL Edito;

H Ihe ML Programming l'nvironment

DEFINE FIB (X)

<COND (<L=? .X 1> .X)
(ELSE <+ <FIB <- .X 23> <FIB ¢- X 1>18

FIB

FIB 5>%

5

{FIB 6>3%

8

{FIB 10>%

55

“EDIT FIB>S

RES

#FUNCTION ((X) B &>)

BK T .X$Q3T

{FIB 3>%

I#BHEAI--

D o |

LISTENING-AT-LEVEL 2 PROCESS 1

{ERRET T>$

**BREAK=*

X =1

LISTENING-AT-LEVEL 2 PROCESS 1

{ERRET T>$

**BREAK®"

X =2

LISTENING-AT-LEVEL 2 PROCESS 1

“ERRET T>%

ItEREA‘K-I

X =0

LISTENING-AT-LEVEL 2 PROCESS 1

CERRET T1>%

**BREAK=»

A =1

LISTENING-AT-LEVEL 2 PROCESS 1

‘ERRET T>§
2

3.2.3.4. Conditional Breakpoints

We continue from the previous example and demonstrate conditional hreakpoints with the following;

1. Enter EDIT and kill the breakpoint from the previous cxample,
2. Pusition the cursor and insert a conditional breakpoint with a predicare of <07 . X>.
3. Leave EDIT and run the FUNCTION again for the value 10,

4. Enter EDIT and remove the breakpoint.

The MDL Editor)2

nl

I'he ML Programming Environment

<EDIT>$

3

#FUNCTION ((X) B §<&>)

KBSS

#FUNCTION ((X) B <&)

BK <07 .X> <TIME>$QST

<FIB 103§

**BREAK®*

CTIME> = 14,794538
LISTENING-AT-LEVEL 2 PROCESS 1
i ¢

0

CERRET T>$

**BREAK®*

<TIME> = 15,252382
LISTENING-AT-LEVEL 2 PROCESS 1
.XS$

0

CERRET T>$

**BREAK®*

<TIME> = 15.716037
LISTENING-AT-LEVEL 2 PROCESS 1

and so on. Eventually we reach the last breakpoint, and re-enter EDIT

CEDIT>$

$

#FUNCTION ((X) B B<&)
KBSQST

CERRET T>$

55

3.2

35

The MDL Editor

the MDI. Programming 'nvironment

3.2.4. Edit Command Summary

NAME ARGS
? none
T none
0 any
or none
Q nane
QR fix
v none
Movement commands
L fix
R fix
u Jix
D none
8 none
F none
UR fix
oL fix
uTt none
| any...
I: lype fi
[* afom,object
iG any...
SU new,old
X alom
G AnY...
SW none
c any
C: {vpe
K fix
K: none
Search Commands
5/SR any
SL any
Macro Commands
The MDL Editor

MEANING

type out short summary

ype vut this summary

Open object or the value of an atom
Open object at the cursor

Quit and return 1o MbL

Quit and Retry frame

wggle Verbaosity

mave Left fix objects

muove Right fix objects

move Up fix levels

move [Down one level

muve to Back of object

move to Front of object

move Up fix objects and to the Right

move Down fix objects and to the Left _

Up Top -- go to the place you were after you did 0

Insert arguments to the right of cursor

make next 1 objects into a fype

imbed command: replace all occurrences of arom (deFault *)
in vhject with objects to right of cursor

Insert into group

sUbstitute new for old

sel the atom to the object to right of cursor

Get EVAL of arguments, insert to right of cursor
5Wap the two objects to the right of cursor
Change the next object to arg

Change the type of the next object to (ype

Kill (delete) the next fix objects

Kill (remove) the *brackets’ around the next object

Search (Right) until match (=?) is found for any
Search Left as above

32

-
—

— e .

mecnt

I'he MDIL. Programming Environment 37
M string exccute the string as if typed to EDIT

1T/D0 fix siring ITerate the exccute string fix times

Printing commands

P none PPRINT the next object

PU none PPRINT the next Upper level

PT none PPRINT the whole object open

Cursor comnands

uc none Use Cursors

Ccu M set atom to CUrrent cursor position

GO Cursor GO 1o the specified cursor position

PC none Print Cursor positions in the current object

PA nonge Print All cursor positions in the wp-level object
KC aiom Kill the Cursor assigned to the atom

Debugsing commands

BK pred,any... set BreaK point at next object; if pred cvaluates to FALSE,
don’t break: rest of arguments are printed out at break

BA pred.any... sct Breakpoint A fter next object

KB Hone Kill all Breakpoints in open object

KT none Kill ‘This breakpoint in the object to the right of cursor

Monitor commands

UM none Lse Monitors

RW alom,pred.any... sct Read-Write monitor on atom

RM alom,pred.any... set Read Monitor on atom

WM alom, pred,any... sct Write Monitor on atom

tF and 15 return you to EDIT from a higher level.

The ATOM * may be used as a fix argument whose value is the largest legal value for that command.

3.3. Debugging and the Interpreter

Before continuing the discussion of the various packages that are used in the debugging of MDI. code, we
will expand on the discussion of ERROR, FRAME, {and so on) in Chapter 16 of [3). To summarize that chapter,
whenever an ATOM is bound or a FUNCTION or RSUBR is MCALLed in MDL, information is added to the
contol stack., This information, normally ‘invisible’, may be cxamined using the functions described in &

previous section (FRAMES, FR&, FRLVAL, ctc.). ‘An invocation of ERROR puts MDI. into a LISTEN-like loop.

32 The MDL Editor

i3 The MDI. Programming Environment

Successive ERRORs stack up and arc reflected in the LISTENING-AT-LEVEL message printed whenever
ERROR or LISTEN is called.

In addition to being cxamined, the stack may be modified as part of the debugging procedure. For
example, the SUBRs SET and LVAL take an optional second argument which may be (among several pussible
TYPEs)a FRAME. EVALing

{SET X 10 <FRM n>>
would change the LVAL of X in the nearest binding lower in the stack than the FRAME n FRAMEs lower than
the most recent call o ERROR or LISTEN. Similarly

{LVAL X <FRM n>>
examines the LVAL in a particular FRAME,

The most commaon use of the MpL interpreter in debugging is to invoke the SUBR ERRET. With no
argunients, it drops all the way to the bottom of the stack and then calls LISTEN: It says ‘1 give up’ (although
side effects are not undune). More commonly, ERRET is given a single argument, which causes the last
invocation of ERROR or LISTEN to return that argument. For cxample, suppose o program contains , FOO

hutFﬂﬁ has no GVAL. M. would respond

ERROR

UNASSIGNED-VARIABLE

FOO

GVAL

LISTENING-AT-LEVEL 2 PROCESS 1

You could give up, saying CERRET>, but it is uften more reasonable to say "Oh, yes, FOO was supposed to be

1000, and then
{ERRET 1000>

Still better is
{ERRET <SETG FOO 1000>>

which will prevent future ERRORs from the same cause.

Finally, ERRET may be given a sccond argument of a FRAME, which means to return the first argument as
the value of the invocation of that FRAME. In the previous example, the programmer might look at the stack
{with FR& or FRAMES) and see

Debugging and the Interpreter .3

| he M. Programming Environment 39

1 GVAL [FOO]

2 EVAL [,FOO]

3 EVAL [<+ .X .Y ,F00>]

4 EVAL [<LOSER .A .EB>]

5 EVAL [</ ,GOOD-GVAL <LOSER .A .B>>]
6 EVAL [<WINNER 1.0 2.0>]

7 LISTEN []

After sume thought, he may just say "Well, LOSER apparently needs some debugging, but for now I'm

micrested in WINNER', in which case he can *fake’ a reasonable return from LOSER by typing
CERRET 342.0 <FRM 4>

which returns 342 . 0 exactly as though LOSER had returned it.

Muore complex errors are sometimes more difficult to fix, requiring the use of EDIT (at least). In the above
example, the programmer might decide to debug LOSER afier all. “There are two ways to go about this: First,
il the problem is localized, the FRAME itself may be cdited (which is to say, the contents of the FRAME may be
cdited). Changes will show up in the FUNCT ION from which the FRAME s contents were derived. The newly

vorrected FRAME may then be RETRYed. FFor example,

<EDIT 3>%
.various editing commands
QRE

Second. the function itself may be cdited. In the process, it may be so changed that the FORM which
caused the ERROR no longer even cxists. Often, the easiest solution is to retry the invocation of the EDITed

TUNCTION from scratch: in this case
{RETRY <FRM 4>3>%§

As always, the major restriction to remember is that side-effects are not undone by RETRY.

3.4. Loading and Dumping

GROUP-LOAD and GROUP-DUMP are used to load and dump files of M DI programs in such a way that the
vantents of the file are made available in a ML structure called a growp. Many other PACKAGESs in the MDL
civironment operate on or change groups: Among them are "EDIT", "GLUE™, "PDUMP", and the MDL

vompiler,

GROUP-LOAD and GROUP-DUMP arc almost as widely used as FLOAD as a way of dealing with groups of
ML functions. Conscquently, they arc already loaded in most initial MIis, as part of the package

"GRLOAD'

LK Debugging and the Interpreter

i : L he ML, Programming Enviromment

u §

-GROUP-LOAD filfe-name:string
group-namealom>

He-name:siring is the file to load.

srowp-namesaton 15 Ihe name to give the group, Itis optional and by default the ATOM formed by PARSE of
the first name of the file to load. The group will be stored as the LVAL of group-name.

iROUP-DUMP is the opposite of GROUP-LOAD. [t outputs the group from the Mpi. o the fle given as it
first argument. Functions unchanged since the last GROUP-L0AD are copicd from the original input file.

Functions that have been edited dre putput using the routine given as the third argument o GROUP -DUMP,

{GROUP-DUMP fllc-namestring

gronp-inhne:atom
prind-rotfine
kill-break poinis?>

Hle=name:string is the only required argument. 1tis the file w which w output the group.

group-namezatont is optional, and defaults as it does fur GROUP-LOAD. but of course gives an ERROR if the
aroup doesn’t already exist.

ortivt-routine is'optional, and defaults w |, PPRINT unless the group contained NBIN format RSUBRs, in which
zase , PRINC is used.

cill-breakpeims? is optional, by default T, in which case GROUP-DUMP kills all EDIT breakpoints and
monitors in objects being dumped. Giving a fourth argument of a FALSE to GROUP-DUMP prevents this.

On the surface, it appears that little happens in the process of loading a file and making it into a group.
However, a great deal of information about the group has been stored away in associations fur later use.
Some of this information is of use to the ML programmer:

|. On an association between growp-mame and the ATOM CHANMEL is stored a LIST giving the name

of the file that was GROUP-LOADed to form the group. Remuoving this association before

GROUP-DUMPing has the effect of making the entire group be output from core rather than
copied from the original source,

=

. On an association hetween group-name and the ATOM MAGIC-RSUBR the ATOM T is stored if the
sroup contained any RSUBRs in fast (NBIN) format. It is this association which is used to
determine the default prii-rewtine in GROUP-DUMP.

3. The OBLIST path in effect at any time during the load is available. The vriginal path is stored on
an assuciation between group-neme and the ATOM BLOCK. Within the group, the path changes are
stored in an association between the group RESTed tw the point of change and the ATOM BLOCK.

4. If the second clement of a FUNCTION definition is not an ATOM. the actual FUNCTION name
guiten by EVAL of that clement is stored as an association between the original clement and the

Loading and Dumping 34

l

neni

: of

i its

ile.

1€

e ML, Programming Environment 4]

ATOM VALUE.

5. The location of a function within the input file is stored as a LIST of the starting and ending
offsets (in characters) of the function, under an association between a locative to the GVAL of the
FUNCTION name and the indicator DEFINE. 'This association is removed by EDIT (and other
cditors) to indicate that the FUNCTION has been changed.

There are additionally several switches that affect the operation of GROUP-LOAD:
.KEEP-FIXUPS

Il the LVAL of KEEP-FIXUPS ‘is truc (und GROUP-LOAD hinds it that wav during loading), the fixups of

li5UBRs GROUP-LOADed will be kepL
.EXPFLOAD

If the LVAL of EXPFLOAD is true. FLOADs will be expanded. 'That is. the objects in the Tile FLOADed will be

added to the group in place of the FLOAD, The initial setting of EXPFLOAD s a FALSE.
L.EXPSPLICE

If the LVAL of EXPSPLICE is truc. any obiccts returned within SPLICEs will be inseried directly intw the
proup as described above. “The initial seting of EXPSPLICE isa FALSE.

3.5. The One-step Debugger

I'e M. One-step debugger allows the user to siep through the evaluation of any MDL expression one
aperation” at a time. Between steps, variables may be cxamined or changed, functions cdited, and so on.
s 1s possible because the debugger runs in a different M1, PROCESS than the expression being stepped,
and a MDL. PROCESS may 1STEP another [3]. To load the Debugger. <USE "DEBUGR"™>.

I'he M. Debugger can be in any of three states. In the initial state, OFF, no une-stepping occurs and the
| webugger does not listen for any special interrupt characters. The Debugger is, therefore. completely inactive.
Iy typing <DEBUG> to MDI., vou lcave the OFF state and cnter the READY state. In the READY state no
whe-siepping occurs, however the [Debugger does listen for interrupt characters. By typing the interrupt

haracter 1B, you enter the ON state and une-stepping begins. In addition. il you were stopped at an EDIT
nreakpoint when the tB was typed, the breakpoint will automatically be exited and evaluation continued in

e one-siepping state.

While in the ON state, the Debugger will proceed through the execution of any MDI. objects one step at &
In cssence, the Debugeer stops st before and just after every call to EVAL. At ¢ach step the Dehugge
1 idicaie its current condition as foliows. 11 EVAL is recursively entered at level, #, with input, ebject. the

uprliiy will be:

3.4 Loading and Dumping

42 I'he ML, Programming Environment

w=> opbject

i m———E s s B o

(where wbject is ampersand printed). If EVAL is returning fron level, i, with result, object. the display will be:
n= object

(where ebject is ampersand printed).

The Debugger will stop at each such step and wait for directions. +There are four interrupt characters that
miy be typed to proceed further in the program: tN, 0, tR and tA. They cach take an optional prefix
argument that serves as a repeat count,

TN
causes the Debugger to perform the next step of the current evaluation.

H0
causes the current ohject o be completely evaluated without any one-stepping and then stops with the result
of that evaluation. 0 is useful for sicpping wver COND predicates that you know will not succeed, or more

generally, uninteresting parts of a program.
tA

is similar to +0. but speeific t the evaluation of the argument list of a FUNCTION, PROG, or REPEAT. Typing
rA during such evaluation allows the rest of the argument list to be evaluated without one-stepping and then

stops before evaluating the body of « FUNCTION, PROG, or REPERT or retuming of a result.
R

is most cffectively used in a REPEAT or PROG loup. Typing *R causes evaluation to proceed until control
returns o the puint in the body of the REPEAT /PROG at which *R was typed. [t thus allows you to go once
around a loop.

It should be noticed that, when stopped at one of these steps, you can cxamine and modify program
variahles, do a FRAMES or FR&, EDIT FUNCTIONs and sct breakpoints, and in general perform any valid
MDL operations. Also. when you stop, the LVAL of the ATOM LAST-0UT will be set to the object the
Debugger last typed out. This is uscful if the & performed by the Debugger did not show a particular detail
that you are interested in.

Use the interrupt character tE Lo leave the ON state and return to the READY stale. Use the interrupt
sharacter tQ Lo leave cither the ON state or the READY state and return to the OFF state. When leaving the ON

state s described, the exccution currently heing one-stepped will be finished in the usual manaer.

The function REPAIR attempts to fix any errors in the Debugger that you might happen to invoke. These

errors are casily distinguished since they never occur in MDL's MAIN PROCESS. Therefore, you will sce:

The One-step Debugger 35

The MDI. Programming Environment 41

LISTENING-AT-LEVEL m PROCESS n

(where nis not 1). REPAIR turns off the Debugger and returns you to running in the MATN PROCESS (ne
longer one-stepping). Because REPAIR turns off the Debugger, you must do <DEBUG> again if you wish to
iry any further one-stepping.

3.5.1. MDL Debugger Command Summary

{USE "DEBUGR"> lvads the Debugger.

<DEBUG>» makes the [Debugger ready.

tB begins onc-sicpping.

tN performs the sext step of the computation.

t0 *S;tcps completely over the next computation, then stops and continues one-stepping.
A evaluates the arguments of the current object then stops and continues one-stepping through the body.
tR continues evaluation until you return to this point

+E emds one-stepping.

+Q quits one-stepping and makes the Debugger unready (turned off).

{HELP> prints a command summary.

{REPAIR> attempts to repair any Debugger errors vou might invoke,

3.5.2. MDL Debugger Special Features

The following flags have special importance to the Debugger:
. INDENT-INC

is the amount by which to indent for each level (by default 2 spaces).
, INDENT-MOD

The indentition-level is the real level taken modulo this number. The default is 10, Indentation ‘restarts’

when level gets here. 1f you don't like this feature, make the number large.
. INDENT-DIF

is the minimum amount of free space t reserve on cuch line that indentation must not wuch (by default 20).

Therefore at level L the indentation is exactly:

1.5 The One-step Debugger

Y The M. Programming Environment

‘MIN <* ,INDENT-INC <MOD .L ,INDENT-MOD>>
¢- <13 ,OUTCHAN> ,INDENT-DIF>>

OUT-FAST

if true the Debugger will not stop when leaving a level with a result. The defaultis T,
,OUT-UNIQUE

if hoth this and previous flag are true successive ‘outs’ of the same item will not be displayed (defaults wo T).
+SELF-FAST

if true the Debugger will not stop when entering a level with an object which EVALS to itself (e.g. ATOMs,
FIXes, STRINGs). The defaultis T. The display will be:

n: object

,FORM-FAST
if tmr.-.llu: Debugger will not stop when entering a level with any of the ‘short” FORMs (e.g. <>, .FOO, ,BAR,
"ANY THING). The default is T. The display will be:

n: FOD = lval

Any of these flags can be SETGed by you to tailor the dehugger to your own Lastes.

3.6. Execution Tracing

'he "TRACE™ PACKAGE provides a facility for observing the arguments and returned values of selected
FUNCT IONs and RSUBRs. It is possible to print the arguments on entry to the function, print the value
returned, and to break on entry w and exit from the function. Al actions may be performed counditionally,

To load TRACE, type
CUSE "TRACE">

3.6.1. Using TRACE

TRACE is invoked by
{TRACE wha! options>

what is cither an ATOM or a LIST of ATOMs, naming the things to be traced. These may include SUBRs,
FUNCTIONs, and RSUBRs: however, anything which is truced must EVAL all of its arguments. options

specifies the behavior of TRACE with respect to the specified function. There are five switches, as follows:
[N-BREAK

means break (cause s M. ERROR) before calling the function. Normally off.

the One-step Hebugger 1.5

L]

L & T

I'he MIDL. Programming Environment 45

IN-PRINT

means & function arguments on entry. Normally on.
OUT-PRINT '

means & function value on exit. Normally on.
OUT-BREAK

break after executing the function call, Normally off.
VERBOSE

means & the arguments to the function one per line. This is useful if the arguments are long. Nurmally off.

‘o cause a given uption v be unconditionally on, include its name (an ATOM) in the oprions TUPLE. To
cause an option to be unconditionally off, include a two-clement LTST. composed of the option name and a
FALSE. I the second clement of the LIST is neither FALSE nor an ATOM. it will be EVALed cach time
TRACE examines the setting of the given option for the function. This allows conditional breakpoints, for

cxample.

Thus:
CTRACE FOO (OUT-PRINT <>)>

will cause FOO's arguments t be printed on entry, but the value will not be printed.
<TRACE FOO (OUT-PRINT '<G? <TIME> 4.0>)>

will cause printing of the value after four seconds of cpu time have been used. Printing of the arguments will

occur cach time FOO is called.

UNTRACE turns off tracing of the specified functions:
<{UNTRACE whai-arom-or-list>

What defaults o a LIST of all functions which have been traced.

3.6.2. Understanding TRACE
TRACE works by CHTYPEing the specified functions to new (vpes which have an APPLYTYPE associated
with them. This means that one cannot trace calls w RSUBRs or RSUBR-ENTRYs which are already linked.
in addition, it means that UNTRACE must be used o get the old value back. 'T'o determine the status of a
lunction with respect to tracing, say
{GET applicable TRACE:
Fhis returns FALSE if applicable is not traced; otherwise, it returns an object which describes the scitings of

the various options. The ohject hasa PRINTTYPE which associaies the name of each option with ils sctting:

3.6 Execution I'racing

44 The MDIL. Programnung Environment

{GET ,FO0 TRACE>$

FOO

IN-BREAK: #FALSE ()
IN-PRINT: T

QUT-PRINT: <G? <TIME> 4.0>
OUT-BREAK: #FALSE ()
VERBOSE: #FALSE ()

Individual settings for a particular function may be changed by PUTting into this structure:
<PUT <GET ,FOD TRACE> ,IN-BREAK T>

causes a break whenever FOQ is called.

3.7. Monitors

A common problem in debugging is the mysterious ‘clubbering” of some value or clement of a data
wructure. MDD has imbedded in it 4 mechanism for triggering interrupts on references, cither for reading or

writing, o values of variables and clements of structures.

‘The "MONITOR" PACKAGE is designed to be a readily accessible user interface to these "READ® and
"WRITE" interrupts in the MDIL interpreter,

To obtain "MONITOR",
(USE "MONITOR">

There are three basic kinds of ‘things' which can be monitored: values of ATOMs, clements of

STRUCTUREDs (the TYPE of the element is not important), and ASSOCIATIONs.

For ATOMs. the LVAL or the GVAL may be monitored. If the LVAL is to be monitored, tne ATOM must be
ASSIGNED?. l'or the GVAL, the ATOM must be GBOUND?, If these conditions cannot be met, a monitor

cannot be generated.

For STRUCTUREDs. the monitor is on the nth clement, where n is specified when the monitor is created.

Remember, the monitor is on a slot of the STRUCTURED, not un the contents of that slot!

For ASSOC IATIONs. the monitor is on the association itself,

3.7.1. Monitor Internals

This scction expands on the discussion of monitors in the MDL. document itself [3].

M, defines two types of monitors: Read and Write. These are implemented in the language by two

Fxecution Tracing 3.6

I'he MDIL. Programming Environment 47

interrupts, READ!-INTERRUPTS and WRITE!-INTERRUPTS, respectively. In additon, the "MONITOR"
PACKAGE can allow read-write monitors. The "MONITOR"™ PACKAGE is at base a set of functions to create
and handle these interrupts. A monitor is triggered in the following cases;
Read monilor:

For LVALs -- via LVAL

For GVALs -- via GVAL

FFor STRUCTUREDs -- via NTH
For ASSOCIATIONs -- via GET and GETPROP

Write monitor:
For LVALS - via SET or "AUX" bindings
For GVALSs -- via SETG
l-or STRUCTUREDS -- via PUT, SUBSTRUC
For ASSOCIATIONs -- via PUT and PUTPROP

Nole that PUTRESTs of LISTs which may alter the sth clement of a LIST, do not access the old nth

clement of the LIST and therefore do not cause a write monitor to trigger.

Internally, Mpl. performs monitoring on LOCATIVEs to STRUCTUREDs. In fact, LVAL and GVAL are
really pointers to an internal structure. This need not concern the user except in the case of LVALs of ATOMs.
In this case. M1 will monitor a LOCATIVE to rhat (exactly that unique) hinding of the ATOM. When that
binding becomes invalid, or more precisely,

<NOT <LEGAL? locative>>
a function in the "MONITOR™ PACKAGE will make the monitor vanish. [llegal monitors print as
#MONITOR [ILLEGAL] (if you cver get a pointer o one). Remember that if vou want to monitor the LVAL
of an ATOM bound in a FUNCTION (or PROG. elc.). vou must create a new monitor each time, as a new
binding is created cach time. One way to do this is to edit into the FUNCTION a call to MONITOR (sce below)
after the ATOM becomes ASSIGNED?. Fortunately, EDIT (sce scction 3.2.2.9) has commands to do exactly
that.

3.7.2. Creating MONITORs
Creation of all monitors is done through a call to MONITOR (which returns an object of TYPE MONITOR),
as follows:

3.7 Monitors

13 Ihe MDIL. Programming Environment

{MONITOR [ype:siring
ebject
where
predicate
todo:tuple >

where:
iype isonc of "READ”, "WRITE™, or "RW".
pbject is cither an ATOM or a STRUCTURED, or ian ASSOCIATION item.

where i cither LVAL or GVAL (if object is an ATOM) ur a FIX, (if ebject is @ STRUCTURED), or an
ASSOCIATION INDICATOR.

predicate is smmething which is EVALed to determine whether the monitor is to be triggered; this defaults o
[e "MONITOR" PACKAGE defines three variables which can be referenced in the test:

OLDVAL is the old value of the object monitored.

MEWVAL is the new value of the object monitored.

MOMNOBJ is the object monitored (ATOM or STRUCTURED).

Here value means LVAL, GVAL, ur clement. Obviously, NEWVAL is not set for "READ™ monitors.
tode is any number of things to be EVALed and PRINTed when the monitor is triggered.

Note that predicate and fodo are identical to the analogous arguments of the EDIT BK command.

3.7.3. Monitor Events

When a monitor is triggered, the following is printed (remember the predicale is evaluated before this),
and then LISTEM iscalled. To continue, CERRET T2,

Read:

**READ of where of objeci®*
Value: oldval
todol = resultl
todo? = resultl

LR

‘Write:

Monitors 37

‘The MID . Programming Environment 4%

WRITE of where of objecr®
01d value: oldval

New value: newval

todol = resultl

fodo? = resuli?

A slightly different first line format is used for associations.

3.7.4. Killing Monitors
Killing a MONITOR is accomplished by calling KILL-MONITOR as follows:
<KILL-MONITOR monitory
or
{KILL-MONITOR npe obicci whered

In the latter case, fype, vbject, and where arc as given in the original call to MONITOR.

To kill all MONITORSs, use
{KILL-ALL-MONITORS>.

3.7.5. Other Monitor Routines
<MONOBJ monitory»

returns the ebject monitored.
<MONSPEC monitor>

returns the where of the MONITOR.
{CLEAN-MONITORS:

flushes invalid MONITORs from the MONITOR LIST. 'This is donc internally and necd not be called

routinely.
,MONITORS

1sa LIST of all current MONITORs.

3.7.6. What You Can’t Do with Monitors
You can’t monitor the LVAL of something BOUND? but not ASSIGNED?. Eg.,

3.7 Monitors

50 I'he MDIL. Progranuning Environment

DEFINE WRONG ("AUX" BAR)
{MONITOR "READ"™ BAR LVAL>
calles 2

You can't expect compiled code o cause monitors to be triggered. Naturally, you can't place monitors in
compiled code; however, a compiled reference t a monitored ATOM will not usually cause the monitor (o

trigger either.

3.8. FINDATOM
The "FINDATOM" PACKAGE is intended tw reduce the problems caused by multiple OBLISTs and
lengthy ATOM names in MDL. It allows one to find all ATOMs whose PNAME s match some specification, which

need not be exact: in addition, one may place constraints on the values of the ATOMs found.

FINDATOM is invoked as:

(F INDATOM specsir:siring
searchlist

constrainis
outobl:lisr>

specsir 1s a STRING describing the PNAMES of the ATOMs one wishes w find. ‘Three special characters are
recognized in this STRING:

*- matches anything, including an empty string

=: matches any single character

t(Q: quotes the following character

Search strings may be an arbitrary concatenation of normal and special characters. For cxample:
"+SDM*": matches any ATOM containing "SOM™ anywhere in its PNAME.

"s=50M*": matches any ATOM containing "SDM" in its PNAME, provided that at lcast one character
precedes the "SDM™,

"+Q* " matches any ATOM with PNAME "*",
"o matches any ATOM.

If +Q is the only special character in the string, it need not be quoted: " +Q" scarches for ATOMs with
PNAME "tQ".

searchlist specifics the OBLISTs to scarch. Possible values are:

#FALSE (): scarchall OBLISTsin ,OBLIST

Monitors 37

The MDIL. Programming Environment 31

#FALSE (oblists-or-forms): search all but the 0BLISTs specified.
oblist: scarch only this OBLIST,

list-afoblists: scarch only the OBLISTs in this list.

else: scarch all OBLISTs. This is the default.

constrainis is a TUPLE describing the value of cach ATOM found. It may consist of any number of valid TYPE
names, along with arbitrary structures and the following special ohjects:

T: if present. overrides any other constraints: if no other constraints arc specified, this is assumed. Any
ATOM maitching specsir will be accepted.

ANY: overrides any constraint other than 7. Any ATOM matching specsir which has a value (cither GVAL
or LVAL) will be accepted,

<27 any ATOM which has no value will be accepted. Note that giving both ANY and <3 is equivalent to
giving T.

LINK: any LINK will be accepted.

If uther constraints are provided. they work as follows: all valid TYPE names given (ones for whom
VALID-TYPE? returns T) are stored in a structure; when a value is encountered. its TYPE is MEMQed

on this structure. If the ATOM does not succeed here, it is next checked against the ‘arbitrary
structures.”

Anything in constraints which is neither one of the above “special objects’ nor a valid type is treated as a
DECL specification. All such objects are put in a FORM starting with OR, which has the cffect of
generating a single DECL specification. When a value is found. DECL? is called with the value as its
first argument and the gencrated FORM as its second. 1f DECL? rewirns T, meaning that the FORM is
valid as a DECL for the VALUE, the ATOM is accepted.

Examples;
ATOM FALSE '<LIST [REST FIX]>

specifics that any ATOM accepted must have cither a GVAL or an LVAL which is of type ATOM or
FALSE, orwhichisa LIST of FIXes,

'<OR ATOM FALSE> '<LIST [REST OBLIST]>

specifics that any ATOM accepted must match the DECL
<OR <OR ATOM FALSE> <LIST [REST OBLIST]>>

eufobl, if present. isa LIST ul"DBLISh which is the LVAL of OBLIST when FINDATOM prints things. Thus,
onc may force all ATOMs w be printed with full trailers by providing an empty LIST here. ‘The last
argument given o FINDATOM, provided itisa LIST, is assumied to be ouiobl,

FINDATOM prints the name of cach ATOM it accepts, followed by the STRING "Gassigned" and the
type of GVAL if the ATOM has one: this will be fullowed by the STRING "Assigned” and the type of the

3.8 FINDATOM

52 ' The MIX. Programming Fnvironment

LVAL if the ATOM has one. It prints the number of ATOMs found when it finishes.

3.9. "PINFO™
"PINFO" is an informational PACKAGE. It 15 used to examine the 0BLISTs of the PACKAGEs loaded into

an Mbi.. There are two major entries in PINFO.

CPCK-INFO package:string
internal?:boolean?

Both arguments PCK-INFO arc optional. If neither argument is given, the names of the PACKAGEs loaded
into the ML are listed. [fa package is given, the contents of the package’s ENTRY OBLIST are listed, as well
as information about the VALUE of cach ENTRY. If internal? is provided and non-FALSE the contents of the
internal OBLIST are also listed. PCK-INFO prints an error message if package is not loaded.

{PCK-USES package:siring>
lists the names of PACKAGEs USEd hy pickage or returns a FALSE if package is not loaded.

3.10. Debuggingin a Run-time Environment

A Tairly common occurrence when running ‘debugged” code is o find that if was not after all completely
debugged. [t is uscful to be able t lvad interpreted versions of some FUNCTIONs in a PACKAGE into the
compiled environment for debugging. "DFL", "ROFL™, and "UNLINK" arc PACKAGEs written to simplify
this procedure,

3.10.1. DFL

The "DFL" (*IDebugging Fload') PACKAGE is a sot of routines for loading and dumping of small numbers

of FUNCT IONs from a larger file. It is useful in debugging already running systems, or ones which have not
been GROUP-LOADed. To get "DFL"
CUSE "DFL">

The main entry of the "DFL" PACKAGE is DFL:
COFL func-names file-name:string unlink?:boolean»

where all arguments are optional and

func-names is the name(s) of the DEF INEd FUNCT LON(s) to be obtained from this file. It may be an ATOM, a
STRING, or a structure of ATOMs or STRINGs: if ATOMs arc given, their SPNAMES are used. The default is
the argument last given to DFL or RDFL,

Sile-name is the file to obwin the FUNCT ION(s) from. The default is the last file DFLed or RDFLed. An ATOM
may be given, in which casc its SPNAME is used for the first file name.

unlink? If this is true, and if one or more of the values replaced by the DFLed FUNCT IONs were RSUBRS or

FINDATOM 38

R —

The MI. Programming Environment 53

= RSUBR-ENTRYs, the reference VECTORs of alf RSUBRs, including pure ones, will be scarched for
occurrences of the old value; such occurrences will be replaced by the ATOM. “This is the inverse of

RSUBR-LINKing. Pure structurcs will be unpurified; this does not change their address in core, but

simply makes the page they live in read/write.

In the normal casc, if an RSUBR or RSUBR-ENTRY is being replaced, unlinking will occur automatically in
garbage-collector spacce only if RSUBR-LINK is T. Also, remember that unlinking is not the same as
substituting: only RSUBRs stored al top level in reference VECTORs are found: if the old value itself was in a
structure (such as a dispatch table), it will not be replaced.

3.10.2. RDFL
RDFL 15 similar to DFL but is for reloading RSUBRs rather than FUNCTIONs. RDFL is contained in the
PACKAGE "RDFL".
{RODFL func-names file-ame unlink? glue?>
‘Ihe first three arguments are as for DFL. The only difference between RDFL and DFL (barring the effect of
the fourth argument) is that RDF L scarches in the file for '¢SETG * rather than "<DEFINE "
-
glue? If non-FALSE, RDFL will READ and EVAL the next object in the file following cach RSUBR read. This

will in the normal case obtain the "glue hits’ for the RSUBR (see section 6.1). The default for glue? is
¥ {AND <ASSIGNED? GLUE!- > ,GLUE!- >

This is the FORM used in NBIN files to determine whether glue bits should be kept.
= Note that RDFL will work to reload any SETGed object, not just RSUBRS.

RDFLing an RSUBR-ENTRY docs not work and may well be fatal: you must RDFL the RSUBR in which
the RSUBR-ENTRY is an entry, as well.

3.10.3. UN-DFL

UN-DFL is for writing out DF Led FUNCT I0Ns after EDITing.
CUN-DFL atoms filnam force?>
atowns 15 an ATOM or a list of ATOMs, which will bec UN-DFLed. ‘The FUNCT I0Ns defined must all be from the

same file, or UN-DFL will not work. UN-DFL can only UN-DFL things which were previously loaded by
DFL.

Silnam The default is the file the ATOMs uriginally came from.,

Jorce? Normally, UN-DFL will object if there is a version between the file the FUNCT IONs came from and the
file which UN-DFL will create: it thinks it will likely destroy uscful information. Providing an ATOM here
causes this scruple to be ignored. It is almost always unwise to do so. For cxample:

310 PDebugging in a Run-time Environment

4 I'he MDI. Programming Environment

{DFL (FOO BAR)> <UN-DFL FOO> (UN-DFL BAR>
will cause UN-DFL to fail. Moral: DFL and UN-DFL your FUNCT IONs together.

3.10.4. UNLINK

The "UNLINK® PACKAGE contains thrce cntrics: UNLINK, PURE?, and UNPURIFY. UNLINK s
sometimes called by DFL: PURE? and UNPURTFY are good ways to [uratively defeat the safety ‘interlock” of
Mbi.

UNLINK is uscd to unlink RSUBRSs afler they have been linked. (See the discussion of RSUBR-LINK in

3.
CUNLINK aioms pure?>

atoms s a Tist of the ATOMs t be unlinked, or a FALSE, meaning unlink cvery RSUBR in the Mp1, or a

group-name, meaning unlink calls to all FUNCTIONS and RSUBRs in the group.

pure? is optional and defaults o FALSE, but if true, even purc RSUBRs will be scarched. UNLINK
examines all the OBLISTs in the M, looking for RSUBRs; if an RSUBR exists only in a structure, and not at
wp level in any RSUBR's reference VECTOR, it will not be found.
{UNPURIFY fecl:any?

PURE ? takes an object and determines if the right half of the value word is greater than the number
contained in the MDL location PURBOT, which is the Jowest pure location in MDL. Ergo, ‘Is the object [gave
you pure?’ 1tis only meaningful for structures.

(UNPURIFY pure-objectzany>

UNPURTIFY takes a single argument. which must be of PRIMTYPE VECTOR or UVECTOR (i.c., it must have

an AOBJN pointer for its value word). It causes the pages in which that object lives to become impure, and

returns T.

Because there is no way on TS to make a read-only page an impure page directly, the following algorithm
is used by UNPURIFY:

1. Is the vhject pure, according o PURE? If not, leave.

1 lIsUNPURIFY-PAGE!-IUNLINK GASSIGNED? If not, get a page from the interpreter, and SETG
the aforementioned ATOM (o its number. L.c., the page is more or less permancntly taken for use
of UNPURIFY.

3. For cach page occupied by the vbject: a) If the page is afrcady impure, do nothing; b) otherwise,

Debugging in a Run-time Environment 3.10

The MDI. Programming Environment 55

map the page on top of UNPURIFY-PAGE: c) create a new, impure page where the old page was.
d) copy the contents of UNPURIFY-PAGE back to the old, now impure page.
Thus, no pointers are changed: as far as M1 is concerned, in fact, nothing has changed. The unpurified

pages arc still pure, according to its page map. However, you may freely change the unpurified object.

If your change to the newly unpurified ohject consists of PUTing a pointer into garbage-collected space
inte the object, you may lose completely unless the pointer points to a frozen object. The MDIL garbage

collector does nor examine unpurified objects. UNLINK can only usc UNPURIFY because all ATOMs

referenced by pure RSUBRs are indeed frozen.

For the above reason, use of UNPURIFY is not recommended for the general user.

3.11. CRITIC

"CRITIC" is a PACKAGE designed to aid the user in debugging (and perhaps increasing the efMiciency of)
his programs. It accumulates and prints in a readable format information about the interactions of the various
FUNCTIONs (and LVALs and GVALS) in a group. It also warns the user about various conditions it considers
to be cither non-optimal or erronenus, such as incorrect use of SPECIAL, forgetting t QUOTE some structure,
and so on. Like most critics, it is sometimes wrong, but it trics to perform a useful service. To load

"CRITIC" say
<USE "CRITIC">

There are two major entrics, onc of which prints more information than the other.

<CRITIC group-name
vuipui-file>

where group-name is the ATOM returned by a GROUP-LOAD, and the optional ourpui-file is a STRING giving
the name of the file to output to (by default with second file name "CRITIC"). This can also be a CHANNEL
if you arc planning to do several CRITICs into one file. CRITIC prints information about interactions
amimg the FUNCTIONs in a group (as described below).

<CRITIC-NOTES group-name
oulput-file>

is similar but only prints “errors’ and ‘warnings” -- things that might be problems with the FUNCTIONS in the
group,

The output format (for cach FUNCT I0N and for the group as a whole) is as follows:

Sunction (object number of function in group)

Called-by: alist of all the functions which call function

3.10 Decbugging in a Run-time Environment

'he M1, Programming Environment

&

Cal1s:a list of all the functions called by function
SETG: cxternal globals SETGed by function

GVAL: external globals referenced by function

SE T: external variables SET by function

LVAL: external variables referenced by funciion
SPECIAL: variables declared SPECIAL by function
USE-DATUM: DATUMs used by function

'The above table is printed by CRITIC but not by CRITIC-NOTES. ‘External’ as uscd above means

"External to function'.

CRITIC-NOTES and CRITIC both print information about possible defects or errors in cach FUNCTION.

‘Ihese can be any or all of the following (explanations follow where nceded).

3.11.1. Global problems with the Group
FLOAD in file.
'This is pretty minor: FLOADs at top level are discouraged if you can avuid them.

BLOCK or ENDBLOCK at top level in PACKAGE.

PACKAGESs should not have to resort to this.

atom-nanie: MANIFESTed structure.

"The ATOM given is a structure but was MANTFESTed. Since a MANIFEST is copicd within the reference
VECTOR of any RSUBR that uscs it, it is usually not a good idea..

ENTRYs not bound, assumed locals: atom-list

The ATOMs given were made ENTRYs in the PACKAGE, but were not bound, so CRITIC has assumed they

are locals, for lack of something better to do.

Packages USEd but never referenced: package-names

These PACKAGEs were in USE statements but no ATOM was ever found which fell on their OBLISTs.
‘Ihere will sometimes be incorrect entries in this list if you USE a PACKAGE which sets up a funny ENTRY

OBLIST (RPACKAGESs included) or no OBLISTs atall.

Internal functions unused: atom-list

‘I'hese are FUNCT IONs DEF INEd but apparently never referenced and not entries. There will sometimes

be incorrect entrics in this list if you have FUNCTIONs invoked only by funny dispaiching methods, such as

CRITIC 111

'The MIDI. Programming lnvironment 57

APPLYing or EVALing an clement of a structure.

Internal globals unused: atom-list

ATOMs SE TGed at top level but never referenced.

Internal manifests unused: artom-lisi

ATOMs SETGed and MANIFESTed at top level but never referenced.

3.11.2. Parameter list problems
ATOM aioni-niame used twice in parameter 1ist.

‘I ATOM named was bound twice in the same parameter LIST within the FUNCTION. M. doesn't
worry about this, but you might.

Untasteful re-use of ATOM aronr-name in ROOT.

An ATOM was bound which happened 1o be in the ROOT OBLIST and happened to have a GVAL that is &
SUBR or FSUBR. This is reported because the ATOM will have w be unpurificd, which is expensive.

"BIND" illegally located.

A "BIND" was found other than at the beginning of a parameter LIST.

"CALL"/"ARGSE" 1illegally located.

A "CALL" or "ARGS" was found after the "AUX"™ in a parameter LIST.

"OPTIONAL" 1illegally located.

"OPTIONAL" was lound after "AUX™ in a paramncter LIST.

"TUPLE"™ illegally located.

"TUPLE" was found after "AUX™ in a paramcter LIST,

atom "AUX" illegally QUOTEM.

The ATOM named was given as a quoled argument in the "AUX™ part of the parameter LIST.

External locals set but unbound and unDECLed: aroni-list

External locals set but unbound: alom-lisi

Two different classes of hacking an external local. In both cases it means that the ATOMs did not appear to

311 CRITIC

38 ' The MBI, Programming Environment

be improperly SPEC IALed, since no one bound them higher in the call tree (or at top level). These are most

often indications of misspelling or Furgr:ujng Lo put a temporary in the parameter LIST.

External locals used but unbound and unDECLed: arom-list
External locals used but unbound: arom-list

A reference o an external local which was not bound anywhere is probably a misspelling of a SPECIAL

bound clsewhere or the result of forgetting to put the ATOMs in the FUNCT ION's parameter LIST.

External locals set but unDECLed: atom-list

External locals used but unDECLed: arom-list

An external used but not DECLed usuall y means that the compiler will produce poorer code.,

3.11.3. Unused ATOMs
Argument unused: arom-lis
The arguments listed were never referenced.

Unused: aiom-list

The ATOMs listed were bound at p level of the FUNCT ION and never referenced.

Unused in PROG: arom-list

Similar to the above, but the ATOMs were bound within a PROG.

Unused in REPEAT: atom-list

Similar to the above, but the ATOMs were bound within a REPEAT,

Unused in FUNCTION: atom-list

Similar to the above, but the ATOMs were bound within a nameless FUNCTION, such as the second
argument to a MAPF/MAPR,

Unused SPECIALs: atom-list

The same as above (including* ... in FUNCTION' ¢ic.), except that the ATOM was SPECTAL. This
message results from really looking down the call tree, so it is more accurate about this problem than the
compiler, which only looks at the FUNCT ION in which the ATOM is bound.

CRITIC 311

‘The MDL. Programming Environment 59

3.11.4. Function calling errors
Calls undefined function arom.
The FUNCTION calls an undefined FUNCT 10N (undefined at the time CRITIC ran).
Calls function with too few arguments.
Calls function with too many arguments.

External FUNCTION function

‘The FUNCT ION named is ealled but doesn't seem to fall on any of the OBLISTs associated with the group.

3.11.5. SPECIAL/UNSPECIAL problems
SPECIALs never used as SPECIALs: atom-list
‘The ATOMs were made SPECTAL but never used outside the FUNCTION in which they were bound.

atom-name is unused or should be SPECIAL.

A very specific error which means that the ATOM given (always one of INCHAN, OUTCHAN, or OBLIST)
was bound but never referenced within the FUNCTION, and was not SPECIAL: [Fither yvou bound it for
cffect and forgot o SPECTAL it, or you didn’t need to bind it

aiont unbound in paths: puth-lis

If the FUNCTION is called by one of the paths given, the arom will be unbound. A path is just a list of calls
CRITIC has found are pussible, such as (FOO BAR BLECH), mcaning ‘F 00 is called by BAR which is called
by BLECH'.

The ATOM aiom used in fon! should be special in fen?.

"This note will appear with both FUNCT IONs mentioned. 1t means that afom is referenced in fenl and the
ncarest FUNCT ION that binds it and calls down to fen/ is fen2,

3.11.6. DECLing problems
RSUBR has no DECL.

FUNCTION has no DECL.
Parameters not DECLed: arom-list

The ATOMs given were bound but not DECLed in the parameter list of a FUNCT ION, PROG, or REPEAT.

311 CRITIC

b0 e ML Programming Environment

No DECL im DECL for: atom-list

The ATOMs in the arom-Jist given had no associated declarations.

NEWTYPE not DECLed: iype-name

A NEWTYPE of a structured type was made but no DECL argument was included. In a structured

NEWTYPE, including a DECL of the interior can greatly increase the efficiency of compiled code. l

I11egal DECL: atom-list decl reason

The DECL pair given had illegal syntax for the reason given. These can include:

"Not a lagal type": Anobject appeared ina DECL that was notan ATOM, FORM, or SEGMENT.

"Type-name not a type: aem™: Something other than a type-nume or special symbol (such as ANY) I
appeared where a type was expected. This is sometimes caused by not having your environment
completely set up when CRITIC is run.

"FORM/SEGMENT too short™: A FORM/SEGMENT construction of only one clement was found.
"SPECIAL/UNSPECIAL with three or more elements”

"Bad PRIMTYPE type”: Thetypegivenina PRIMTYPE was :0f a type-name.

"PRIMTYPE with three or more elements”

"Bad type of structured type”: The type-name given as the type of a structured type was not a
type. For exampic, <FO0 FI1X» where FOO is not a type.

"Bad BYTES specification”: A BYTES specification was not of the form <BYTES fix fix>, or the
byle size was greater than 36.

"BYTES DECL too short": A BYTES cunstruction of only one clement was encountered.

"BYTES DECL too long": A BYTES construction of more than three clements was encountered.
"VECTOR in OR specification™: An NTH/REST/OPT construction was found at top level of an OR.
"Nth/REST/0PT too short™: A onc-clement NTH/REST/0PT,

"Only REST or OPT may follow OPT": Somcthing other than a REST or OPT was found after an
OPT.

"REST must terminate DECL": Something was found aftera REST in the DECL.

CRITIC 311

The ML, Programming Environment 61

3.11.7. Miscellaneous
Possibly should be QUOTEd: siruciure.

I'he structure given will be =7 to itself if EVALed. CRITIC lists these under the assumption that you
might have forgotien to QUOTE a structure that should have been, It says “possibly” because you obviously
want to build new structure sometimes. One way to do this without offending CRITIC is to build new

structure with explicit calls o LTST, VECTOR, etc.

3.12. Program Environments
‘The ENV PACKAGE mutkes it casier t load programs into difTerent environments. 1t allows certain actions
1 be taken during loading only if a given “feature” is present. £ NV has three ENTRYs, and is preloaded.
CFEATURES featwres:iuples
If given no arguments, FEATURES returns the current feature LIST. Ifits first argument is not a FALSE, the
arguments are added o the feature LIST. If the first argument is FALSE, the remaining arguments are

removed from the Feature LIST. Thus,
<FEATURES "COMPILER">

says that we are currently in a compiler. All of the “feature’ arguments may be cither STRINGs or ATOMS;

internally features are stored as STRINGs o avoid OBLIST problems.

<FEATURE? fratures;iuple>

returns T if any of its arguments is on the feature LIST.

(EVAL-WHEN fearures
:':m.gmg:fugi;mﬂg}

uses the first argument to decide whether to evaluate the remaining arguments.

features specifies which feature(s) to look for. 1t may be a single feature or a LIST of features. In the latter
case, if the first clement is a FALSE, what is checked for is the absence of the features listed. Note that this
argument is often a LIST created out of arguments to F EATURE?.

consequences-are things 1o be evaluated only if the features arc present (or absent, in the FALSE case).

For example,
<EVAL-WHEN GLUE <SETG FOO 150

would perform the SETG only if it's evaluated in a GLUE (or some other environment defining that feature),
CEVAL-WHEN (<> COMPILER) <SETG BAR 2>>

would not perform the SETG in the compiler environment

Unfortunately, the ENV PACKAGE is a relatively recent innovation, and so many programs do not sct up

appropriate cnvironments,

3.11 CRITIC

62

4.0

‘I'he MDI. Programming Environment

T
!

The MDIL. Programming Environment 63

4. The Library System
A coherent unified library system serves to-facilitate the sharing of algorithms and data by imposing a

discipline appropriate for the particular environment. 'The MDI Library System provides:

— A uniform access method for referring to functions and data outside of the current lngical group;

— l.exical blocking, climinating difficulties arising from overlap of names between different logical
groups;

— Automatic loading of functions for the user who knows only the name of the function which is
wanted;

— A facility whereby functions which may be necessary only in unusaal situations are loaded only in
the event that they arc necded.

I'he Mt Library System may be divided into distinct parts. These are:

— “I'he Package System, the collection of routines used to provide lexical blocking for a logical group
(sce section 2);

— "The “explicit’ loading facility, the routines used to explicitly indicate that references are being
made to a particular logical group;

— The “implicit’ (or *dynamic’) loading facility, the machinery for automatically loading functions
when they are needed during console interaction,

4.1. Program Libraries
In the previous discussion of the Package System and USE (see section 2.3.2). we glossed over the
mechanism by which a PACKAGE is loaded when another PACKAGE (or the user at his terminal) refers to it

We will now give the details.

There are two types of loading common in MDI. programming: ‘explicit’ loading, such as USE may
initiate, and “implicit’ or ‘dynamic’ loading, initiated by attempting to call or examine a function that is not

currently loaded.

In the case of ‘explicit’ loading, it is necessary somehow to map the name of a PACKAGE into a file name
which contains the body of that PACKAGE. ‘The mechanism for doing so must be flexible enough to allow
both ‘installed’ programs (those that have been debugged and submitted to the library) and developmental
programs (o be loaded. 1t must also be tailorable for special needs, such as librarics for specific systems and

personal libraries for individual users.

4.0

64 The M1, Programming Environment

In the case of ‘implicit' loading, the further mapping from the specific ENTRY of a PACKAGE referenced to

the PACKAGE itsclf must be performed. 1t must deal with the case of two or more PACKAGESs cach containing
an ENTRY with the same PNAME.

For programs that are ‘public” or “installed’, both of these mappings are performed by a library. A library
is a file which contains pointers between the names of ENTRYs of PACKAGESs and the PACKAGESs containing
them, and from PACKAGE and DATUM names to the files containing them,

The standard library is named L IBMUD and lives un a directory named LIBMUD (on I'TS) or MDLLIB (on
‘Tenex/Tops-20). but other libraries, personal or special purpose, may also exist; the mechanisms for creating

and maintaining them are the same in both cases,

4.1.1. Library Searching

When a PACKAGE is USEd, MDi first checks to see if the PACKAGE is already loaded, by looking up the
PACKAGE name on the PACKAGE OBLIST. If the PACKAGE is not yet loaded. MDI. must search for the file
cuntaining the body of the PACKAGE.

When MDL searches, it does so under the direction of a search path stored as the LVAL of the ATOM
L-SEARCH-PATH. This LVAL is a LIST, each element of which specifics ‘a place w look™ for the PACKAGE.
These clements may be:

" file-name®

A STRING refers to a library file; "LIBMUD; LIBMUD" for example.
L]

An cmpty VECTOR refers to the ¢SNAME > dircctory. The directory will be searched for files whose names are
the name of the PACKAGE being loaded (truncated to six characters on ITS) and sccond names from the
LVAL of the ATOM L-SECOND-NAMES, which isa VECTOR of STRINGs which are possible second names for
the file.
[dir:string-or-false]

A non-empty VECTOR specifics a directory. The first element of the VECTOR gives the dircctory as a STRING
or a FALSE, the latter case meaning <SNAME >, If that is the only clement, L-SECOND-NAMES specilics the
file names to look for. If there are other clements, they should be STRINGS to usc in place of
L-SECOND-MNAMES.

A scarch path may consist of any number of such clements. The loader will cxamine them sequentially,
attempting to find the PACKAGE being loaded.

Program Libraries 41

i — B, p—

¥

The M. Programming Environment 65

The inilial LVAL of L-SEARCH-PATH (on ITS) is
("LIBMUD" "LIBMUD;LIBMUD" [] ["MBPROG"] ["MPROG" ">"7])
and on Tenex/TOPS-20, it is :
("LIBMUD" "<MDLLIB>LIBMUD"™ [] ["MDLLIB"])
This instructs the loader to first scarch the user's personal library (if it exists), then the “public’ library. Next,
search the user’s directory for a file whose first name is the PACKAGE name, and whose sccond name is
specified by L-SECOND-NAMES. If that fails, perform the same search on the library directory, and finally

(on I'TS), look for a source version of the PACKAGE on the source directory.

Ie initial LVAL of L-SECOND-NAMES (on I'TS) is
["FBIN" "GBIN" "NBIN" ">"]

and on Tenex /7 TOPS-20, it is
["FBIN" "GBIN" "NBIN" "MUD"]

‘o give a simple example of how this mechanism may be tailored for individual needs, consider a
programmer debugging a subsystem. [1f he wants his debugging versions of various PACKAGESs to be loaded

befure the installed versions, he CONSes a new clement onto L-SEARCH-PATH so that it contains
([] "LIBMUD" "LIBMUD:LIBMUD" [] ["MBPROG"] ["MPROG" ">"])

(assuming the files with his debugging versions arc on the <SNAME> directory).

4.1.2. Dynamic Loading

To casc the use of "top level’ routines from the console, a feature is provided whereby the Library System
can load a PACKAGE of functions automatically when one of the functions which is an ENTRY in that
PACKAGE is invoked by name. This facility is not available for use by other PACKAGEs of functions, which
must refer explicitly, via USE, to PACKAGEs which they require: while a human can resolve the difficulty of

possible multiple PACKAGEs with ENTRYs of the same name, a program cannol.

When an error is generated because a FORM is evaluated, and the first element of that FORM is an ATOM
which has no value, and the particular ATOM is in the INITIAL OBLIST, an error handler established by the
library System determines if there are any PACKAGEs in the current libraries which contain an ENTRY with
the same name as the PNAME of that ATOM. If there is one such PACKAGE. it is loaded, and the evaluation
which got the error is continued with the correct value. If there is more than one such PACKAGE, the possible
choices arc displayed, the user is asked which is the desired PACKAGE, and it is loaded. IT there are no
PACKAGEs with ENTRYs of the correct name, the error is nol handled, and so it will fall into the standard

error mechanism. This same procedure is also invoked when GVAL is applied to an ATOM on the INITIAL

4.1 Program Libraries

b6 Ihe M. Programming Fnvironment

OBLIST and the ATOM has no value.

4.1.3. USE-DEFER

It is sometimes desirable to have available functions that are rarcly invoked. but are nonctheless available.

(One example would be certain error handling routines.)

The USE-DEFER function sets up the OBLIST path so that, when a reference is made o an ENTRY in the
specified file, the correct ATOM is found, but the PACKAGE is not actually lvaded at that time. When a
function at a later time tries tw call the function which is the value of one of the entries in this PACKAGE, the
whole PACKAGE will be automatically loaded. USE-DEFER has two constraints which USE does not. First, the
PACKAGE must be in one of the currently active libraries; it may not simply be a file as in the case of USE.
Second, no reference may be made to ATOMs which are entrics but do not have values which are applicable. In
other words. ATOMs which are entrics because they are data (rather than functions) may not be referenced

when USE-DEFER is employed instead of USE.

Because USE-DEFER utilizes the dynamic loader, which utilizes the ERROR interrupts, USE-DEFER will
not work in a demon or any other MDI. program which sets up its own error handlers. All such MbL
programs should SETG the ATOM L-NO-DEFER tw a non-FALSE, which (as explained previously) will cause
USE-DEFER to behave cxactly like USE. Then, PACKAGES containing a USE-DEFER can be used without

modification in demons and the like.

4.1.4. USE-TOTAL

USE-TOTAL is analogous to USE, but instead uf splicing in only the ENTRY OBLIST of the PACKAGE, it
additionally splices in the internal OBLIST. This is useful in some debugging situations, as it reduces the
number of trailers printed and also makes the internal identificrs of the PACKAGE more accessible,

4.1.5. Translations

It is occasionally useful to have more than one copy of a particular PACKAGE loaded at once. One
example that comes to mind is the case of debugging a debugging PACKAGE. ‘The 1.ibrary System contains a
mechanism for “translating” a PACKAGE name into another one. More specifically, it is pussible w tell USE: ‘If
you ever load the PACKAGE named foo, pretend it was named bar instead.” Note that this does not change the

scarching and loading procedure described above, only the names of the 0BL ISTs and so on used to store the
ATOMs in the PACKAGE.,

Program Libraries 1.1

U

The MIDJI. Programming Environment 67

CTRANSLATE plilsiring new:string-or-false®
causes the PACKAGE old. when it is USEd, to behave as if it were named new. If new is FALSE. it means that

old should be loaded as though it were not a PACKAGE at all: its ATOMs will appear on the DEFAULT OBLIST
or<1l .OBLIST> (normally INITIAL).
<UNTRANSLATE gld:siring>

causes any translation of old 1o be removed.,
{TRANSLATIONS>

lists all translations currently in existence,
,L-TRANSLAT IONS

is a LIST containing all the translations.

4.1.6. The Library Data File

In addition 1 its ability to map between PACKAGES, ENTRYs. and the files which contain them, the library
serves another purpose. [fa user is compiling a function which USEs a given PACKAGE, that PACKAGE isnot
usually going to be run. All that is necessary is to examine the calling sequences of its functions, and make
sure that all “side-cffects’ (such as the definition of new TYPEs) occur. If only these necessary parts of the

PACKAGE are loaded, a great saving of time and space is cffccted,

‘The library data file provides a way of achicving this cnd. When a PACKAGE is added to the library, more
information than the list of ENTRYs and the file conwining the PACKAGE is collected. In particular,
MANIFEST GVALs, NEWTYPE definitions, some MACROs, and RSUBR DECLs are stored. Since this is the
information used by the compiler, one can save a great deal of space and time by using information from the

library where possible.

If ,L-USE-DATFILE is true, USE of a PACKAGE will load from the data file if possible. Itis impuossible if
the PACKAGE has changed since the data file entry was created. In those cases, the PACKAGE itself is loaded
instcad. If ,L-ALWAYS-DATFILE is true, an ERROR will result if the data file entry i outdated; one can
ERRET T tw causc the real PACKAGE to be loaded.

USE-DATFILE is just like USE, cxcept that it temporarily SETGs L-USE-DATFILE and
L-ALWAYS-DATFILEtoT.

The data file contains, for cach PACKAGE, information for cach interesting ENTRY: MANIFEST GVALSs,
NEWTYPE definitions, RSUBR DECLs, and MACROs. It also has, of course, the lists of ENTRYs and RENTRYs

needed by the dynamic loader. It docs not contain other structures, nor docs it contain functions. When a

4.1 Frogram Libraries

b8 [he ML, Programming Environment

PACKAGE is loaded from the data fle, it is effectively USE-DEFERed; if you end up needing to run part of
the PACKAGE., it will be loaded dynamically.

Sume PACKAGESs can not have data file entrics. Ifa PACKAGE defines MACROs that use data not stored in
the data file (if the MACRO calls a FUNCTION, for cxample), the PACKAGE will not get a data file entry: it

would normally end up being loaded from the file anyway.

It is possible for a data file entry to become obsolete (if a new version of a PACKAGE is created without the
library entry being updated). For this rcason, the library is examined periodically for such entries and an

attempt is made to update the appropriate cntries.

4.1.7. Run-time Switches

There are a number of variables which may be set dynumically to tailor the Library System's perfonnance.
.L-SEARCH-PATH

as described above (see section 4.1.1) is a LIST specifying the libraries and directories t look in, and the files
to look for when trying to load a PACKAGE. This variable is used by USE, USE-DEFER, USE-DATUM, and the

dynamic loader.
.L-SECOND-NAIES

as described above (see section 4.1.1) is a VECTOR of the second names of files to look for when attempting to

lvad 2 PACKAGE from a directory.
.L-NOISY

[f the GVAL of L-NOISY is non-FALSE, the names of PACKAGEs and DATUMs arc printed whenever they are
loaded, dynamically or otherwise. This feature may be turned off by 5E TGing L-NOISY w #FALSE ().

L-NOISY has an initial GVAL of T.
.L=NO-MAGIC

Dynamic lvading may be disabled by SETGing L-NO-MAGIC to a non-FALSE. L-NO-MAGIC has an initial
GVAL of a FALSE.
,L-ALWAYS-INQUIRE

If the GVAL of L-ALWAYS~-INQUIRE is non-FALSE, the dynamic loader will always ask the user before it

lvads anything. The GVAL of L-ALWAYS~- INQUIRE is initially a FALSE,
,L-NO-DEFER

If the GVAL of L-NO-DEFER is non-FALSE, USE-DEFER will work exactly like USE. L-NO-DEFER is
initially SETGed to #FALSE ().

Program Libraries 4.1

The MDIL. Programming Environment 69

4.1.8. Library Utility Functions
A number of functions exist which allow the user to examine libraries, list their contents, and retrieve their

entries. All of the functions below except L-PATH and L-0BL accept an optional STRING argument, a
library specification. 1f it is defaulted, they operate on the public library, specified by the string "LIBMUD ;
LIBMUD" or "<{MDLLIB>LIBMUD".

<{L-LOAD package:string library:string?
L-LOAD requires a STRING (the name of a PACKAGE or DATUM) and attempis to load it from library (if
given) or the current librarics. as per L-SEARCH-PATH.

<L-FIND function-name:siring library:string?
L-FIND requires a STRING (the name of an ENTRY), returning a4 UVECTOR of two-clement VECTORS of the

form:

[package-in-which-fimction-exisis:string
library-in-whicl-package-exisis:string]

‘This finds all of the entries which have the same PNAME but arc in different PACKAGES.

The remaining functions are in the PACKAGE "L", rather than in the PACKAGE "PKG". For cach of
these, the optional [ibrary argument is by default rhe library: that is. "LIBMUD:LIBMUD" or
"(MDLLIB>LIBMUD".

{L-FILE package:siring library:string?
L-FILE requires a STRING (the name of a PACKAGE or DATUM) and returns a STRING which is the file
specification of the file, pointed to by the library, which contains the body of that PACKAGE ur DATUM,
{L-WHERE package:siring librarnyv:string
L-WHERE is similar to L-FILE but returns a VECTOR of STRINGs which is the actual complete file
specification of the file containing the PACKAGE (i.c., the ‘real’ siots in a CHANNEL open Lo the file).
{L-LISTE library:siring>
L-LISTE prints the names of all of the entries of all of the PACKAGEs in the library.
{L-LISTP [library:string>
L-LISTP prints the names of all of the PACKAGEs and DATUMs in the library.
<L-COUNTE [library:string>
L-COUNTE returns a FIX, the number of entries defined by all of the PACKAGES in the library.
{L-COUNTP library:siring>
L-COUNTP returns a FIX, the number of PACKAGESs and DATUMSs in the library.

41 Program Librarics

10 The MDI. Programming Environment

{L-LISTPE packagesiring library:string?
L-LISTPE requircs a STRING (the name of a PACKAGE) and prints the names of all of its entris.
{L-PATH>

L-PATH prints a list of the names of all of the 0BLISTs in the user’s current OBLLST path.
{L-0BL giom>

L-0BL requires an ATOM and returns an ATOM, the name of the first ATOM's OBLIST. L-0BL isin fact
{GET <OBLIST? atom> OBLIST>

4.1.9. Internal Library Functions
‘There are several internal functions used for scarching libraries (which is, after all, all the Library System
ever does).
(PACKAGE-FIND package:string librantstring?
scarches library for package. |If there is no such PACKAGE or DATUM in library, it returns a FALSE.
Otherwise, it returns a STRING, which is the name of the file containing package.
CENTRY-FIND gniryostring-or-alom [ibrarvcsiring>

scarches library for PACKAGESs containing endry. It returns a FALSE if there are none, otherwise a LIST some

multiple of four clements long, where each set of four elements describes a package containing an ENTRY

with that PNAME. These clements are:

package:string is the PACKAGE being described.

file-name:string is the file-name containing the package.

rpackage?:atom-or-false indicates, if non-FALSE, that the package is in fact an RPACKAGE.
rentry?:aton-orfalse indicates, if non-FALSE, that the cntry is an RENTRY,

{DEFER-FIND package:siring [ibrary:siring>
returns a FALSE if the PACKAGE or DATUM is not found, or a VECTOR of five elements describing the
PACKAGE.

rpackage?:atoimn-or-false indicates, as above, whether the package is an RPACKAGE.
name:siring is the name of the package.

file-name:siring is the file containing the package.

entries:list is a LIST of the PNAMEs of the ENTRYs of the package.

rentries:listisa LIST of the PNAMEs of the RENTRYs of the package.

Program Librarics 41

The ML Programming Environment 7]

This is all the information about the package that the library contains.

4.1.10. Library Maintenance

The PACKAGE called "LUP" contains functions used to modify libraries, and o add, update and delete
PACKAGEs and DATUMs, It should be noted that libraries do not contain the bodies of PACKAGEs and
DATUMs. Rather, they point wo files which contain these,

CLUP-ACT [ibrary:string>

requires one argument, a library specification STRING, and activates the library so specified. If the library
doesn’t exist, it is created. In order to protect the library from loss due to system or MDL crashes, activating &
library for modification copics the library data files and locks the library so that no one clse may modify it
Mudifications are made to the copics, which are renamed back over the originals only when the library is
explicitly deactivated. Obviously, PACKAGES added 1o a library aren’t available, even to the person adding

them. until the library is deactivated.
<{LUP-DCT>

deactivates the currently active library.

<LUP-ADD-PACK package file:string
update?:boolean

datfile-eniry?:boolean?
package-file is a file specification of the file containing the body of the PACKAGE to be added.
LUP-ADD-PACK will find the PACKAGE statement within the file (or complain if it can’t).

update? is optional, and if non-FALSE, it allows the PACKAGE to update an older version of itself,
something which is not otherwise allowed. Note that, since the library points to the file which contains the

body of the PACKAGE. that file should not be deleted later, else the library won't be able o find it

dalfile-eniry? is by default T, but if it is FALSE, no entry will be created in the datfile for this PACKAGE.
Since datfile entries arc gencrally useful only in the compiler (and similar environments), it doesn't do much

good to have them for PACKAGES that are only called from top level (c.g.. FINDATOM).

When adding a PACKAGE Lo the public library, the PACKAGE’s object file should be copied to the
appropriate library directory ("LIBRMn" on I'1'S, or "<MDLLIB>" on ‘T'ops-20) and the library pointed at
that copy of the file. If no library is activated when LUP-ADD-PACK runs, it will activate "LIBMUD:
LIBMUD" or "<MDLLIB>LIBMUD",

41 Program l.ibraries

n I'he MDI. Programming Environment

{LUP-ADD-DATUM ngme:siring
file:siring
update?: boolean>
is analogous t LUP-ADD-PACK, adding a DATUM to the active library. LUP-ADD-DATUM requires (wo
STRING arguments, the name-of the DATUM and the specification of the file which contains the body of the
DATUM. LUP-ADD-DATUM will accept the same optional argument that LUP-ADD-PACK accepts, with the
same meaning and default. The same restrictions concerning the file w hich contuins the DATUM also apply.
¢LUP-DEL package:string>
LUP-DEL requires one STRING argument, the name of & PACKAGE or data set. and deletes that PACKAGE or
DATUM from the currently active library. LUP-DEL does not touch the file containing the body of the
PACKAGE or DATUM.
{LUP-MOVE packapesiring file:string>
causes the file pointer uf package to be changed to point to file. “This is a faster operation than re-adding the
PACKAGE. and it is intended for situations in which an existing library file has been moved for some reason.
{LIB-GC [ibrany:string>
garbage-collects the library in question, if this is required. Garbage-cuollection is occasionally useful since it
causes all the clements of cach hash bucket to live near cach other in the library file, thus improving

performance during searches. [t also allocates some free sturage i cach page of the file.

4.2. The Pure-mapping Library

‘Ihe basic idea behind MDL. purc mapping is to separate out the code part of RSUBRs in compiled
programs. The RSUBRs themselves are kept in a file known as an FBIN (scc 6.3). These RSUBRs do not
contain the code but instead point to a file which contains the code. This scheme has several advantages.
First. the code can be dynamically mapped in when needed. This allows M. to use more code than will fit
in the virtual address space of the machine it is running on. Secondly, since the code is pure it can be shared
between several MDLs using it Finally, the FBIN file itsclf is smaller than a corresponding NBIN file and
therefore FLOADs more rapidly.

In the most basic implementation of FBINs, there are three files: the FBIN, the SAV file (which contains
the code), and the FIXUP file, which contains the information necessary to update the SAV FILE for new
releases of MDL. As is obvious, this entails a lot of files, and potentially a lot of file directorics. The MDL

Pure-mapping Library reduccs this storage overhead by collecting Al of the SAV and F IXUP files together.

The scheme uses two large data bases, cach contained in one file. The data bases arc called "SAV" and

‘FIXUP". These files store all currently cxistent SAVs and FIXUPs for all existing versions of MDL. Each data

Program Libraries 4.1

g

Y L

The MDI. Programming Environment - 73

base is structured like a file system. There is a main 'directory” that points to a number of other ‘directories”,
cach of which points to a number of ‘files’ inside the data base. In this section the word *file” or *directory’ in
quotes refers to an object inside a data base. The files containing the data bases are named (on 1)
"MUDSAV;SAV FILE" and "MUDSAV:FIXUP FILE" On Tenex/TOPS-20, they are
"<{MDL>SAV.FILE" and "<MDL>FIXUP.FILE",

4.2.1. The Demon

While all M s can read from the Purc-mapping Library, there is only one program which can write into
it. This is a maintainér demon which runs once a day to keep the Library updated. This demon can add *files”,

delete *files’, and add “subdircctories” w both data bases.

To Facilitate updating of the Library there is a directory on which to put files to be added us well s files to
indicate what is to be deleted. This is the "MUDTMP* directory on I'TS and the "<MDLLIB>" dircctory on
Tenex/TOPS-20. Any file on it with the sccond name of SAVann or F IXnnn (where nun is a 2 or 3 digit M.
release number) will be added o the appropriate data base, If the files "DELETE SAVS" or "DELETE
FIXUPS™ exist, then they will be used to delete *files” from the data bases. These files must be ASCII files of
the form

filename I [SPACE] filename 2 [CRLF]

An example of a valid delete file is as follows

NCODGE SAVS53
INCODGE SAVS3

The demon will ignore any deletion requests for *files’ not in the data base.

The demon docs its work in several passes. The basic passes are the delete pass, the planning pass, the
update pass, and the salvage pass. The delete pass deletes “files” if either a "DELETE SAVS*™ or "DELETE
FIXUPS™ file exists on its working directory. The planning pass builds a plan file by examining the working
directory and calculating where new ‘files” will be placed in the data bases. 'I'he planning pass builds two files
using a special internal format. These files will be used by the update pass to add “files’ to the duta bases. The
planning pass also cnlarges the data base files as much as necessary Lo accomodate the new “files”. The update
phase rcads the plan files and adds new SAV and FIXUP ‘files’ o the data bases. I a ‘dircctory’ overflows, a
new “directory” is added during this pass, and all the *directorics’ arc recrcated (i.c.. all the ‘files” have to be
rehashed, since they were originally placed in a ‘directory” according to a hashing algorithm based on the
number of “directories’). The salvage pass is used to pick up any free storage that has been Jost through svstem

crashes or lost through holes created during the u pdating of the data bases,

4.2 The Pure-mapping Library

74 'he ML, Programming nvironment

Throughout the entire processing of the data bases attempts are made tv keep the data bases in a consistent
state. "Dircctories’ are updated only after “files’ are guaranteed to be in the data bases. The plan files described

ire used to keep the data bases consistent in case the system crashes while the demon is in the u pdate pass.

A major goal in the design of the data bases is to allow recovery in case of demon errors or system disk
crashes. To this end the data bases arce backed up on tape every other week. (It would be dumped more often
but the file is currently over two million words long). This of course leaves the problem that ‘files’ added to
the data bases between dumps could be lost in a disk crash. To aid in recovery from such a crash, all *files'
added between dwinps are copied to the "MUDRST" directory (on I'I'S) or the "<MDL ., SV>" dircctory (on
Tenex/TOPS-20). Morcover a file is kept listing all the *files” added during the previous week, This file is
cilled "ADDED FILES™. All this information is deleted once the data base is dumped to tape,

4.2.2. User Programs
Occasionally it is useful for a user to list the data base ‘directories’, to see if cortain "files” are in it, and copy

files” out of the data base. DBMAIN is a program which allows the user to do these things.

The following are functions available to the user.

4.2.2.1. Listing Functions

{CLISTF daia-base:string
Is used to list all the “files” in a data base. It takes one optional argument which is the name of the data base
(cither "SAV™ or "FIXUP"). If no arguinent is supplicd, "SAV" is used by default (This is always the
default whenever a function takes an optional argument ﬁpctifying the data basc.) CLISTF prints cach “file’,
its length, and where it is located. The format of a line of listing is as follows:

fml fm2 size block |
where fil is the first ‘file’ name, fi12 is the second ‘file’ name, size is the length of the ‘file’ in blocks (1024
words for SAVs, 256. words for F IXUPs), and block is the block at which the *file’ starts. This is the format
used whenever listing “files’,

LISTF dara-base:string directoriesd
is used to list all the ‘dircctories’ of an entire data base. It takes two optional arguments, the data-base to be

listed. and a specification of which *direciories’ to list. “I'he ‘directories’ may be:
a F IX: list the ‘directory’ specified by the FIX:

aLIST of FIXs: list the ‘directorics’ specified in the LIST:

the ATOM ALL: list all the “directories’ (this is the default).

The Purc-mapping Library 42

I

The M. Programming Environment 15

{FLIST dara-base:siring?
lists free arcas of storage in the data basc. It lists the free storage in the form:

length block 1
where length is the length of the arca of free storage and block is the block number of the starting block. This
function takes one optional argument which is the name of the data base to be examined. At the end of the

listing it will tell the total amount of free storage.

4.2.2.2. Find Functions
{FIND-FILE file:siring data-base:string?
is used to find a specific *file’, It takes as its argument a *file” specification and prints the *file” name along with
the information printed by the listing functions if the *file” exists, otherwise it returns an nbject of type
FALSE. The *file” specification must be of the form:
“dir; fnl fn2"
where dir is cither SAV ar F1XUP and fir/ and fir2 are the first and second "file’ naines respectively.
{SPEC-FIND fui siring cata-base:string>
is used to find all *files” with the same hasic name. disregarding the leading digii(s) which arc added to make
“file’ names unique. It takes one reguired argument which is the fu/ to look for. It takes an optional second

argument which is the data-base to look in. For example the call
{SPEC-FIND "MAIL">

might print:

MAIL S5AV53 B 140
IMAIL SAV53 B 360

4.2.2.3. Other Functions :
{DELETE file:string data-base:string>
allows the user to delete a *file’ from a data base. It takes the same type of ‘file” specification that FIND-FILE
takes. The *file” you specify will be deleted the next time the demon that maintains the data base runs.
<GET-FILE fle:string output:string data-base:string?
allows the user to retrieve a ‘file’ from the data base. It takes two arguments. The first is the *file’ specification

of the file to retrieve out of the data base and the second is the vuiput file you wish to copy it to.
{STATUS>

gives the information about the state of the data bases. 1t tells the number of *files’ and the amount of free

storage in cach data base. STATUS takes no arguiments.

43 The Purc-mapping Library

T6 ' 'I'he M. Programming Environment

4.2.3. Using DBMAIN
There are several ways to use DBMAIN. It can be used by typing
:DBMAIN function argl ... argn
to DDT. ‘The jekline is of the form fimction argl ... argn, where function is the name of the function t be used.

For example
:DBMAIN FLIST "FIXUP"®

will list the free storage block for the "FIXUP™ data basc. DBMAIN will kil itsclf after finishing and can be
killed carlier by typing *S.

'T'he jel-line mentioned above can be modified to allow output to be routed to a file. "This can be done by

preceding the normal jel-line with a string specifying the file name of the output file.
:DBMAIN "LISTOF SAVS™ CLISTF

will produce a listing of the files in the SAV data base and will print this information to the file "LISTOF
SAVS".

4.2.4. Garbage Collection

One problem of the MnI. Pure-mapping Library is that many uscless SAV and FIXUP ‘files’ remain as new
revisions of user programs are created. To alleviate this problem there is a garbage collection system for the
data bases.

The major goal of this scheme is to determine which “files” in the data bases are no longer uscful. To do
this all files in the system are scanned to sce what SAV files are still pointed to (nof including those pointed to
only from within 1TS archive files). A SAV ‘file’ can be pointed w from FBIN files and SAVE files. A SAVE
file contains pointers in its PURVEC (Purc VECTOR). Al FBIN files should begin with something of the form

"{PCODE file:string>
where file is the name of the SAV *file’ associated with this FBIN. If an FBIN has morc than one SAV *file’
associated with it then there can be several PCODE FORMs at the beginning of the file. For purposes of
garbage cullection, this FORM (or FORMs) must be retained whenever an FBIN file is edited. If these PCODE
FORMs disappear, their pointers to the SAV ‘files’ will go with them, and the SAV “files” might be garbage
collected.

Garbage collections proceed by looking at every file on the disk, building a list of all ‘files’ pointed to. The

program then cxamines the data bases and any ‘files’ which arc not pointed to are deleted.

It is possible that deletions can fragment the free arca in the data bascs. If compaction becomes necessary,

The Purc-mapping Library 4.2

The MDI. Programming Fnvironment 17

there exists a routine to do in-place compaction of the data bases,

4.2.5. Internal Structure

The "SAV" and "FIXUP" data bases have similar formats. The *files’ in the data base are pointed to by
entries in what is essentially a hash table. Associated with cach data base is a main ‘directory’ (the hash table).
This "directory” is located in the first 1024 words of the file. This main *dircctory” points to other ‘directories’
in the data basc (the hashing buckets). Fach of these ‘directories’ is 1024 words long. The first ‘file’ name is

used Lo determine which ‘directory’ the *file” is on. The structure of the main ‘directory” is as follows,

word 0/ number n of entries in the main ‘dircctory’
words 1-n/ block number of each ‘dircctory’

There can be up o 1023 “directorics” and cach of these can contain approximately 500 *files”. This provides a
virtually unlimited ‘directory”,

Word 0 of cach ‘directory’ gives its length in words. From Word 1 on are ‘directory” entries. All entries
have the same two word format The first word contains the the first “file’ name in SIXBI T. The second word

contains the following ficlds:

length of the *file’ iu blocks (a block for a SAV *file” is 1024 words long while a block for a F IXUP *file’ is 256
words long) (bits 1-6)

version revision of MDL this *file’ belongs to (bits 8-17)

block in the data base where this *file” starts (bits 18-35)
The *directories’ are sorted by strict numerical order (e.g., AAA SAV53 comes before 1AAA SAV53).

Fach data base contains a free Storage table. This table occupies the second 1024 words of the data base.
The first word of the table is the number of entrics in the free storage table. The remaining entrics define
arcas of free storage. These arc of the form

length, | block
where length is the number of blocks for this free arca, and block is the block number at which it starts.

There are two major differences between the " SAY™ data basc and the "FIXUP" data base. The first deals
with block sizes. In the *SAV" data base the block size is 1024 words. In the "FIXUP" data base the block

size is 256 words. This smaller size allows for more compaction of these small *files',

The second major difference is that while there can be many versions of the same *file” in the "SAV" data
base (c.g. NCODGE SAV53 and NCODGE SAV54), there can only be one version in the "FIXUP" data base.

42 The Pure-mapping Library

78 ‘The MDL. Programming Environment

‘I'his will be the £ TXUP *file’ most recently added. The corresponding SAV “file” fur this FIXUP "file" should
exist to allow the SAV file to be updated for future Mbi, revisions,

‘I'he Purc-mapping Library 42

The MDIL. Programming Environment 79

5. The Compiler
The purpose of the MDL compiler is to transform interpreted ML code into assembly language. The
compiler comes in several incarnations for various purposes.

PCOMP is a program which runs the ‘installed’ compiler - that is. the one which is most debugged, supported,
and otherwise official. The "P* stands for ‘purified,’ incidentally.

NPCOMP is a program which runs a newer, less well-debugged compiler, if there is one. NPCOMP is often
where development work of one sort or another is being debugged.

The *Bach Compiler,” often called CoMBAT, though strictly speaking the name refers w a different program
(see section 5.2) is o program that compiles, at night, those compilations that have heen qucucd for it.
The remainder of this chapter describes the specifics of interaction with the compiler, including u section on

its internals.

2.1. Interfacing to the Compiler

The operation of the MbL. compiler is controlled by a few very high-level functions and a sometimes
bewildering array of ATOMs whose values are switches and data. ‘I'his section will describe cach such ATOM
and its use. The reader should bear in mind that in the normal case he will he using COMBAT to set up his
compilations and thus will not have to deal dircctly with these ATOMs and calls,

5.1.1. Compiler Functions

CCOMPILE source:function-orlist output:channe
is the lowest level call to the compiler. 1t compiles exactly one FUNCTION (or a LIST of them) and prints the
generated code on the CHANNEL given as the second argument. COMPILE is used primarily for compiler
debugging,

CFILE-COMPILE fnpurstring owlput'string
FILE-COMPILE auwempts to provide a convenient interface between the user and the compiler. The user
simply gives FILE=COMPILE the name of an input file, and it can do all the rest. ‘The user may specify other

information about output files, compiler modes, ctc., but if he doesn't, reasonable assy mptions are made,

FILE-COMPILE works in the following way. First it reads in the input file and collects into a LIST the
names of all of the defined FUNCTIONs that it finds. It sorts this LIST based on which FUNCT TONs call
which other FUNCTIONs. ‘The FUNCTIONs which call no other FUNCTIONs are at the beginning of the
LIST, followed by those that only call FUNCTIONs that call no other FUNCT IONs. and so on. Groups of
FUNCT IONs that arc mutually recursive are collected in LISTs subordinate to the main LIST.

50

80 ‘I'he ML, Progrumming Environment

Fach FUNCTTON will produce a separate RSUBR. COMPILE is called successively on cach member of the
LTIST of FUNCTIONs, LISTsof mutually recursive FUNCT 10Ns arc also passed to COMPILE,

After cach FUNCTION or LIST of FUNCTIONs is compiled, the resulting RSUBR is wrilten into a
tempuorary file o enable more convenient crash recovery, This file is written in such a way that, no matter

when the system crashes, the contents of the tempurary file are guaranteed to be in a consistent state.

When all is compiled, FILE-COMPILE writes out an output file which is identical to the input file cxcept
that all FUNCT 10Ns have been replaced with their compiled counterparts, If any of the FUNCTIONs did not

compile due to programmer €rrufs or compiler bugs, those FUNCT10Ns arc left unchanged in the output file.

During its operation, FILE-COMPILE maintins a "RECORD* file which contains all of the messages,
wiurnings and error messages produced by the compiler. It may optionally produce a listing of the object code
produced, in MDI assembler format, ‘Ihis is primarily useful for compiler debugging. (Note that a somewhat

less complete listing may be made at a later time. See section 7.3.)

On I''S. FILE-COMPILE usually runs as a demon called COMBAT ZOME. In this case anuther interface
called FCOMP resides above FILE~COMPILE, ‘I'his interface reads files that are compilation specifications
and passes them to FILc-COMPILE.

CFCOMP %. INCHAN juput-file putput-file>

As must compiler usage is based on COMBAT plan files, FCOMP is the most-scen driver of the compiler. (Note
that the % in front of . INCHAN causcs the CHANNEL the PLAN file is being read from o be passed as one

argument to FCOMP.)
<STATUS>

is an informational function; it tells how far the compilation of a given group has progressed, which
FUNCTION is being worked on, and how many FUNCTTONs remain to be compiled. It also prints the
accumulated real time and cpu time since the beginning of the compilation. Obviously, you must *G the
compilation to usc it, but see section 8.3,

5.1.2. Compiler Switches
The calls to the various compiler drivers are rather short. for the simple reason that the controlling

information is passed to the compiler as the LVALs of a set of ATOMs,

Interfacing to the Compiler 51

The ML Programming Environment 81

{SET DEBUG-COMPILE!~- bovlean>
(by default FALSE) causes the compiler generate extra information about what it's doing. ‘This information
is in the form of ‘warnings” produced when the compiler was forced to generate less than optimal code. For
example, Invocations of the arithmetic SUBRs can be open-compiled if the variables used can be determined
i be exclusively FIXes, ‘The debugging compiler will warn you if it is forced 1o resort to less efficient
arithmetic calls,

C(SET PRECOMPILED!- file:string
Often, a file of FUNCTTONs has been compiled before, and now only a fow FUNCTIONs have been updated
and need o be compiled-again. Most of the file is already correctly compiled; it is quite wasteful to recompile
the entire thing, Ifa PRECOMPILED is given, the file is loaded hefore compilation; any functions which have
corresponding RSUBRS in the precompilation, and which are not on the REDO list, are not recompiled, It is
appropriate w specily the temporary file as o precompilation if your previous compilation was interrupted by
a system crash,

<SET REDO!- list-ofatoms>
REDOisa LIST of FUNCTION names to be recompiled, regardless of whether or not they are compiled in the
precompilation. In conjunction with PRECOMPILED and PACKAGE-MODE, REDO allows compilation of
precisely thuse FUNCT IONs which have been changed since the last compilation. Note that CoMaT will set
up these values more-or-less automatically in most situations.

(SET PACKAGE-MODE!- siring>
This should be the name of a PACKAGE, which is assumed to be the PACKAGE being compiled. FUNCTION
names in the REDO LIST will be lovked up in the appropriate PACKAGE OBL ISTs if this flag is set, thercby
saving some typing of trailers.

CSET TEMPNAME | = file:siring>
The compiler writes intermediate results to the temporary file, which is normally the file " sname; fim >* on
I'T'S. where fiant is the first name of the input file. 1t is rarcly (if ever) necessary to change that default

<SET SOQURCE!~ file:string>
Setting this switch causes the compiler to write out the assembler input it generates. ‘This is sometimes useful

for compiler debugging. On I'TS, such output normally goes to * sname; S SOURCE™, where fimm is the
first name of the input file,

CSET SPECIAL!=- Doolean>
The compiler normally assumes that variables which aren’t declared SPECTAL aren’t SPECIAL, This means
that they will be available only to the RSUBR in which they are declared: SPECIAL variables are bound on
the control stack, just as all variables are in interpreted code. If this Mag is T (by default FALSE), all variables
will be assumed to be SPECIAL unless declured otherwise. This is analogous to SPECIAL-MODE being

5l Interfacing to the Compiler

82 ‘ ‘The MDI. Programming Environment

SPECIAL, and it is not recommended that any code be written using this convention,

<SET EXPFLOAD!- boolean>
If true, FLOADs in the file being r.:nmp'lh.':;l will be expanded at load time: what was FLOADed before will be
treated as part of the file. EXPFLOAD is examined by GROUP~LOAD, and not the compiler itself. The default
is FALSE.

{SET EXPSPLICE!- boolean>
[f truc, objects of type SPLICE (primtype LIST) which are encountered in the course of EVALing the forms
processed by GROUP-LOAD will be spliced directly into the group: it is therefore a lot like EXPFLOAD.
EXPSPLICE is examined by GROUP-LOAD, and not the compiler itsell. “I'he default is therefore FALSE. Its
only known use has been to make functions at load time and have them compiled.

CSET CAREFUL!= Dooleand
Defaults w T. If FALSE, the compiler will omit most of the bounds-checking code it normally generates for
NTHs. PUTs. and so on, ‘This obviously will make the compiled code run faster, but also makes debugging the
compiled code nearly impossible.

¢SET REASONABLE!~- Dboolean>
Defaults to T. If FALSE, the compiler will gencrate reasonable code only if everything ever called from the
functions being compiled is loaded into the compiler. A call to a function not loaded produces an EVAL of a
FORM, thereby ensuring that such constructs as "CALL" in the called function will work corrcctly. This is

admittedly pretty unreasonable (if not paranoid), whence the name of the switch.
¢SET GLUE!- Dboolean>

Defaults to T. IF FALSE, the compiler will not generate GLUE bits. As you always want GLUE bits, there is no

reason to ever change this.
¢SET MACRO-COMPILE|- boolean>

Defaults to FALSE, If non-FALSE, the compiler will compile MACROs into RSUBRs. This doesn’t change
anything produced by macro expansions, but does cause the expansion to speed up. Since the compiler
expands the inacro and then compiles the expansion, this is rarely uscful,

<SET MACRO-FLUSH!- boolean>
Defaults to FALSE. If non-FALSE, MACROs which appear in the file being compiled will not appear in the
resulting NB IN. This saves space, at the expense of making debugging harder,

{SET MAX-SPACE!- buolean>
Defaults to FALSE. If non-FALSE, the compiler Nushes from core most of cach RSUBR once it has been
compiled; only the DECL is needed to help compile other functions. Since the entire RSUBR is written out in
the temporary file, no information is lost. This can, for compilations which are too large, result in

considerable improvements in speed, primarily because more space is available in the ML and less time is

Interfacing to the Compiler 5.1

‘Ihe ML, Programming Environment 83

spent in the garbage collector.
<¢SET HAIRY-ANALYSIS!~ boolean
Defaults w T. I this is not set, the compiler will not perform the complex type checking it usually does, IF

HAIRY -ANALYSIS is FALSE, the code will be generated faster, as type-analysis is expensive, but will not
exccute as fast.

5.2. COMBAT

The usual method of dealing with the compiler is through the program COMBAT, whose specialty is the
preparation of *plan files” to be loaded by the compiler. COMBAT is a program which knows about each of the
previously described compiler switches and the interactions among them. 1t has an easy-to-use interface, an
ability to store commonly used “plan files’ as compilation fypes. and in general is designed to make using the
MDD compiler a less-cumbersome task,

5.2.1. Userinterface

Comnat’s user interface is patterned after, though not identical w, a CALICO interface [1]. In particular, it
CApeCts in response o any given prompl a particular type of input from the user, which may he a file name, a
'symbol’, or text. Ordinarily, the tvpe of input expected is indicated by the “syntactic prompt’ which follows
the normal prompt; this is one of "(FILESPEC)', *(SYM)', and '(TEXT), The *Toggle verbosity' compilation
type turns the printing of the syntactic prompt on and off, and causes a tilor file to be written out when used.

A number of special characters are defined for any of these types of input
1@: Clears the input buffer, as in MDL
tD: Redisplays the input buffer, as in MDL.
tL: Clears the screen and redisplays the input buffer, as in MDL,

1G: When given as the first character of an answer, allows one to get the answer from a user-defined type.
See the section on tailoring.

1Q: Has special effects when a compilation plan is being made (see below). See also the section on file name
input.

tR: Causes COMBAT to ‘back up’. Typically this means go to the previous question asked, but in certain
maodes it may have a slightly different effect. When a Mubcom is running, this kills it and backs up to the
last question asked,

150 Abnormally ends whatever is being done, and returns (o the “I'ype of compilation’ question, If a
MuDCOM is running, it will be killed. When a long compilation plan (‘How to run’ is ‘Many') is being

3.l Interfacing to the Compiler

84 ‘The ML, Programming Environment

made, the portions already made will be saved. See the *Flush many’ com pilation type.

7: When given as the first character of an answer, this causes a more detailed deseription of what is expected
1o be printed, along with the current default and how to obtain it

\: ‘I'his quotes whatever character follows it, including DEL, ESC. cte. 1t does not have the effect of quoting
strange characters in file names: sce the section on file name input. \, used as a quote character, never
echoes, and cannot be rubbed out.

In addition, when the syntactic prompt is (SYM), F is useful (sec below).

5.2.1.1. Symbolic input
If you are familiar with CALICO, this scction can probably be skipped. When entering symbaolic input,
one need only type the characters required to uniguely specify the desired choice: the interface will complete

the response. and in addition can display the available chuices at any point.

SPACE completes the response as far as it ean. If the response is uniguely specified, it will be displayed in
its entirety. followed by *1° if more than one choice is still possible, then the portion of those choices which is
unambiguously specified will be displayed, followed by "&'. For instance, if 'Expand Noads™ and *Expand
splices’ are among the choices, and ‘Ex SPACE' has been typed, ‘Expand &' will be displayed if the "Fx’

reduces the choices o those two.
In some cases, if SPACE is the first character typed, it will seleet the default (first) cheice and terminate.
When F is typed, all remaining choices will be displayed.

To terminate responscs in this mode, cither ESC or CRLF may be used. In cither case, the current
response is completed as far as it can be. 1 only one choice then remains, the answer is terminated and the

single choice will be used, 1f more than one choice is possible, it is just as if SPACE had been typed.

Typing ESC or CRLF before any ather characters have been entered causes the default answer o be used.

5.2.1.2. File names

File names are expected in the standard dev: sname; fuamel foame? format on I'1S: on Tenex/TOPS-20,
standard file nume recognition is used. ‘I'ypically, typing simply ESC or CRLF answers "no’ to the question,
while SPACE ESC says ‘use the default’. In certain special cmll'lnpul file’ and 'Outpul file'), when some
answer to the question is imperative, the default will be used in either casc. File names should not be
surrounded by quotes in this mode; they are not ML STRINGs!

COMBAT 5.2

The MDI. Programming Environment 35

Itis riher painful to get funny characters (such as SPACE) into file names. When the file-name parser
sees i Q. it uses the following character in the name being generated regardless. Unfortunately, the tQ must
be guoted w get it past the reader, since it hﬂs‘ﬁpmiai effects in the normal case. Thus, the file name given to
MDL as "TAA; FOO >" has to be typed to COMBAT as TAA :\tQ FOO >.

5.2.1.3. Text

Textis just that: relatively arbitrary characters, terminated by ESC. Since CRLF is allowed in text it docs
not terminate input. Text type input is used in a number of cases where it isn't quite appropriate, such as the
Redo list” and "Package mode” questions. If it is known that the expected response is a LIST or STRING. as
in those cases, the appropriate brackets or quotes should neor be typed.

5.2.2. Combat Questions
This section discusses the questions that can be asked of the user during the preparation of a CoMBAT plan
file, which is FLOADed by the CoMBAT demon or by PCOMP to effect a compilation. ‘I'he perceptive reader
will notice a strong resemblance 1o section 5.1.2, in which the switchos relevant w the compiler are listed.,
Questions asked by the pre-existing compilation types ("Verbose” and “Short’) are so indicated. ANl questions
are available in user-defined compilation types (see section 5.2.5).
‘Sname’; sets the default directory for questions that want a file name as an answer; also causes the FORM
CSNAME sname>, where sname is the answer given. to be included in the plan. This sets the default

directory for files referenced by the compiler; it also causes the temporary file (see below) to go to the
sname directory,

"Use new compiler? (Verbose and Short): specifies whether the ‘new’ compiler or the ‘old’ compiler should
be used. Often, when there is only one compiler, this question will not be asked. If answered
affirmatively, it causes the FORM

<OR <GASSIGNED? EXPERIMENTAL!=> <NEWCOMP|->>
tw be included in the plan. This FORM will load a new compiler on top of the old if necessary,

‘Debugging compiler? (Verbose): causes DEBUG-COMPILE | - o be set to T, which causes the new compiler
o generate extra information about what it's doing. This currently is asked only if the new-compiler
question is answered affirmatively.

‘Input from® (Verbuse and Short): the file to be compiled. This appcars in two places in the plan: as
CSETG COMBAT!- inpul-file>
and in the call v FCOMP described below,

‘Qutput to’ (Verbose): the file name to be used for the NBIN. The default is the input file name, with NBIN as
the second file name instead of whatever it was for the input. 'This completes the call to FCOMP that ends
every plan:

5.2 COMBAT

36 ‘I'he MDL. Programming Environment

CFCOMP %. INCHAN inpur-file outpui-file>
This call is what actually invokes the compiler.

‘Precompilation from' (Verbose): specifics a file containing previously compiled version of the input file.
Any FUNCTIONs which have corresponding RSUBRS in the precompilation, and which are not on the
‘Reda' list, are not recompiled. [t is appropriate tw specify the temporiry file as a precompilation if your
previous compilation was interrupied by a system crash. Scits PRECOMPILED! -,

"Compare with' (Verbose): This question is asked only if a precompilation file is specified. If answered
afMirmatively (user types cither SPACE ESC or a file name) MUDCOM (sce section 8.1) will be run with jel
of the input file name, and the file nume provided here (the default is as for precompilation), plus some
extra stuff specified below, 1 °FO0 NBIN' is given here. then Muneom will Took for the newest revision
of FOO which was created before the NBIN, Muncom determines which FUNCT LONs in the file have
changed and therefore need to be recompiled. It also determines whether the file is a PACKAGE, and
answers the "Package mode’ question appropriately. 1S therefore nut usually necessary for the user to
answer the *Redo’ and *Package mode’ questions directly.

‘Check macrus? (Verbose): asked only if *Compare with' is answered aMfirmatively. ‘This adds */M° to the jel
passed 10 MUDBCOM, which causes it to check for MACROs and MANIFESTs which have changed: if a
FUNCTION uscs o MACRO or MANIFEST which has changed, the FUNCTION will be listed os changed,
Muncom does not normally check for this,

‘Extra JCL' (Verbose): asked only if *Compare with' is answered affirmatively. Whatever is supplied here will
be passed to MUDCCM as jel, before the files to compare, ‘I'his can be used t load macro files; see section
8.1,

“Redo’ (Verbose): asked only if a precompilation file was given, Takes a bunch of FUNCTION names, which
will be recompiled. Note that the names supplied here will be appended to the list returned by MUDCOM,
il uny, and that duplications in the list are ignored. Scts REDO 1 -,

‘Package mode’ (Verbose): asked if a precompilation file was given and MUDCOM was not run (MUDCOM will
st this if run). ‘T'his should be the name of a PACKAGE, which is assumed to be the PACKAGE being
compiled. FUNCTION names in the “Redo’ list will be looked up in the appropriate PACKAGE OBLISTS if
this flag is set, thereby saving some typing of trailers. Sets PACKAGE -MODE! -,

“Temporary file o' The compiler writes intermediate results to the tempuorary file, which is normally

*sname; fnamel > (on ITS)
"¢ sname 3 fhame. TEMP™ (on Tenex/TOPS-20)

You may change that by answering this question; there s rarcly a good reason to do so, Sets
TEMPNAME | -.

'Source file o' ‘The compiler can be caused to write out the assembler input it generates by answering this
question. Assembler output normally gocs to

COMBAT ¥

The ML Prograniming Environment 87

"sname; fnamel SOURCE™ (on IT$)
" Csname? ; filame . SOURCE™ (on “I'enex/10PS-20)

which is the default for this question; another name may be provided if desired. Sets SOURCE | -,

‘Special?: The compiler normally assumes that variables which aren't DECLed SPECTAL aren't SPECTAL. If
this fag is T (defaults o FALSE), all variables will be assumed to be SPECTAL unless declared otherwise.
Scis SPECIALL-.

‘Expand foads?": (Verbose) IF true, FLOADSs in the file being compiled will be expanded at load time. Sets
EXPFLOAD! -,

‘Fxpand splices?": IF true, objects of type SPLICE (PRIMTYPE LIST) will be expanded and inserted into the
group. Seis EXPSPLICE! -,

‘Carelul?': (Verbose) By defuult T, but if FALSE, the compiler will omit most of the bounds-check ing code it
normally generates for NTHs, PUTS, and so on. ‘This obviously will make the compiled code run faster: it
also makes debugging the compiled code nearly impossible. Scts CAREFUL] -,

Reasonable”: By default T, but if FALSE, the compiler will generate reasonable code only if everything you
call from the functions being compiled is loaded into the compiler. Scts REASONABLE | =,

Glue?: Iy default T, but if FALSE, the compiler will not gencrate GLUE bits. There is no good reason to
ever answer this, Sets GLUE | -,

‘Macro compile?: By default FALSE, but if true, the compiler will compile MACROs, Scts
MACRO-COMPILE | -,

‘Macro flush?: By default FALSE. but if true, MACROs which appear in the file being compiled will not
appear in the NBIN, Scts MACRO-FLUSH! -,

‘Max space?: By default FALSE, but if true, the compiler Mushes from core most of cach RSUBR once it has
been compiled: only the DECL is needed to help compile other functions, ‘Ihis can, for compilations
which are very large, result in considerable improvements in speed. Scts MAX=SPACE | -,

'First things to do’, “Ihings to do’ (Verbose), ond ‘1.ast things to do’: It frequently is necessary to perform
some actions before a compilation can be run: definitions files must be loaded, special environment setup
might have to be performed, and so on, Al three of these questions are designed to allow that; whatever
you supply is put out afier everything else in the plun but before the call to FCOMP, ‘There are three
questions, instead of one, o allow some things o be specified in a wilored compilation type, while others
are provided at compile time, or pussibly from another tilored type. “I'he three questions do not depend
on each other; they are asked in the order given here, and the answers appear in the plan in the same
order.

5.2.3. Requesting Compilations
The first question asked by CoMBAT s “Type of compilation’, In addition to a number of special
possibilities described later, there are two answers to this question (in addition to any provided by the user

5.2 COMBAT

88 ' The MDI. Programming Environment

through the tailoring facility) which request pre-defined tailored compilation types. These are *Verbose' and
‘Short'.

"Verbose' causes all the normal questions to be asked: ‘New compiler?, ‘Input file’, *Precompilation’,
switches, “Iings to do’, and so on, 'Short’, an the other hand, defaults the answers to all questions except

‘New compiler?’, *Input file’, and ‘"How to run’,

When requesting a compilation, one may type tQ at any time. This has the same immediate effect as an
ESC, but in addition causes all questions between the one just answered and the “Things to do” question to be

defaulted. This is particularly useful in the *"Verbose® sequence of questions.

If"Many' was given as ‘How to run’ for a previous compilation request, and the resulting plan has not yet
been written out, subsequent plans will be appended to it Using "Many™ will sometimes effect a major
savings of time if several compilations wish to perform the same environmental setup; if they USE many of
the same PACKAGES, for example. When using "Many® in combination with predefined compilation types, it
is useful o remember that whatever is specified under "Things to do’ may end up being performed for cach
plan. You might modify your compilation types to reflect this, or alternatively, edit the plan file produced by

COMBAT to remove redundant operations.

The only way to get rid of the ‘Many' plan is to answer ‘Many flush’ o the “Type’ question, Typing *+S or
answering ‘Abort’ to the "How to run’ question will abort the current portion of the *Many’ compilation, but
not the whole thing,

If ‘Many' was mistakenly given as "How to run’, and you don’t wish to destroy the plan you have
generated, it is possible to (in essence) go back to the "How to run’ question by answering "Many print’ for the

compilation type. In this case, you are not back in the plan-making loop; tR acts just like t5.

tR, here, backs up to the last question asked. ‘There are two qualifications, First, if +Q has been typed,
then it backs up to the last question that would have been asked if +Q had not been typed. Second, the four
questions "Precompilation’, "Compare’, ‘Redo’, and "Package mode’ are treated as a group: if the ‘Package
maode” question has not yet been answered, it is possible (o back up normally: but once that question has been
answered, backing up to it will go to the first member of the group, 'Precompilation’,

tG allows one to obtain the answer to the current question from any user-defined compilation type. It
requests a type name, and uses the answer or default supplicd therein, printing the information so obtained,
The +6 must be typed as the first character of the answer for this to occur. This allows one to use parts of a

COMBAT 5.2

The ML Programming Environment 89

defined type without cither using the type itself or allering it for the occasion, For “Text’ type input (such as
“Things to do’). the string is placed in the input buffer but not completed, so it may be edited before an ESC is
typed. Sce also the “Xerox type' command.

Note that there is a distinction made between ‘Compare’ and *Redo’: the former causes a MUDCOM to be
run, and the latter asks for the names of FUNCT IONs to be recompiled. It is possible to do both, in which case
the two groups of FUNCT IONs are appended to form the *Redo’ list for the compilation. Note also that if a
MuCoM has been run, the "Package mode’ question will not be asked, since the answer is supplied by the
MuCOM, Either R or +5 may be used to kill a running MUDCoM.

One of the responses to the ‘Tlow to run’ question is ‘Abort’, which returns directly to the “I'ype of
compilation” guestion without writing out a plan, starting up a PCOMP, or anything clse. Its effect is exactly
that of o 5. In partieular, if you are making a long plan, only the portion just completed, nof the entire
compilation, will be aborted,

It is also possible at the ‘How to run’ question w supply an answer to any of the compilation questions
(Input file, ete.). ‘The "Question’ response asks for the name of a question, then asks that question. Any
number of questions can be asked in this manner, one at a time. ‘This is particularly useful for flling in the

blinks left by a "Short” type compilation, or by user-defined compilation types.

When a compilation request has been finished, CoMBAT normally loops back to the “T'ype of compilation®
question, but changes the defiult from "Verbose” to "None' (meaning "Quit’), unless another compilation may
reasonably be expected, Thus, one may leave by typing a single ESC.,

It is possible o modify CoMBAT's behavior such that it cither kills itself after finishing the compilation
plan, or loops back with "Verbuse™ us the default for the “Type of compilation’ question,

COMBAT first decides whether a long compilation plan is being made; if so, the default remains ‘Verbose.!
If not, it then examines the current compilation type: if ‘Another compilation? has been set to ‘Yes', the
question will be asked with default ‘Verbose'; if it has been set to ‘No', Comnat will kill iself: if w *Ask’,
further consideration is required.

If the user is in "Multipke” mode (the ‘Multiple' compilation type). the type of compilation will be asked
with the "Verbose' default. Otherwise, CoMmBaT examines the state of two tailorable switches, set by the
‘Another compilation? compilation type. 17" Another compilation? has been set to ‘No', CoMBaT will die: if
o "Yes', the type question will be asked with default ‘Verbose'; if to 'Ask’, the type question will be asked

5.2 COMBAT

AN ‘I've ML Programming Environment

with default *None', Mormally this is ‘Ask'.

Note that "Another compilation? is like "Toggle verbosity’ in that it will have no effect unless user-defined

compilation types exist.

5.2.4. 'How to Run’ Options

“I'here are four options available when answering the ‘How to Run’ question which determine where your
plan file will be written and when the compilation it specifies will be run.
‘Pcomp’ places the plan file on the ¢SNAME> directory, and names it "PCOMP >". Additionally, COMBAT

will start 1 PCOMP (or NPCOMP, as appropriate) process if it is exited after writing « PCOMP file. ‘Pcomp’ is
the standard method for running a compilation in one’s own process,

"COMBAT writes the plan file (o "COMBAT : PLAN >". ‘The coMbat demon successively compiles all such
plans at night, informing the persuns who submitted them of the result.

‘Waste' is like ‘COMBAT, except that the plan is written v "COMBAT ;WASTE >". ‘The "wiste’ queue is only
run after midnight, which is usually sufticient for those who are doing ‘overnight’ compilations, ‘Waste’
is the answer used by default for "How to Run’,

‘F11e’ places the plan file on the ¢<SNAME> dircctory, and names it "PLAN >". ‘I'his means that it will not
be run until you explicitly load it into a compiler process,

5.2.5. User Tailoring

It is often the case that a particular file is compiled quite often, or that some sequence of actions must be
performed as the “IMings o du' before many compilations. CompaT allows the user to define his own
‘Compilation types', each of which specifies exactly those questions which should be asked and the answers
for those which should not, For example, one could have a type named "Fsign', which says that the input file
is always "SEND;ESIGN >" and in addition provides for the FLOADIng of two files in "Things to do'.
Further, since most questions are defaulted, one might choose to answer only those questions which are

interesting, such as ‘Precompilation’, 1t is also possible to supply a default answer for a question which will be
asked.

In addition, there are some questions which are not asked by the *Verbose' compilation type, but which
nevertheless are available to user-defined types. ‘These are: "Macro compile’, ‘Macro Mush’, ‘Max space’,
'Expand splices’, "Special mode’, "Glue', and others,

One can select any of one's own defined compilation types as an answer to the "T'ype of compilation’
question, just like ‘Verbose' and *Short’. Except that the questions asked may differ, user-defined types are

COMBAT 5.2

The MI2L. Programming Environment 91

identical to the predefined types.

5.2.5.1. Tailor files

User-defined types are saved (and loaded) from the file " sname; ﬁ.tﬂHBT TAILOR", It is possible to load
other tailor files, but the "%COMBT" file in sname is loaded during startup. “Tailor files are quite similar to
M. GC~DUMPed files and thus cannot be edited other than with COMBAT.

5.2.5.2. Create type

This special compilation type requests a name for the type being made, then enters a loop with the prompt
'‘Question’. One mﬁy choose any of the available questions, and cither supply an answer or (by default)
request that the question be asked when a compilation of this type is being submitted. Note that only the
How 1o run® and the following “I'ype of compilation?” questions will be asked unless others are explicitly

supplied; but one may supply answers to "How to run’ when creating a type.

In this mode, tR will return to the *Question’ loop if one is about to supply an answer; otherwise, it returns

tir the “I'ype of compilation’ loop, aborting the type creation.

G behaves exactly as it dues in the normal loop. To indicate that one is Minished. one should answer 'Finis'
to the "Question’ prompt. It is possible to supply several different versions of the answer to a particular
question: the last one given will be used, One may wish o default a particular question, after specifying that
It was to be asked or after supplying some different default. This may be done by answering ‘Delete question’
t the "Question’ prompt, whereupon one will be asked for a particular question to ignore. I'his question will
then be completely ignored. Note that all interesting questions are initially in this state.

There is also a ‘Set question default’ "Question’. This requests a question name, then asks the user to
supply an answer. ‘The question will be asked, with the default supplied, ‘Ihus default settings of switches can
be changed, and onc can supply a file name for the precompilation while stll being asked whether
precompilation is desired. Unfortunately. user-supplied defaults for “I'ext™type questions are used if ESC is
answered; to get rid of the default, type SPACE ESC. Note that this is exactly the inverse of the convention
for defaulting file names,

When "Finis* has been typed, a new copy of one’s tailor file is written out. This may, in combination with
‘l.oad tailor’ and ‘Replace tailor’, have undesirable side effects.

5.2 COMBAT

92 The ML, Programming Lnvironment

5.2.5.3. Print type

‘T'his requests the name of one of the types currently loaded, and prints out for it all questions which either
will be asked when a compilation is being submitted or which have user-supplied defaults, T a particular
question has been globally ‘turned ofF (such as the "New compiler? question, when there is no new compiler),

an asterisk will be printed on the appropriate line to indicate that the information there is currently not used,

5.2.5.4, Delete type
This requests the name of one of the currently-loaded types. iind deletes it. A new copy of the tailor file is

written vul. so all trace of the type will vanish when this command is used.

5.2.5.5. Alter type
This requests o type name, then becomes identical w "Create type’, except that some questions alrcady
have answers, Again, “IFinis’ must be typed o leave the loop and cause the modifications o he filed: typing

tR or +S will leave the Toop, but the madifications will be forgotten.

5.2.5.6. Load tailor, Replace tailor

Both of these request a file name, defiulting to the last one used for either a 'Load tailor’ or 'Replace tailor’
command. Initially this is "sname; SCOMBT TAILOR". ‘load tailor” appends the types defined in the
specified file to those already luaded, while "Replace tailor” irst throws away those already loaded. ‘The types
defined in this way are not distinguished from those loaded from one’s own COMBAT tailor file; in particular,
using "Toggle verbosity’ or any of *Create’, *Alter’, and “Delete type” will cause all the types currently loaded to
be written out to the COMBAT tailor file. [If, therefore, one has done a *Replace tailor®, one can casily lose all
of one’s own types in this manner. l.c., itis very casy to destroy yourself,

5.2.5.7. Xerox tailor

This requests the name of an existing user-defined type, and a new type name. The new type becomes an
exact copy of the previously-existing type. This is particularly useful when vne has several different types
which do almost the same thing,

5.3. The Compiler (Internals)

The compiler’s job is to take a M1 FUNCTION or group of FUNCTIONs and produce an operationally
equivalent machine<language subroutine (RSUBR) using whatever information can be extracted from the
suurce code and whatever additional information the user wishes to supply. ‘I'he efficiency of the output code

produced is dircetly proportional to the amount of information supplied by the programmer and inversely

COMBAT 5.2

Ihe ML, Programming Environment 9]

proportional to the generality of the source program,

The information supplied by the programmer is usually in the form of optional data-type declarations
(DECLs) and the use of programmer-defined data types (NEWTYPEs) that have built-in declarations. Unlike
miny programming languages. however, declarations are never required. The compiler will compile
programs with no declarations at all, but the resulting output will not run as fast as with well-declared code,

The current compiler can achieve speed-up factors of anywhere from about 4 1o 100, The factor of 4
represents the speed-up fora very general program with very poor declarations. On the other hand, the factor
of 100 represents a program with a very narrow range of application that has very good (that is, restrictive)
declarations. Typical programs can expect to achieve factors of 20-40, :

5.3.1. How it Works
The compiler as it currently exists is really two distinet programs, GETORDER is basically an interface
between files of ML functions and the compiler. [tis a relatively small program that reads in the file, sets up

the various compiler switches, calls the compiler one or more times and writes out the final file of RSUBRS,

COMPILE Qiself is basically a compiler with three major and three minor passes. Pass 1 builds a model of
the program, pass 2 analyzes each node of the tree and does data type analysis, pass 2.5 (minor) allocates stack
space for variables and temporarics, pass J gencrates output code and two minor passes do final stack
allocation and peep-hole optimization.

5.3.1.1. COMPILE and COMPILE-GROUP

There are two distinet modes of compilation available. ‘They arce simple and multiple. Simple compilation
pccurs when COMPILE is called with one FUNCTION. It simply compiles that FUNCTION and returns.
Multiple compilation occurs when COMPILE is called with a list of FUNCT IONs, It compiles cach FUNCTION
into a scparatc RSUBR, Tt differs from multiple calls to COMPILE in that it sometimes partially compiles a
FUNCT ION out of order to determine its calling sequence and do argument type-checking. "T'his behavior is
necessary when compiling mutually recursive FUNCT IONs,

In all modes of compilation, COMPILE-FUNCTION is called to actually compile the individual
FUNCT IONs. Itecalls the various compiler passes,

*

5.3 The Compiler (Internals)

T

94 ' ‘The ML, Programming Environment

5.3.2. Modeling Pass

The first pass of the compiler takes Eht: input FUNCT ION and builds an expanded model of it. In the
process of doing this, it produces a symbol table entry for every local variable bound and/or declared in the
FUNCTION, any of its PROGS/REPEATs or MAPF/MAPR FUNCT IONs. It also produces the RSUBR DECL for
the final output. Pass 1 also trics to decide if an internal entry (that is, an entry which can be called efficiently
{see section 6.1)) can be used with this FUNCTION, IF an internal entry turns out le be possible, Pass 1

generates an appropriate calling sequence for internal calls to use,

‘The model built by Pass 1 looks like the original FUNCTION with all of the nodes in the FUNCTION's
structure replaced with ohjects of type NODE (a new type defined for the compiler). A node in the model may
have anywhere from § to 30 clements, ‘T'he § clement node is for simple quoted objects like fixed-point
numbers, ATOMs cte. ‘The 30 clement nodes are for major elements of the program such as the node for the
FUNCTION itself and nodes for PROGs and REPEATs. ‘The majority of the nodes are general SUBR nodes,

which have 10 elements.

The Pass 1 structure is built in the following way, The top level program in Pass | generates a node for the
entire FUNCT ION, ‘This node gets the follawing information put into it

1. A code specifying that this is a FUNCTION node.

2. The data type that this FUNCT ION is declared to return (or ANY).

3. A LIST that will eventually contain the nodes comprising the body of the FUNCTION.
4, A UVECTOR of internal names for internal calls to this FUNCT ION.

5. A symbol table for the variables declared and/or bound in this FUNCT ION.

6. A list of entrics in the symbol table specifying how the arguments are to be set up (whether they
arc optional, QUOTEd, TUPLE ete.).

7. 'I'he final RSUBR DECLS.

8. A specification of how to pass arguments w this FUNCTION when it is compiled (whether the
arguments should be in registers or on the stack),

9, The number of required arguments and the total number of possible arguments.

In addition to the above information, slots exist in the node for additional information to be supplied by

later compiler passes.

The Compiler (Internals) 5.3

"The M. Programming Environment 95

After the main node for the FUNCTION is built, the sub-nodes for the FORMs comprising the body of the
FUNCT ION are built. This is done by first dispatching to special Pass 1 code for the first clement of the FORM,
If no special code exists for this first element, a dispatch is made on the TYPE of the first clement of the FORM
(that is, ATOM, FIX, FUNCTION ctc.). If no special code exists for cither the first element or its TYPE, a
general FORM node is built, Tn the case of an ATOM as the first clement of the FORM, the normal lookup rules
are invoked on the ATOM and it is dispatched again based on its value, ATOMs with no values cither cause

compilation warnings or arc assumed to be RSUBRs (depending on compiler switch REASONABLE).

All FSUBRs (COND, AND, OR, FUNCTION, PROG, REPEAT, UNWIND, ctc.) have special Pass 1 code and
produce very specific nodes. Most SUBRs don't dispatch w specific code during this pass. 'I'he exceptions are
things like MAPF, ILIST, GET ectc,, which have somewhat non-standard treatment of their arguments.
(Actually, MAPF and MAPR don’t treat their arguments non-standardly, but they are treated specially in Pass 1
so that the inner FUNCT TON may be upen compiled,)

As mentioned previously, all nodes have al least 5 clements. These are as follows:
1. A node type code.

2. A pointer to the parent node (if one exists).

3, A specification of the data type the node will generate,

4. A list of sub-nodes referred to as kids,

S. A name for the node, which may have different meanings for different nodes.

In addition. nodes other than nodes for QUOTEd objects have additivnal elements that are filled in during

later passes of the compiler.

After Pass 1 all additional passes work on the model built during Pass 1. The original FUNCTION is no

longer even considered.

5.3.3. Analysis Pass

During Pass 1, very little information is determined regarding the resulting data types of various nodes,
Indeed, with the exception of nodes produced by quoted objects, structured objects which will produce code
to build copies of themselves, and FUNCTIONs, PROGs and REPEATS with declared values, no type

information is produced, Even in the cases where type information is produced during Pass 1, it is usually not

as detailed as other passes would like, 'The Analysis Pass has the job of refining the result type of each

5.3 The Compiler (Internals)

9% 'Ie MDL. Programming Favironment

individual node based on various criteria

1. e declared types of the variables.used in the program including GDECLs and MAN IFESTS.

2. The known type transformations produced by various SUBRs. (For example, it I8 known that
LENGTH always produces a F IX result)

3. Sume analysis of the context of the nodes within the program. (For example in the following
code: :
<COND (<AND CTYPE? .X LISTY <NOT CEMPTYT X222
<1 .X2)?

regardless of how X is declared. it is obviously a LIST when the EMPTY? is run, and it obviously is
not empty when the <1 . X3 is run.)

I'he Analysis Pass performs a standard depth-first left-toeright tree wilk on the Pass 1 model. The main
dispatch function during this pass is called ANA. 1t docs an initial dispach hased on the node type of each
node. Since most nodes are stll considered ‘SUBR nodes’, most of the dispatches end up at the SUBR call
analyzer. “The SUBR call analyzer has two types of further dispatch available. First it Jooks in o table for
SUBRS that are capuble of being completely open-coded: if it finds an entry in the table, the analyzer for that
SUBR is invoked, 17 this SUBR is incapable of being open-coded, ANA checks another table to see if this SUBR
has an internal entry available. Ifit does. the node is changed fron a SUBR node to an internal SUBR node. If
buth dispatches fail, anuther table is checked to see if the object type returned by this SUBR is known, and if it
is the result is put into the SUBR node.

Most of the work done by the Analysis Pass happens when the first dispatch occurs and special SUBR
analyzers are invoked. Generally speaking. these analyzers check to see if they know ¢nough about their
arguments to transform their nodes o an open-code specification. For example, an invocation of the SUBR
REST only transforms to an ppen-code node if both the PRIMTYPE of the first argument is known at compile
ime and there are no SEGMENTS in the call to REST, If a special SUBR analyzer decides that it can't
open-compile in this case, it cither lcaves the node as a SUBR node or transforms it to an internal SUBR node.

5.3.4. The Type Analysis Model

In addition to the model of the FUNCT 10N built in Pass 1, the Analysis Pass adds additional information to
the model concerning the current stales of local variables. As the pnalwgr plunges down into the Lrec., it trics
to keep track of the current DECL of cach variable. Specifically, there is a slot in cach symbul table entry
called CURRENT-TYPE. The analyzer updates that slot based on its current knowledge. A call to SET causes
the CURRENT-TYPE slot to be changed Lo the analyzed type of SET's second argumnent. When multiple

The Compiler (Internals) 5.3

‘I'he¢ ML Programming Environment 97

control paths meet, the CURRENT - TYPE slots of a variable arc OR'd together at the joining point,

Conditional control structure nodes for COND, AND and OR also maintain two lists of transient information.
These are called TRUTH and UNTRUTH, They specify what information will be valid if the true or false
branches are taken respectively. For instance, a COND clause compilation can assume that any TRUTH
information generated in the predicate of the COND will be valid for the rest of the clause.

Sume of the analyzers for the more widely used predicates have special code in them to add information to
the current TRUTH and UNTRUTH values. These predicates include TYPE?, EMPTY?, LENGTH? and NOT.

I.ouping control structures pose additional problems for the type analysis model, ‘The approach taken by
the type analyzer is to build a copy of the current types of all variables before analyzing the loop structure.
Ihis copy of the local type information constitutes the assumptions currently in effect. Alter the loop analysis
is compete, the assumptions are checked against the current state of the variables, 1Fany of the assumptions
have been violated, the assumptions are updated and the loop is re-analyzed.

5.3.5. Life-and-Death Analysis

I'ne Analysis Pass also performs a life-and-death analysis on the local variables. This is done by assiming
that the variable's value is dead at each LVAL node for that variable. 1f another LVAL node for this variable is
discovered that is reachable from this one before any intervening SET nodes for this variable, the original
node is updated to be alive. This life-and-death information is used during the Code Generation Pass,

5.3.6. The Variable Allocation Pass

The Variable Allocation Pass (VAP) is a relatively simple one. 1ts purpose is to allocate stack space for all
of the variables bound in the FUNCT 10N, its PROGs and REPEATs and its MAPF /MAPR FUNCT IONs, There
are various switches that control the manner in which this allocation is performed.

The most important switch specifies whether or not this FUNCTION nceds a FRAME or not. The VAP
always starts out assuming it does not need to build a FRAME. ‘This assumption will be changed if it is
discovered that exterrially accessible named ACT IVATIONs exist in the FUNCTION or any of its inner blocks
(PROGs ur REPEATS or FUNCT IONs) or if at any time it is discovered that the address of a variable cannot be
specified as a fixed offset from the top of the stack. Whenever this assumption is changed, the VAP starts

over again with the new assumption in affect,

Another switch that controls the behavior of the VAP specifies whether or not the stack slots for inner

5.3 The Compiler (Internals)

98 The MIJL, Programming Environment

blocks will be pre-allocated because the stack will be in a ‘fuzzy' state when these blocks are running. The
stack is said to be in a ‘fuzzy’ state when the number of slots curtently being used cannot be determined at

compile time. "This usually occurs when a TUPLE is being constructed for a MAPF, For instance, in

CDEFINE F (X Z)
CMAPF ,VECTOR <FUNCTION (Y) <==7 .Y .I>> .X>>

the clements of the VECTOR will be between the top of the stack and the location of variable Z. Even if F has
o FRAME. the location of ¥ will not be known relative to the FRAME pointer at compile time. ‘Therefore, the

initialization code for F will pre-allocate the stack space for Y,

Puring the VAP, each symbol table entry gets its address ficld set based on where that variable will be on
the stack. Also nodes for PROGs, REPEATs and MAPF/MAPR FUNCT TONs that have bound variables get
additional information inserted in themselves, This information includes where the SPECIAL variables start
and where the UNSPEC TAL variables start,

5.3.7. The Code Generation Pass

‘The Code Generation Puss (CGP) is probably the most complicated of all the pusses, Fortunately, the
Analysis Pass has already refined the model so that the CGP can dispatch immediately o the special-purpose
code generators. Pesides building a list of assembly-language instructions as output, the CGP keeps track of
the current state of the stack, the contents of the registers, the current state of variibles (whether they are in

registers or on the stack or both) and the contents of the temporaries.

The general dispatch routine during the CGP is called GEN, It takes two arguments: A NODE and a

specification of where to leave the result. T'he second argument can be any of the lollowing:

1.'The ATOM FLUSHED, meaning that the code will be executed for effect rather than value,

9 The ATOM DONT -CARE, meaning that the caller of GEN is leaving the decision up (0 the specific
generator as to where to leave the result

1, An object of type DATUM which specifics a place for the type and value of the result to be left.
I'ype DATUM is of PRIMTYPE LIST and contains two clements, one for the type and the other for the
value, The clements of a DATUM may take on a variety of values in different circumstances, ‘These include:

1. A TYPE name. ‘This can only occur in the type siot and it means that the type of the object is
known at compile time and this is it. 1t indicates that the code gencrator need not put the
type-code anywhere,

7.'['he ATOM DONT -CARE. ‘This means that the caller doesn’t care where the result for this field is

The Compiler (Internals) 5.3

The MDIL. Programming Environment 99

left.
3. The ATOM ANY =AC. This tells the generator to leave the result in any available AC,

4. An object of type AC. This tells the generator to force the result into a specific AC.

3. An object of type ADDRESS : C or ADDRESS : PAIR. Both of these specify addresses on the stack
or in the interpreter.

6. An object of type OFFPTR. An OFFPTR has three ficlds: a DATUM, an offsct (a FIX), and a
PRIMTYPE, An OFFPTR tells the generator to leave the result in the word pointed to by the inner
DATUM and offset by the offset,

If an element of a DATUM is ANY=AC or DONT-CARE, the generator is required o update the DATUM 1o
reflect the actual location of the result. I the element is a TYPE, the generator may change it to an AC which
means that it happened w end up with the TYPE in that AC.

The generators always return & DATUM specifying where the result was actually left, unless the caller
wianted the resull FLUSHED. “ITere is one special DATUM that can be returned. It is the GVAL of the ATOM

l NO-DATUM and it means that the specified node will not return a value (that is, it is a RETURN or an AGATIN or
something).
! There are six objects of type AC in the compiler, corresponding to ACs 0, A, B, C, 13 and I, AC 0 is special

since it can’t be used as a pointer, and it always contains very transient information, 1t is never used to fill in

an ANY-AC slot in a DATUM. The other five ACs arc in the pool of available ACs. Ohjects of type AC have
about ten different slots associated with them. “They are used for finding available ACs and generating output
code thot uses them. The slots used in AC allocation are as follows:

L. ACLINK. IT this is FALSE, the AC contains no temporary value for the current computation.
Otherwise, it is a list of active DATUMs that contain it

2, ACAGE. 'This is only used when the ACLINK is non-FALSE. It is updated to a higher number at
each use of the AC and is used in an LRU algorithm when an active AC must be flushed.

3. ACRESTODUE. IF this AC is currently equivalent to some local variubles, this slot contains a list of
the symbol-table entries for these variables. 'The symbol-tible entrics themselves have a slot
called INACS that points back tw the ACs that contain its type and/or value. They also contain a

| slot called STORED that specifies whether the only copy of the variable is in the ACs or it is also in

memory.

4. ACPROT. 'This slot is a boolcan saying whether this AC is protected or not, If the AC is protected, it
can’t be allocated for any reason. Protection is only invoked for very stretches of code.

5.3 The Compiler (Internals)

100 ‘ Ihie ML, Programming Fnvironment

5 ACPREF. This slot says that this AC deserves slightly preferential treatment. It means, all other
things cqual, don't choose this AC.

‘T'he AC allocation algorithm consists primarily of trying to find the best possible candidate when an AC is
needed. The routine GETREG is used o find an available AC. First it rejects all ACs that are protected (if they
all are protected, the compiler gencrates an internal error since this should never happen). If there arc onc or
more ACs with their ACLINKs FALSE, GETREG will choose from among them, [t will prefer ACs with no
ACRESIDUE, that are numerically adjacent 1o anuther free AC (because some PDP-10 instructions destroy the
next AC). and which do not have their ACPREFS on. If the AC chosen has an ACRESTDUE, code is generated

if necessary to slore any of the variables that are only in ACs.

If no AC cxists with un ACLINK that is FALSE, GETREG finds the AC with the smallest ACAGE. Code is
generated to store the contents of the AC in a temporary 5o that it is available, ‘The DATUMs that were in the
ACLINK are updated to indicate that they are now puinting to temporaries as opposed o ACs. ‘Thus it is
possible that a generator could need sub-results in ACs, and after causing one 1o be generated in an AC, find
that while generating the second one the first slipped back into a temporary. I'he generator would then have

to generate code to reload an AC from the temporary.

The CGP invokes various special-case optimizations by passing information up and down the tree as code
is gencrated. The generators for conditional branching FSUBRs like OR, AND and COND employ a predicate
generator whenever possible. ‘This generator is like GEN except thal it akes three additional arguments; a
tabel 1o branch to, a fag saying whether to branch on truth or falseness, and a fag saying whether this
predicate is being NOTed, The general predicate generator then looks at the predicate node to see if it can
take the additional arguments for predicate generation, 1Fit can, the general predicate gencrator just passes all
the arguments down; otherwise it calls GEN and generates the additional testing and branching code itself.
Currently AND, OR, COND, ==7, N==7, G?, G=1, L?. L=?, 07, 17, TYPE?, NOT, ASSIGNED?, MEMQ,
LENGTH? and EMPTY? have special predicate code associated with their generators, Others may be added as
the need develops,

Other optimizations are invoked by simply recognizing common patierns of MDI. code. For instance, the
compiler recognizes <SET X <+ X 12> asa PHP-10 ADS instruction and it gencrates very cfficient code
for ¢CREST .% <- <LENGTH .X> 1>3>by recognizing the pattern of code.

The compiler always takes advantage of as much knowledge as it has about the types generated by
particular nodes to generate good code. "This is especially the case when it is handling the code for NTH, REST

and PUT in structurcs. It uses type information concerning the length of the structure and the amount being

The Compiler (Internals) 53

The M1, Programiming lnvironment 101

RESTed for the NTH, REST or PUT, to figure out whether or not to generate bounds checks in the compiled
code. Italso uses information about the current type of the slot being read or written to decide whether not to
read or write the type word. Obviously, a lot of this type information was the same information obtained
during the Analysis Pass of the compilation,

Some code generation routines arc capable of changing the order of generation of the sub-nodes. This is
done to try to get the node requiring the most ACs compiled first so that it won't interfere with any AC

requirements of the current node, “This obviously requires that the commuted nodes have no interacting side
efTects.

5.3 The Compiler (Internals)

102

‘The MIDI, ng_mmrning Environment

The MDL Programming Environment 103

6. Making It Run Faster

Once you have a working program, you will probably want it to run fast. ‘The most obvious way of doing
this is to compile it. MDL. provides other ways to speed up code, chiefly by eliminating mediated subroutine
calls, and by reducing the size of garbage-collected space.

Mediated subroutine calls (or "MCALLS') are the standard method of function calling in Mpt., 'They
provide a great deal of information and control during program development and debugging, but the
overhead ofan MCALL is superfluous in debugged production programs. Consequently, several methods exist
for removing this overhead.

A subtle impediment to increased speed in a production program is the amount of time devoted to garbage
collection. As this is proportional to the size of the garbage collected space, it is advantageous to make that
:-:pﬁ as small as possible. One way to do this is to purify as many of the static data structures in the MDL as
possible,

One by-product of the procedures mentioned above is that much of the resulting code and structure
becomes pure and therefore sharcable between many M, processes,

6.1. GLUE

A facility exists to allow separately compiled and assembled RSUBRS to be ‘glued’ together. ‘This makes
calls between RSUBRs in the group much faster, as MCALLS are replaced by PUSHJs, The many instructions
of an MCALL are replaced by the single PUSHJ, but the mediation provided by MCALL is lost: No FRAME is
produced. GLUEIing is accomplished by the concatentation of the code and reference VECTORs of the RSUBRs
being GLUE, which gives them a common ‘frame of reference.’

Additionally, GLUE is interfaced with the compiler such that:

1. The RSUBRs can be run unGLUE for convenicnt tracing and debugging. After debugging, they
can be GLUEd together and run much faster,

2. An individual FUNCTION can be recompiled without the overhead of recompiling everything
GLUEd to its RSUBR. After the recompilation, the entire sct can be reGLUEG,

6.1.1. How to Glue
"GLUE" isa PACKAGE and it may be obtained by doing

6.0

104 ‘e ML, Programming Environment

(USE "GLUE">
‘The call to glue a group of RSUBRS and/or RSUBR- ENTRYs is:

(GROUP-GLUE growp-name:alon
substitute: boolean

script:channel
package:string-or-list
survivors:list
victims:list>

where:
group-name is an ATOM as returncd by GROUP-LOAD, and it is the only required argument.

substinure is a fag: iFitis truc, the current RSUBRS und RSUBR=ENTRYs will be fixed so that they may still run
in the current ML, ‘This is expensive but necessary i PRINTTYPEs or interrupt handlers arc among the
RSUBRs in the group. f the flag is FALSE or not supplicd, the group must be GROUP-DUMPed and
reloaded before use,

seript if supplied and & CHANNEL is used by GROUP-GLUE w print out its Progress through its task,
Otherwise, GROUP-GLUE works silently.

package, if provided and non-FALSE, implics PACKAGE mode will be used, This argument should be a
STRING specifying the PACKAGE that is being glued, In PACKAGE mode only the ENTRYs of that
PACKAGE will be preserved and all RSUBR=ENTRYs associated with internal functions will be removed,
"I'his option can also ue used by scting the ATOM PRG to the name of the PACKAGE. Package may also be

a LIST of PACKAGE names, in which case the ENTRYs of all the PACKAGES listed will be preserved.

survivors if provided indicates that SURVIVOR mode will be used, This argument should be a list of those
RSUBR-ENTRYs to be preserved. All other RSUBR-ENTRYs will be fushed. ‘This option overrides
PACKAGE mode. This option can alsv be used by sctting the ATOM SURV to the LIST of RSUBR=ENTRYs
being preserved.

vietims allows ‘survivors® to be specified by default: that is, it is a LIST of those functions which should not
survive after GLUE has run. This is sometimes more convenient to specify than explicit survivors.

‘There are two advantages o removing unnceded RSUBR-ENTRYs. The group is made smaller by the absence

of the RSUBR-ENTRYs. Also the code for the group is reduced, as the code for handling MCALLS to those

RSUBR-ENTRYs is removed. In general only the ENTRYs need to be kept for a PACKAGE, This can be done

by specifying the PACKAGE using PACKAGE mode. SURVIVOR moede should be used if the user wishes 1o

explicitly staie which RSUBR-ENTRYs arc Lo be kept.

6.1.2. GLUE as a Program

In addition to the "GLUE" PACKAGE, there is a prograin in which GLUE and PDUMP (sce scction 6.3) are
preloaded. It will prompt for cach of the usval arguments 1o GROUP-GLUE, permilting the user o
conveniently GLUE (and PDUMP) several PACKAGES in one session.

GLUE 6.1

The MDI. Programming Environment 105

6.2. Glue Bits
GLUE is able to perform its transformations on compiled or assembled code with the aid of a data structure
produced during assembly. ‘This structure is called the 'GLUE Bits’. Itis an association placed on the RSUBR

by this FORM:

CAND <ASSIGNED? GLUE>
.GLUE
<PUT rsubr GLUE glue-bits:uvector> >

Thus il . GLUE is non-F AL SE the association will be available to programs wishing to use jt.

Internally, the GLUE bits consist of two bits for each word of code in the CODE clement of the RSUBR,
followed by words specifying calling information. For euch INTERNAL=ENTRY in the code, there is a word
giving the number of arguments it tukes and the offset of the INTERNAL-ENTRY in the CODE UVECTQR,

The two bits for individual instructions are interpreted with the index field of the instruction as follows:
Hits 0 implics the instruction is uninteresting:
Index ficld (M) and bits | implics the instruction is a reference to the code itsolf (a jump, perhaps);

Index ficld (R) and bits | implics a reference to an impure slot of the RVECTOR (the compiler does not
generate such references);

Index ficld (R) and bits 2 implies the instruction IS an MCALL;
Index field (R) and bits 3 implics the instruction is a reference tw a pure slot of the RVECTOR,

Sce section 7 for more details on the format of M. Assembly code,

6.3. PDUMP

MDL provides a mechanism for sharing compiled programs among several MDI, processes, and for
dynamically moving the compiled code in and out of the virtual address Space as space is needed in the
interpreter. “This mechanism is deseribed in detail in scction 4.2, This section describes how to convert a

-

compiled program into a sharable version, known as an FBIN (Fast-BINary) version of the program.

First load the group-purificr,

6.2 Glue Bits

106 ' ‘I'he ML, Programming Environment

{USE "PDUMP">
Next, GROUP-LOAD your group (or groups).

¢GROUP-LORD bingn=file:string _
which returns the group-name of the group. ‘This (and any other groups to be dumped together) is then
passed :lu the pure-dumper:

¢PDUMP group-ngmel:atun group-namel:alom . . . >

‘I'his creates several files, only one of which you need be concerned with:

siname: proup-namel FBIN
If given more than one group-name, POUMP will create one FEIN file for each group. but only a single F IXUP
and a single SAV file containing the fixups and code for all of the groups named. ‘Ihe FIXUP and SAV files
are put on the "MUDTMP™ dircctory and eventally are inserted in the pure code library, as described in

scction 4.2.

Alternative methods of PDUMPing are 1o specify that as an option in to the program GLUE (sec section
6.1.2), or to use its preloaded PDUMP dircetly after exiting its READER with 5.

A warning about combining GLUE and PDUMP: if you attempt Lo POUMP several groups that have been
GLUEd together, you will lose. ‘This is because the references to the ‘group-RSUBR" will fall on the wrong
OBLISTs.

PDUMP also produces a structure analugous tw the GLUE bits (sec scction 6.2) produced by the compiler,
but containing only information about the RVECTOR of the RSUBR, for the use of PURIFY (scc section 6.3),

6.4. SUBRFY

SUBRification is a way of getting rid of many of the MCALLs which could not be practically removed using
GLUE. Ifa FUNCTION is called by many separate groups, it is difficult o GLUE it to all the groups or (o GLUE
all the groups together.

What is really needed is to be able to allow something to be called with PUSHJ from scparate groups
without foreing it to be part of those groups. This is indeed the case with PUSHJ entrics to Ml SUBRSs (in
the interpreter). A user can make his RSUBRs look like SUBRs in this respect.

SUBRFY takes a group, which must be in NBIN format. It purifics the RSUBRs and RSUBR-ENTRYs in the
group and changes them so that they can be called with PUSHJ, It also produces a file, known as the “preload’
file. which can be used by the compiler to generate PUSHJS to the functions in the SUBRificd group.

PDUMP 6.3

The MDL. Programming Environment 107

SUBRFY should be loaded before loading the group o be processed. The reason for this is that it

guarantecs that GLUE bits stay around, To load SUBRFY
{USE "SUBRFY")>

You should then GROUP-LOAD the group. Your group should be GLUEd already, since SUBRFY does not
GLUE the group together.

SUBRFY can then be called in the following manner:

<SUBRFY group:aiom
Sile=name;string

oulput:channel>
where

group is the name of the group.,

Sile-name is the name of the file in which SUBRFY should put the information for the compiler. This defaults
1o the name of the input file with second name "PRELOD",

outpul 1s an optional argument which specifies a CHANNEL on which to print information about SUBRFY's
progress. The default is not to print anything.

The file pruduced by SUBRFY should be FLOADed for compilations where functions in the SUBRificd group

are called. This cau be done by FLOADing it in the “Ihings to do’ part of a COMBAT plan.

Like purification, SUBRification changes the MDL, The only way to preserve the SUBRified group is to
SAVE the MDL. Before SAVEing the ML the "SUBRFY" PACKAGE should be removed. ‘This can be done

by doing a
CKILL-SUBRFY>

followed by a
<GC 0 T>,

SUBRFYing a group implics that the group is not going to change at all frequently, if cver. A new
SUBRFYed SAVE file may be created at any time, and clements of the group may be recompiled. However, if
the calling sequences of any of the functions in that group change, you invalidate any functions compiled
using the ‘preload’ file for that group. In short, think twice before tying yourself down with SUBRFY.

6.5. Purification

A facility exists to permit the purification of M. objects. Purified objects can be shared between MDL
processes and also are not examined by the garbage collector. What follows is a description of how this
facility can be used,

6.4 SUBRFY

108 The ML Programming Environment

The purification facility in M. is most uscful in the creation of subsystems. Non-purificd RVECTORs of
RSUBRs and tables used by suhsyﬂtcms_nrc kept in garbage collected space. ‘This means that these objects,
which will never become garbage, are examined at cach garbage collection, slowing down the garbage
collection process. Also, if two people are using the same subsystem, they cannot share the tables and RSUBRs

kept in garbage collected space. By using purification these two problems can be alleviated,

To purify most objects the user can eall the PURIFY SUBR, "The object will be purified, and all references

w that object in the M1 core image will be changed to point to the new pure object. This simple method
cannot be used in the case of RSUBRs, Purification of RSUBRSs is u several step process beginning with

compilation.

6.5.1. Purifying RSUBRs
Once your FBIN or NBIN is ready you can actually do purification. ‘T'o do this first
CUSE "PURITY">
This PACKAGE contains the routines needed to purify RSUBRs. Then GROUP=LOAD the files you wish Lo

have purified. Once this is done type
CGROUP-PURIFY group:alom ouiput:channel>
This will purify and link all RSUBRs and RSUBR-ENTRYs in the group and will also attempt to purily any

RSUBRs or RSUBR-ENTRYs called by the group. Giving the optional ehannel will cause GROUP-PURIFY to

print information concerning the progress of the purification.

GROUP-PURIFY will only purify RSUBRs and RSUBR-ENTRYs. In order to purify tables, ctc. use the
PURIFY SUBR dircctly. Since purification is an extremely expensive operation, it is recommended that you
collect together the things you wish to purify intoa LIST, VECTOR, ete. and purify that structured object.

Once purification has occurred, several things may be done t recover wasted garbage collected space.

The user can get rid of the *PURITY* PACKAGE by doing a
<KILL:PURITY>
‘I'he user can also remove much of the overhead of keeping a group around by UNASSIGNing the
group-name. Removals of this type should be follwed by an explicit call o the garbage collector invoking the
‘hairy’ GC feature, as much of the storage to be regained is pointed to by associations. This can be done by
{GC 0 T> '

In order to save a file with purified Mb1. objects you must SAVE, Restoring a SAVEA file with purified MDL

objects will cause those objects to share with any vther MDL RESTOREM from the same SAVE file.

Purification 6.5

F1 1 M o s g

= -
——

T

L1

1*

i

I

The ML Programming Environment - 109

6.5.2. Purifying an Environment

Many subsysterns maintain a list containing pointers to all the static data structures built by that
subsystem: dispatch tables, data bases, and so an The list can be given to PURIFY to move all its components
into the pure arca. However, there are other structures in garbage collected space that may be purified; e.g.,
the RVECTORs of RSUBRs, RSUBR DECLs, and so on.

The "CLEAN" PACKAGE cxamines these structures. looking for those which may be purified. It may also
be used for informational purposes. To get it
<USE 'ELE&H'}
"CLEAN" his one major ENTRY, CLEANUP, which examines every ATOM of every OBLIST in the M1 It
may perform a variety of functions, but it is mosi often used 1o make DECLs share storage and to accumulate a

LIST of purifiable structures. All of its arguments are optional,

CCLEANUP printl:boolean
resel?: boolean
decl?:boolean
pdecl?: boolean
pure?:boolean
check?:boolean
avoid: list-uf oblisis>

print? is by default FALSE. If non-FALSE, information about cach ATOM examined will be printed as
CLEANUP runs. Thisis a lut of information.

reset? is by default T. [Fnon-FALSE, the LISTs of objects previously collected will be resct before CLEANUP
runs.

decl? is by default T, If non-FALSE, cach DECL clement will be made to exist exactly once in the entire core
image. E g., there will be only one copy of the DECL <LIST [REST FIX]> inthe corc image.

gdecl? is by default T, Itis similar to decl?, but refers to GDECLs.
pure? tells whether to make a LIST of all the purifiable objects in the core image. Itis by default T,

check? 1ells whether to make LISTs of all the TYPEs, RSUBRS, RSUBR-ENTRYS, ¢ic, in the core image. Itis
by default T.

avold is a LIST of OBLISTs not to look in; it is by default the OBLISTs associated with "CLEAN" and
"PURITY".

CLEANUP returns (if pure? is non-FALSE) a structure (also stored as the GVAL ol PURELST) which may be
given to PURIFY,

The results of running CLEANUP may be examined by

6.5 Purification

110 ‘The M1 Programming Environment

¢PRINT-CLEANUP>
As the object in running CLEANUP is to shrink the size of one’s ML and its garbage-collected space, it Is

useful to be able to remove CLEAN aﬂnr}t has done its work.
CFLUSH-CLEANUP>
removes everything associated with the PACKAGE from the MDL.

6.5.3. Purification Summary
In a simple case, one can purify a ‘subsystem® of one group maximally by

CUSE "PURITY" “CLEAN">
C¢GROUP-LOAD "/foo">
<CLEANUP>
{GROUP-PURIFY foo>
(KILL:PURITY>
{FLUSH-CLEANUP>

<GC 0 T>

CSAVE "jfoo">

6.6. TEMPLATEs
The PRIMTYPE TEMPLATE cuts down on the need for storage by allowing the user to specify exactly what
he wants a structured object t contain, similar to “structures’ in PL/1 or C.

To use this feature one must create 4 new TYPE of PRIMTYPE TEMPLATE. This can be accomplished by

using the RSUBR TEMPLATE. The procedure for doing so is:
CUSE "TEMPLATE"™>

{TEMPLATE name:alom ... 5pecs ... 2
where name is the name of the new TYPE and specs are specifications for each clement of the TEMPLATE,

This returns the TYPE name of the TEMPLATE and creates a creator of TEMPLATEs of TYPE name, called
name itself, which can be applicd to arguments to create objects of that TYPE of TEMPLATE.

The specification for the elements can be of several forms. 1t can be one of
a TYPE: typeratom

a 2-clement LIST: (rype:atom length:fix)

a J-clement LIST: (iyperatom length:fix count:fix)

Below are sume examples along with explanations:

Purification 6.5

o o

The MDL. Programming Environment 111

LIST
is an 18 bit LIST pointer.
(FIX 18) '
15 a halfword FIX (can be both positive and negative and is checked for overflow),
(FLOAT 18)
5 an 18 bit FLOAT (which is the left halfword of a ‘normal’ §LOAT and therefore somewhat restricts the
precision).
(FIX n)
(where n is less than 18) is a pusitive FIX of length » bits (is not checked for overflow),
BOOLEAN

is nota M. TYPE, but a one bit FALSE or non-FALSE depending on whether the bitis 0 or 1.
(UVECTOR 18 n)

is an 18 bit UVECTOR pointer. 1he UVECTOR is of length #. The same can be done for VECTORs,
(STRING 36 n)

is & 36 bit string byte pointer. The STRING is of length n.
ANY

is nota MDI. TYPE, rather anything can go here, This is relatively inefMicient to use in TEMPLATES as it takes
up 2 words.

In order o provide more flexibility in using TEMPLATES, two other ficlds are allowed, an eptional ficld
and a rest ficld. The optional field allows the user to create TEMPLATE TYPEs which will have the same basic
structure but which can have optional clements determined when the actual TEMPLATE is created. The rest
ficld, like the optional field, allows clements to be optional but specifies a pattern for any elements that are
added on, It is analogous to REST in DECLs. Separation of ficlds is accomplished by the use of the strings

"REST" and "OPTIONAL", For example;
<TEMPLATE FOO FIX "OPTIONAL™ LIST BOOLEAN "REST" FLOAT>

This creates a TYPE FOO of PRIMTYPE TEMPLATE which always has a FIX as the first clement, can have a
LIST as a sccond element, can have a one bit T or #FALSE () as the third element and ean have any number
uf FLOATs from the fourth element on.

6.6.1. Use of TEMPLATES

TEMPLATE TYPEs may be thought of as primitive T"I:’FES. in that they cach have a unigue storage
representation, On the other hand, the TYPEPRIM of any TEMPLATE TYPE is TEMPLATE. A primitive
TEMPLATE (which cannot truly exist in the language) would look like

6.6 TEMPLATESs

112 : ‘IThe ML, Programming Environment

{ element-1 element-2 ... element-n }

Real TEMPLATE TYPEs arce represented as NEWTYPEs of this primitive TEMPLATE TYPE.
Rtype-name { ...elements... }
‘I'nis method is similar to the usual method in MDL. for representing any new TYPE, in that a RESTed
TEMPLATE will be printed *CHTYPEG to its PRIMTYPE." Notc that a TEMPLATE so printed cannot be read by
READ: a‘primitive TEMPLATE' cannot exist. It is best to avoid printing RESTed TEMPLATES.

Below are some examples of the use of TEMPLATESs.

{TEMPLATE BAR:

FIX

"OPTIONAL" BOOLEAN

“REST" (FIX 18) (FLOAT 18)>$
BAR

¢BAR 17$
#BAR (1]

¢{BAR 1 T>%
#BAR {1 T)

¢BAR 1 <> 1 1,008
#BAR (1 #FALSE () 1 1.0)

¢SET A <BAR 1 <> 1 1.9 2>>§
#BAR {1 #FALSE () 1 1.8084376 2)

CPUT .A 1 838
WBAR {6 WFALSE () 1 1.8984376 2}

CPUT .A 4 1,90038
#BAR (6 WFALSE () 1 1,9960937 2}

CTEMPLATE BAR (STRING 36 4) "REST" ANY>S
#FALSE ("ALREADY A TEMPLATE")

¢TEMPLATE BAR1 (STRING 36 4) "REST” ANY>S
BARY

TEMPLATES 6.6

The MDIL. Programming Environment 113

CSET A <BAR1 "HELP" 2 () <>>>§
#BARL ("HELP" 2 () WFALSE ()}

¢PUT .A 1 "GOOD">$
#BAR1 {"GOOD* 2 () #FALSE ()}

<PUT .A 1 "GOOD-BYE">$

*ERROR®

TEMPLATE-TYPE-VIOLATION
PUT

LISTENING-AT-LEVEL 2 PROCESS 1

6.6.2. Assembly of TEMPLATESs
Once a sel of TEMPLATE TYPEs is created, as for the TYPE definitions of a subsystem, it saves time (o

store away the “compiled” TEMPLATE generators and not recreate them each time the definitions are to be
used.

The "TEMHAK* PACKAGE modifics files which define TEMPLATE TYPEs to contain the TEMPLATE
descriptions and RSUBRs rather than the calls to TEMPLATE. It is only useful, of course, when the
TEMPLATES are dcfined in a file which will not normally be edited, since the new files are in "NBIN' format.

To load this PACKAGE,
<USE "TEMHAK">

‘Ihe PACKAGE has two entries,
CTEMPLATE-DUMP group-nanie:atom>
takes the group and modifies it such that <USE "TEMPLATE"> becomes <USE “TEMHLP">, and all
top-level invocations of TEMPLATE arc replaced by calls to BUILD=-TEMPLATE (for the TEMPLATE
descriptions), SETGs of the TEMPLAT E-gencrating RSUBRs, and the GLUE bits for the RSUBRS.
CFILE-TEMPLATE j[upui:string output:stringy
takes an input file and performs the same service, GROUP-DUMPIng the result to the optional eutput file (by
default the same file with sccond name *NBIN"). 'This is useful for files which contain nothing but TYPE
definitions, a commaon practice in large subsystems.

Ifthe TEMPLATE TYPEs arc defined in a file which will be edited requently, a different set of routines is
used alter creating e TEMPLATE TYPEs:

6.6 TEMPLATEs

114 ‘The M. Programming linvironment

(DUMP-TEMPLATES descriptions:siringd
places the TEMPLATE descriptions (nor the RSUBRs) in the specified descriptions file. It does so for all
TEMPLATE TYPEscurrently defined,

(DUMP-RSUBRS psubreuring template-typesatom ... 2
will perform the sume service for the TEMPLATE-gencrating RSUBRs of the TYPEs given as the second and

later arguments to DUMP-RSUBRS,

There will now be two files, one containing the TEMPLATE descriptions and the other the RSUBRs. These
may now be used to create the TEMPLATE TYPES without USEing "TEMPLATE". To do so:
CUSE "TEMHLP">
'I'his defines the RSUBRs needed 1o take the TEMPLATE descriptions and make them useful to MDL.

CFLOAD descriptions:string>
the file of descriptions (the file created with DUMP=TEMPLATES): this must be loaded before the RSUBRs
file. “Then loud the RSUBRs file (the Ale created by DUMP-RSUBRS):

CFLOAD rsubrs:siring
For muaximum convenience. it may be necessary to pul a FORM in files that creatc TEMPLATEs: if the
TEMPLATE files described here exist, FLOAD them; otherwise, <USE "TEMPLATE"> and creale the
TEMPLATES from scratch, It is of course possible o manually merge the two TEMPLATE definition files
(preferably by using GROUP=LOAD and GROUP=DUMP), so long as the TEMPLATE descriptions precede the

TEMPLATE RSUBRs.

TEMPLATE RSUBRs arc created with GLUE bits, so it is possible to glue them into groups and to purify
them.

TEMPLATEs 6.6

= e W St]

e

The MDI, Programming Environment -~ 115

7. The Assembler

Itis occasionally neeessary to write MDL routines in assembly language, usually to interface with a feature
uf the operating system not available in the interpreter. The MDL assembler (which is also used by the ML
compiler) provides this ability,

7.1. The Assembler

The MDI. assembler provides the Mii user with a means of writing RSUBRs directly in machine language.
The assembler is also used as the object language of the compiler, This section is a description of the

assembiler, its use, and some of its pseudo-operations.

7.1.1. General Organization
The Mpi. assembler is written in M. to produce code that runs in the M. environment. [t takes
arguments in the following form

CFILE-ASSEMBLE jupui-file:string
ailpul-file:string
quick:boolean’

The arguments are an inpur-file containing Mp1. assembly code (possibly for several RSUBRs), an optional
output-file in which to put the binary output (by default the same file as input but with second file name
"NBIN"), and an uptional third argument which tells whether tw use NBIN format output, and which under
normal cireumstances should always be T, There are four other optional arguments which are the same as the
second through fifth arguments of ASSEMBLE,

CASSEMBLE Dody
locals
messages
list
symbolsy

(All the arguments are optional with the exception of body.)

body may be a CHANNEL, in which case all instructions in the file associated with the CHANNE L are assembled,
or it may be a structured object, in which case all instructions in the object are assembled.

locals specifies the OBLIST to use for local symbol lookup when the body is a CHANNEL, ‘The default is
<1 .OBLIST> when the asscmbler is called.

messages is 4 CHANNEL to receive error messages, clc. It defaulis wo . MESSAGE -CHANNEL.

list is a CHANNEL to receive an assembly listing. If list is not supplied, no listing is generated. If listis a
non-FALSE non-CHANNEL, and messages is a CHANNEL, then the messages CHANNEL will receive the
address of cach label. If fist is a FALSE, then no listing is produced. ‘The default is , LINE-CHANNEL

170

116 The ML, Programming Environment

(Initially LINE-CHANNEL is FALSE.)

syinibols indicates if true that a DDT symbol table of all the labels for use with "RDB" (see section 7.2) will be
generated. 'The default is ,MAKE-SYM-TABLE (Initinlly MAKE-SYM-TABLE is FALSE.)

7.1.2. The Assembler as a Program
The assembler also exists as program called ASSEM, which encapsulates FILE-ASSEMBLE,

7.1.3. Format of Assembler's Source

The M. assembler’s equivalent of a line of code is o FORM, 1t assembles FORMs into instructions in much
the same way that a typical assembler treats lines of source code, ATOMs at the top level (i.e. not in FORMs) are
treated as labels. ‘The FORMs arc assembled based on the TYPE of the GVAL of the first ATOM in the FORM,
‘The GVALSs of ATOMs whose PNAMES arc the PDP-10 instructions are of TYPE OPCODE (PRIMTYPE WORD:

the *value ward” has the 36 bit value of the instruction. For example, in

<{MOVE A* 1 (B)>
the value of MOVE (in the OP OBLIST) is #OPCODE *200000000000%. This FORM is assembled directly
into an instruction,

If the GVAL of the first ATOM in a FORM is something applicable (SUBR, FUNCTION, RSUBR clc.) the
FORM is EVALed and the resulting SPLICE of FORMs is assembled. 'This is how macros and pscudo-ops are
implemented, Notice that a pseudo-op or macro may produce no code by returning an empty SPLICE,

7.1.4. Instruction Assembly

Having determined that a FORM is going to asscmble into an instruction, the assembler basically adds up
the values of all the items in the FORM. In the case of items of TYPE OPCODE, a full 36 bit add is performed.
ltems of TYPE ADDRESS refer to labels in the program. Since the code is all location insensitive and will
move around during garbage collection, references to labels must be indexed by accumulator M, the base
register. Therefore, label symbols include an M in the lef half and must also be added in with a full-word add.
liems of PRIMTYPE WORD other than OPCODEs and ADDRESSes arc ANDBed with *777777* before being
added, and the carry from right half to left half is suppressed. When ATOMs are found in FORMs that arc being
assembled into instructions, special lookup rules are in effect. 1f the ATOM has a global value, (hat value is
used. IFthe ATOM does not have a global value but has a local value, it is used. ITthe ATOM has neither a local
or global value, it is assumed to be a local symbol for this assembly. In this case the symbol value is used if it
has already been defined, otherwise it is added w a list uf as yet undefined symbols,

The Assembler 7.1

e

The MDIL. Programming Environment 117

Objects other than ATOMs or PRIMTYPE WORDS cause the assembler to take special action,

= LISTsare used to indicate swapping left and right halves, For example
(MOVE (1)>
would put the 1 in the index field of the MOVE instruction (similar to MIDAS),

= A VECTOR indicates a constant. The VECTOR may contain any number of FORMs to be assembled
at the end of the program. For example:

CPUSH TP* [<1 (1)>]>
pushes a constant containing 1 in the right and left halves,

= A FORM is simply EVALed and the value returned is used,

7.1.5. Initial Symbols

‘The OBLIST structure in effect during assembly is
(op mdl DEFAULT local rootl)

The OBLIST ap is nuined OP and contains the PDP-10 opcodes, the M. accumulator definitions (in both
accumulator and address ficlds), and the pseudo-ops, The 0BLIST mdlis named MUDDLE and contains values
of many labels in the interpreter. “Ihis enables programs to do things like <JRST FINIS>, the standard way
1o exit from an RSUBR. When an instruction is assembled using a symbol from the MUDDLE 0BL IST, a fixup
i5 also generated so that, if the symhol gets a different value in a new Ml the code can be fixed up when it is
loaded. Loal is the user's local symbol OBLIST and rvot is the ROOT OBLIST,

As stated earlier, every accumulator has two symbols associated witly it, one for the address ficld and one
for the accumulator ficld. This is because there Is nu syntax to specify which ficld is intended. The address
symbol is simply the accumulator's name, and the accumulator symbol is the nume with an asterisk (*)
appended toit; e.g., A versusA®,

7.1.6. Macro Writing

Whenever an clement or subelement of an instruction is a FORM and the first clement of the FORM has an
APPLICABLE GVAL, the FORM is evaluated and the result (unless it is SPLICE) is re-evaluated ns if it were
iIn place of the FORM, 'I'his feature constitutes the assembler's macro Facility,

For compatibility between ‘top-level’ macros, which g::ncratc whole instructions, and macros which
Benerate parts of an instruction, tup=level macros may wish to return several instructions, T'o indicate that
what is returned is several instruction s, ILis necessary o return an abject of type SPLICE (PRIMTYPE L IST).
The clements of the SPLICE are treated as individual instructions, An empty SPLICE may be returned from

1.1 The Assembler

118 ' 'I've MIJ1. Programming Environment

a macro which is part of an instruction, and the cffect is as if a 0 were returned. This is the only SPLICE

which may be returned from a macro which is a part of an instruction,

7.1.7. Pseudo Operations
The next part of this document will describe pseudo-ops available in the ML assembler. "There is no

difference between a pseudo-op and macro in the assembler except that the pseudo-operations are supplied
by the system.

CTITLE pame:stringd
This is about the only required pseudo-op. 1t must be the first instruction to be assembled. It 1akes one
argument, the name of the RSUBR being assembled. If additional TITLEs are found in a file bheing
assembled, they are assumed to both end the previous RSUBR and begin the neat. "The assembler prints each
TITLE on the messuges CHANNEL as it is encountered.

<SUB-ENTRY gurizatom decl>
"Iis pseudo-op is used w define additional RSUBR-ENTRYs for the RSUBR heing assembled. The entry
argument is the name of the RSUBR-ENTRY and the optional decf argument is a DECL for the entry.

CINTERNAL-ENTRY entryialom args:fix?
is used w create an INTERNAL-ENTRY for a GLUEable RSUBR. Its arguments arc the name of the
INTERNAL-ENTRY and the number of arguments that will have been pushed on the stack for it when it is
called. Sec also section 7.1.9 for details on writing GLUEable RSUBRS.

(DECLARE ("VALUE" decl decl decl)>
is used to supply declarations for the RSUBR named in the TITLE. 1t must occur before any code-gencrating
instructions. DECLARE takes a LIST as its onc argument. ‘The format of the LIST is as described in [3). The
string "VALUE " is optional; if supplicd it causes the first dec/ to declare the TYPE of the value of the RSUBR.
Each additional deel is associated with one argument. Special STRINGs may also appear in the LIST with the
following meanings:

"QUOTE" The nextargument is QUOTEd (not EVALed).
"OPT IONAL " I'he rest of the arguments arc optional (the RSUBR must supply any defaults for these).

"CALL" If this appears, it must be directly after the "VALUE * decl. It says there is one argument and it is the
FORM generating the call (see "CALL™ for FUNCT IONs in [3]).

"ARGS"™ 'I'nis must be the last STRING. [t says treat the rest of the arguments in the FORM as a LIST and
pass it as the argument (sec "ARGS" for FUNCT I0Ns in [3]).

“TUPLE*" EVAL the rest of the arguments and pass them.

The Assembler 71

Sl

‘The ML Programming Environment 119

<END>
indicates the end of an RSUBR or group of RSUBRs. Only the text between TITLE and END pseudo-ops will
be processed by the assembler. This makes it possible to intermix assembler source code and normal MbL
source code in the same file (although assembly must be done before compilation in such cases).
CTYPE-CODE jpype:atom>
allows references to the internal TYPE codes for both system and user defined TYPEs. It takes one argument,

the M1 TYPE name. For example:
{MOVSI A* <TYPE-CODE FIX>>

puts the TYPE code for FIX into the left half of accumulator A.

(TYPE-WORD fype:atem any ... >
generates a reference to a word containing the TYPE code for fype in the lefl half and possibly other junk in
the right hulf. “Ie first argument is the TYPE name and the rest of the arguments are optional but iF supplied
are added into the right half, IF the TYPE is an initial TYPE and no right half is generated. a reference to the

‘$Taype’ location in the interpreter is generated, For example,

<PUSH TP* CTYPE-WORD FIX)>>
CPUSH TP* [07>

would push a FIX 0 on the stack,
CGETYP g tupeatom>
has the same form as a PDP-10 instruction. It gets the TYPE code for fype into the right half of its
accumulator from its address. This is done by generating an appropriate LDB (load byte) instruction.,
{MQUOTE pblect:any>
allows the RSUBR to reference garbage collected space. It adds its argument to the RVECTOR (il it isn't
alrcady there) and evaluates to an address of the form u_ﬂ:u:r{ R). pointing to the value word for object,
<PQUOTE gbject:anyd
Is identical to <CMQUOTE objectzany> =1> ie. it points to the type-word, not the value-word. 'This is a more
consistent way to look at things.
CIQUOTE pblecizany label:atom?
s like PQUOTE cxcept that this will add a new clement to the reference VECTOR cach time called. The
optional label if given defines the ATOM to be a label referring to that element. “his is the only way to refer to
that element again.
<PSEUDO arg:any®
evaluates its argument for its side effects and assembles no code.

1.1 The Assembler

120 ‘I'he ML, Programming Environment

<SIXBIT siring>
mukes SIXBIT of the legal characters of siring.
¢SQUOZE gsring sqbits: word> .
makes SQUOZE of the legal characters of string and sticks the low-order four bits of the optional sgbits in the
high-order four bits of the value. Sec the MIDAS Manual [4] for an explanation of the SQUOZE code.
<BYTE boundan:fix byte-sizefix location?
Example: <BYTE 1 36 (C) 1> islike <(*014300%) (C) 1.
ARG grgnum:fix>
is like C(AB) <® 2 <~ .argnum 1227. ARG should not be used in GLUEable code.
¢STACK syml:afomt sym2:alom symi:atom ... >
makes syl a symbol for <(TB) 0>, yyme a symbol for <(TB) 2>, symia symbol for <(TB) 4>, cic.
STACK should not be used in GLUEable code.

¢DPUSH g¢ arge
<{DPOP ac args»

<DMOVE ac args®
¢DMOVEM gc args

are the double-word PDP-10 instructions. FFor example,
¢DPUSH ac args>

expands into
HSPLICE (<¢PUSH ac args> <PUSH ac args 1)

CUNDEF? sumboeliatom>
evaluates to true only il the symbaol has previvusly in the code been used as a symbol, but has not been

defined.

CIF-NEEDED guubolatom jnstructions ... ?
If CUNDEF? symbol> evaluates to true, then all the instructions are inserted at the current location, otherwise

they are not.

C*INSERT [file-specislring”

takes a file and reads instructions from it and inseris the instructions read at the current place.

7.1.8. The Type RSUBR

An RSUBR is a MDI. object of PRIMTYPE VECTOR. ‘I'he first clement of an RSUBR is always of TYPE
CODE (or PCODE), CODE is of PRIMTYPE UVECTOR, consisting of words or instructions. ‘I'he second clement
of an RSUBR is an ATOM which is the RSUBR's name. If the RSUBR has declarations they arc the third
clement. ‘The rest of the RSUBR contains MDL objects which must be referenced by the code

The Assembler 1.1

The MDL. Programming Environment * 121

An RSUBR-ENTRY is a VECTOR of two or three items. 'The first item is cither an RSUBR or an ATOM
whose GVAL is an RSUBR, the second is an MﬂH which is the entry's name and the third is a DECL for the
entry. ‘Ihe difference between an RSUBR and an RSUBR-ENTRY is that an RSUBR always starts running at
the beginning of the code when it is called while an RSUBR-ENTRY usually starts running somewhere in the
middie of the code,

7.1.9. Writing Gluable RSUBRs

Certain conventions must be followed when writing hand coded RSUBRs in order to get the most benefit
from GLUEing. I the RSUBR (or RSUBR-ENTRY) has "TUPLE" in its DECL. it is already in the best shape
pussible. In all ather cases. the code after the TITLE or SUB-ENTRY pscudo- operation should simply push
the arguments onto the TP stack and PUSHJ P* 1o une of the internal entries based on the number of items
on the stack., Afler the PUSHJ it should do a <JRST FINIS>. An internal entry is set up by using the
INTERNAL-ENTRY pscudo-op which takes two arguments: an atom and a fix. The aom acts as if it were a
lubel on the next instruction and may be used as a label, The Jix specifies how many items (type-value pairs)
arc on the stack at this internal entry. In the simple case where there are no optional arguments, only one
internal entry exists and its number argument is exactly the required number of arguments, |F optional
arguments exist, some kind of dispatch will have to be done,

In the rest of the body of the RSUBR, no references to AB or 1B (through the ARG or STACK pscudo- Ops or
dircetly) can be made, because after GLUEing their contents may be meaningless. Al references to the TP
stack must be indexed by TP, The usuul precautions concerning the possible movement of code if an INTGO
or MCALL s donc also apply (i.c. the use of <SUBM M* (P)> at the beginning and <JRST MPOPJ> at the
end of the code are essentially mandatory).

7.2. Debugging Binary Code
Binary code produced by the M1 assembler or the MDIL. compiler may be debugged with DDT, like any
other binary code. However, an interfuce between that code and the DDT environment must cxist. ‘That

interface is the "RDB™ PACKAGE. It is obtained by
<USE "RDB">

The symbol wble optionally produced by the assembler can be passed to DDT and at the same time the
RSUBR frozen (moved out of normal garbage-cullected space) by:

11 The Assembler

122 I'e MIDI., Programming FEnvironment

(RFREEZE nameof-rsubralom?
Note that nanie-of rsubr may also refer to an RSUBR-ENTRY.

<RBREAK ngme-of rsubriatom?
is similar. but in addition causes DDT to put a breakpoint at the first instruction of the RSUBR.

IF there is no symbol table, RFREEZE and RBREAK merely freeze the RSUBR and pass up symbuols for the

ASUBR name and any sub-cntries.

In all cases the symbols passed up are made up of the legal SQUOZE characters (letters, digits, 1\§, 1V%,
1%,) of the name, up to six characters. For example the ATOM FOO-*BLECH becomes the :'q.fmh-.ﬂ FOOBLE.
C(ADR pbjeci:gnyy
rerurns the address of object as a F1X, For example, CADR rsubr> would return the location of the rsubr in

core.

CRUNBREAR name-of rsubrialom>
clears the breukpoint(s) at the beginning of the RSUBR and of any of its sub-cntries.

7.3. Unassembling Binary Code

Converting compile i or assembled hinary code back into something resembling the original assembler
source code is an operation that is performed primarily in one situation: tracking down a M1, compiler bug.
It is. however, almost invaluable in that situation. ‘I'c PACKAGE containing the unassembler is "UNASSM".

"I'he main entry is
CUNASSEMBLE gode;rsubrorgroup
oulput:chaniel-or-string
glue?:boovlean>

code is the object being unasscmbled. It is cither an RSUBR (not an RSUBR-ENTRY, note), or an ATOM whose
LVAL is a group (as created by GROUP~LOAD).

oufput is where to put the output; ifit is a STRING, then the output is put in a file with that name. If oufputis
a CHANNEL, then output is done on that CHANNEL. ‘e file is "eode UNASSM™ by default.

glue? (by default T) tells whether there arc glue bits for the code loaded. IF there are none, this argument
should be given asa FALSE.

The output produced by UNASSEMBLE is like the MD1. compiler’s assembler input, with the addition of

comments which give code and stack offsets for stack slots referenced. ‘This information is useful in tracing

exactly what is going on in the code, but it is not always accurate, since the compiler's stack muodel is

sometimes two complex for the unassembler to understand.

Debugging Binary Code 7.2

I'he MDI. Programming Environment 123

MDL compiler bug reports are expected to contain MDL souree and UNASSEMBLEd compiled code if
possible.

¥

13 Unassembling Binary Code

124

‘The MIDI. Programming Environment

The MDL. Programming FEnvironment 125

8. Informational Aids

This chapter discusses a few programs, most written in assembly language rather than MnL, which are

nonetheless of use to MDL programmers. Most are informativnal aids of one sort or another. They include:

MUDCOM. a program for comparing versions of a MDI, program, 1t is used by COMBAT (see section 5.2) to aid
in the prepuration of compiler plan files. 1t has several useful aliases.

MAT, the MDL “atsign’ program, produces listings, indexes and cross-referenee files for ML programs, B, a
similar program which is not MDI -specific, will perform approximately the same tasks.

MUDING is an interface to the ITS IPC device and Is therefore a means of interacting with any Mbi. that has
the IPC device enabled, 1t has an alias, STATUS, which is particularly useful for determining the progress
of compilations.

8.1. File Comparison and Checking with MUDCOM

MuDcoM is an assembly language program (not written in MDL), which nonetheless understands the
syntax of M programs. It is used for comparing two versions of the same program, and also (under the
name MUDCHR) for checking the syntax of Mii. source files more rapidly than they can be loaded into a
MbL, MUDCOM is not interactive; all instructions must be passed on the jel line.

MuDCOM understands the following MDL structures at top level:

FUNCT IONs <DEFINE FOO ,.... >

MACROs <DEFMAC BAR >

GVALS ¢SETG MUMBLE ,...>

LVALS ¢SET MUMBLE ,.,..>

MANIFEST

PACKAGE

ENTRY

ENDPACKAGE

MSETG <MSETG FOO 1> is<SETG FOO 1> <MANIFEST FO0O>

The jel for MUDCOM in the simplest case is filenamel , filename2, MUbCOM will compare the two files and
print out information concerning those structures it understands which have been removed, changed, or
inserted,

MubCOM has a number of switches which can be set. "They are given as /switch, where switch is the name
of the switch. Currently the following switches are uscful:

T prinis totals at the end of the comparison.

L prints all FUNCT IONs and GVALS in the file.

8.0

126 T'he MDI. Programming Environment

C checks the file given for syntax (only one file name at a time).

M checks the files for changed MACROs and MANIFESTS In this mode, Muncom will make a second pass
through the first file given in the je/, looking for all occurrences of calls to chunged MACROs and
MANIFESTs. MUDCOM will consider FUNCT I0Ns making such calls as having been “changed” and will tell
which MACRO or MANIFEST caused the ‘change’.

The following other jef is understood by MUDCOM:

(atom ...)appearing before the file names in the jel will cause MUDCOM 1o think that those FUNCT IONs
have been changed and will print them as such,

" filename™ appearing nnywh;:rf: in the jel causes commands to be read from that file until the end-offile is
reached.

{filename . ..) isused to specily files to scarch in calls o MUDIND (see below).
Aliases of MUDCOM:

1. MUDCHIK. MUDCHK filename checks a file for M. syntax errors. This is the same as
MUDCOM /C filename

2. MUDI ST. MUDLST filename lists all FUNCT IONs and GVALs found in the file. This is the same as
MUDCOM /L filename

3. MUDIND. :MUDFND afom ... {file file} scarches files for FUNCT IONs/GVALS called arons, It
can be used for finding a FUNCT ION in a haystack, ‘This is the same as

MUDCOM (atom atom) {file file}

Since typing this can be tedious, it is casier to use the "filename" convention and have a disk
file containing the files to be scarched (surrounded by (}s). Thus,

MUDFND FOO BAR BLETCH "MARC;ZORK FILES®
will look for the typical FUNCT ION names in the files specified in MARC ; ZORK FILES,

8.2. The MDL Listing Program MAT
MAT is a program for producing listings of ML programs on the Xerox Graphics Printer (XGP) or a
lineprinter. (MAT is short for *MDI. Atsign’, after the general listing program named @),

Besides a listing of the program itself, MAT includes a symbol table - a list of de fined objects (arguments o
DEFINE, SETG, ctc.) and optionally a cross-reference listing == a list of every place in the program cach ATOM
is used. MAT can also a produce a record fic, so that the next time MAT is run on the same program, only pages
that have changed will be printed.

File Comparison and Checking with MUDCOM 8.1

Ihe MDL Programming Environment 127

MAT is invoked with a jel line in the following format:
MAT lrec=outputinpur-files ... /swilches ...
Mure specifically. it takes any number of input files (separated on the jef line by commas) and produces a
listing of them in the ousput file, with options specified by the swirches (cach preceded by a /, and optionally a
record file frec (see section 8.2.4).

The oufput file name defaults on ITS to xuname; inpur @ or @XGP depending on whether the X switch is
used, and on Tenex/TOPS-20 to input. MAT or input. XGP in the connected directory,

8.2.1. MAT Switches
The specific sorts of options available in MAT are controlled by a varicty of switches which determine such
things as whether to produce a cross-reference listing, whether to use the XGP as the output device, and so

on. ‘The following switches are implemented:
/C

causes a crossereference listing w be produced. ‘This is a tible showing cach reference to cach ATOM (other
than SUBRs, FSUBRs, and locals) in the input files.

/D[filename]
specifies file-mame as the file containing the user's definitions. Definitions are discussed in detail below,

/F [text-font, header-font , comment-font]
specifies the XGP fonts o use in the ouspur file. They are respectively the font to use for the program itself,
the font for subtitles and other headers, and the font for M. COMMENTs and top-level STRINGs. The
defuult directory is FONTS and the default second file name is KST. The default font is 20FG. /F also causes
a /X to be performed.

/ 1[file-name]
specifies a file which contains the names of input files, This is in licu of typing them all in each time MAT is
run. useful for large subsystems incorporating many files, The input files listed should be scparated by

commas or carriage-returns.
/N

causes output of only the symbol tables and cross-reference listing (if specified). No heading or title pages are

produced.
/P

On ITS, VALRETs a : PROCED to DDT and continues. Useful for long MAT runs.

8.2 The MIDL Listing Program MAT

128 The M. Programming Environment

/Q[message]
prints message ut the bottom of each page. ‘The default is a copyright message.
/R

creates a record file (this is automatic if "frec=" is used), Sce below for details about record files.
/5

outputs ¢ach file in a multiple file listing separately,
/T namel namnel]

specifies names to use on the title page (in licu of the file names of first input file).
fu

prints a separate symbol table for each type of defined item in the input file(s) (c.g. FUNCTION, GVAL, cic.).
/X

declares that output is to be for the XGP. ‘Iis changes the default ourput file sccond name (o BXGP, IF/F is

used, /X is done automatically.

8.2.2. Subtitles

Subtitles can be used by including STRINGS in an input file which begin with the word SUBTITLE. The
remainder of the STRING will be used as part of the header of cach vutput page until another subtitle is
found. The STRING need not be a COMMENT, Subtitles may have a maximum of 79 characters.

Any file containing subtitles will hive a table of contents at the beginning of the listing.

8.2.3. MAT Definition :
The facility exists in MAT to cause user specified actions to occur at the time a specilic ATOM is about to be
cross-referenced. The most important use of this is for functions which define things which the user would

like MAT to recognize, for example, a function one of whose side-cffects is to SETG one of its arguments.

When MAT encounters an invocation of the function F00, where FOO has been defined o MAT, it runs

code generated by the user's MAT definition for FOD, which causes various actions to be performed.

MaT definitions are always located in a disk Rle which s specificd by the /D switch. Each definition must
be of the form:
[name argl arg? arg3 ...]
where name is the name of the item which is being defined and the args are action specifications as described
below.

The MDL. Listing Program MAT 8.2

Ihe ML Programming Environment 129

The syntax of a MAT definition s somewhat complex. Basically, there are two types of actions which can
take place: ‘sctting' an ATOM (o be cquivalent to a specified type (i.c., FUNCTION, MACRO, ctc.) or
‘cross-referencing’ the ATOM (i.e., muking it appear in the cross-reference listing).

‘The actual definition for an ATOM is a string of MAT action specifications, one for cach argument in a call
W that ATOM, For example, defining FOO to be
[FOO SETG SKIP SETG]

implics at least three arguments to FOO, the first and third of which should be treated as if they were SE TGed.

Thus, if
{FO0O FROB 1 MUMBLE>

were encountered in an input file, it would be treated as though

<SETG FROB any>
<SETG MUMBLE any>

had been encountered, The symbol table would then point to the line on which the application of FOO
appeared as the location of the definitions of FROB and MUMBLE,

The following tokens are meaningful action specifications:
CREF means to cross-reference this ATOM,
SKIP means to do nothing with this argument (a place holder).

REST means that the rest of the action specifications may be repeated for the rest of the arguments,

name (where name is the name of a Mid1. SUBR which causes some action to be rou tinely performed) means to
act as though the ATOM had had that SUBR applicd to it. For example, SETG will cause MAT w treat the
item as if a SETG had been performed on it Similarly, MANIFEST will cause MAT to believe it
MANIFESTed.

ALS0 means to do another thing to this ATOM. Thus, [SETG ALSO MANIFEST 1 specifies that the argument
should be treated as though it were both SETGed and MANTFESTed,

=xy where xj are two characters, causes a user defined symbol type Lo be created. In the cross-reference, this
will appear as xy in front of the name of the ATOM,

Any of the preceding tokens may have | =oblist added. This means that instead of the ATOM being set to

the specified type, atom! =oblist will be set. ‘Thus, for example,
REST SETG!-FLAGS .

might specify a function which takes a LIST of ATOMs and performs

8.2 The MDL Listing Program MAT

130) The MDIL. Programming Environment

¢SETG <INSERT atom <GET FLAGS O0BLIST>> anmy>
on each of them.

[SPEC xy name] specifies name to be the expansion of xy for purposes of the symbol table. Name cannot
have spaces in it

Since not all items to be recognized within a function call are at top level, there is a facility for telling MAT
to recognize structures. This is done by inserting the correct bracket (which MAT will encounter) around the
part of the action specification referring to a structure. For example, a definition for GDECL (which is

handled internally, however) might be
REST (REST GDECL) SKIP

which specifies that the arguments are alternately a LIST of things o GDECL and an argument which is
unimportant,

A special case of bracketing is when the location of the structure is not known. In this case, bracker!
means "find the next object that starts with this bracket”. An cxample later demuonstrates this.

What follows are some examples from a real definition file.
[NEWSTRUC NEWTYPE SKIP REST SETG SKIP]
NEWSTRUC takes an ATOM which becomes the name of a NEWTYPE, the DECL for that TYPE (which is not
interesting to MAT) and an arbitrary number of pairs of ATOMs (names of offsets in the structure) and their
DECLs (again, not interesting).
[FLAGWORD REST SETG]

FLAGWORD takes an arbitrary number of ATOMs and SETGs them something.

[SPEC PG Pure-Gval]
[SPEC 0B Object]

[SPEC AC Action]

[SPEC VB Verb]

[SPEC OS Object-Synonym]
[SPEC AD Adjective]

These define the long descriptions for the newly defined symbol types created in the examples,
[PSETEI-FG]

PSETG takes an ATOM and a value and SETGs the ATOM (also putting it in a LIST of ATOMs (o purify).
[GET-0BJ “CREF"]

GET=0B8J takes a STRING PNAME of an object and returns the object. This definition allows "object™ to be

cross-referenced here, Note that CREF is in quotes because the clement being dealt with is a STRING,

The MDL. Listing Program MAT 8.2

The MDIL Programming Environment 131

[OBJECT ["=0B" REST "=05"] [REST "=AD"]]
OBJECT creates objects which are referenced by GET-0BJ. OBJECT first lakes a VECTOR of STRINGS, the
first of which is the true object specifier (0B) and the rest of which are synonyms (05), The sccond argument

isa VECTOR of STRINGs, which are PNAMESs of adjectives refe rring to the object (AD).
[ADD-ACTION "=ACI-ACTIONS" SKIP REST [[!"=VB!-WORDS" SK1P]]]

ADD=-ACT ION creates ‘verbs. The name of the verb is the first argument, which isa STRING. ADD-ACTION
SETGs siring! =ACT IONS to an item of type ACT LON (AC), The second argument is not interesting. The rest
of the arguments arc VECTORs, somewhere in which is a VECTOR of 4 STRING and an uninteresting object,
ADD-ACTION SETGS this lutter STRING (the PNAME of an ATOM in the WORDS OBLIST) to something of

type verb (VB). This is about as complicated as a MAT type specification is likely to geL
[1ADD-ACTION "=AC!-ACTIONS ALSO =VB ! -WORDS"]

LADD~ACT ION takes as its first argument a STRING which is SETGed buth in the ACTIONS OBLIST and in
the WORDS OBLIST, toan ACTION (AC) and a verb (VB), respectively,

8.2.4. MAT Record Files

Listing Record (or LREC) files, akin o @ LREC files, can be produced in MAT by including files in the jel
line. Use of an LREC file has the advantage that future invocations of MAT using it need only output the
changed pages of the listing. ‘The LREC file produced will be placed in file and contains all relevant jel
information, so that future calls w MAT for comparison listings need only have file= in the jel line, Additional
Jjel may then be appended. ‘There is, however, no way o turn off flags once set up. ‘Therefore, if a
cross-reference file is o be used only occasionally, leaving the cruss-reference (/C) fag off for the initial
listing and appending it at other times is preferable.

An alternate way of creating a Listing Record file is to use /R which is equivalent to
input-file-first-file-name LREC=
in the jel. Obviously, /R is not sufficient for future comparisons.

8.3. The MDL-IPC Device Interface MUDINQ

MUDING is a small program that formulates, sends, and receives messages to and from Miis over the IS
IPC (*Inter-process Communication’) device, ‘The user specifics a target ML process by its uname and jname,
cither on the jel line or to MUDING directly. He then inputs the message o be sent to that Mbi. The Message
sent is enclosed in an invisible protective shield (an ERROR handler and so forth) to prevent it from
interfering in the operation of the target. ‘The message is PARSEd and EVALed by the target, and the result
put in a file which is printed by MUDING when it appears.

8.2 The MIDL. Listing Program MAT

132 ‘Ihe MIM. Programming Environment

The most common use of this program is to answer the question "What could my compilation (or

whatever) be doing after all this time?" The answer may be obtained by MUDINQing a <FR&> or <FRAMES>

at it.

Inquiring after the state of a compilation is such a common use of MUDINQ that there is an alias of it,
S1ATUS. which MUDINGS a ¢<STATUS> (see section 5.1.1) at a compiler process and waits for a response.

Finally, an alias of MUDINQ called W110M lists those MDI jobs listening on the [PC device.

For more details on the operation of the Mt IPC interface, sec [3].

The MDL-IPC Device Interface MUDINQ 8.3

133 ' The MDIL. Programming Environment

| References

Edward H. Black.
Using MDI’s Calico User Interface,
Technical Report SYS.11.21, MIT L.CS Programming Technology Division, 1976,

2]
Richard M. Stallman.
EMACS.
Technical Report 519, MIT Al Laboratory, August, 1979,

3]
5. W, Galley and Greg Pfister.
The MDI. Progranmming Ianguage,
M.LT. Laboratory for Computer Science, 1979,

4]
Peter Samson,
MIDAS.
Technical Report 90, MIT Al Laboratory, October, 1965,

5]
P, David Lebling, R, V. Baron and Nruee K. Daniels.
RMODE: A Real-time Edit Facility,
Technical Report 8YS.04.07-1, MIT 1.CS Programming T'echnology Division, October, 1977.

Table of Contents

134

Table of Contents

The MDD, Programming FEnvironment

135

Index

“LCOMBT TAILOR® 91
"CMDL.5V>" T4
"CMDL>FIXUP.FILE® 73
"CMDL3SAV.FILE® T
“(MDLLIB>* T3
"ADDED FILES* 74
“CLEAN® 109
"CRITIC*® 55
“DEBUGR™ 41
“DELETE FIXUPS* T3
"DELETE SAVS™ 73
"EDIT* 19)
*FINDATOM® 50
"FRMSP* 19

GLUE® 103
*GRLOAD® 19

“L* 69

"Lup* N
"MONITOR™ 30,46
*MUDMAN® 3
"MUDRST* 74
“MUDSAV; FIXUP FILE® T3
"MUDSAV:SAV FILE" 73
“"HUDTHE® 73,106
"POUMP® 106

"PKG" 10

"PP* 15

*PRELOD® 107
"PURITY" 108

RDB 116,121
“"RECORD" B0
"SUBRFY" 107
“TEMHAK® 113
"TEMHLP" 113
“TEMPLATE" 110

"TRACE" 44
"UNASSMN® 122
"UNLINK" 54
& 182

&1 18

LIS 18

.

*INSERT 120
NULL 15
.OUTCHAN 15
TR

TR
ADDRESS 116
ADR 122
ALREADY-USED-ELSEWMERE 12
ARG 120
ASSEM 116

ASSEMBLE 115
ASSIGNEDT 49
B 23
BA 29

Table of Contents

I'he MIDL, Fmgmmming Enwimnment

BK 29

BLOCK 9. 40
BOOLEAN 111
DOUNDT 49

BREAKR 29
BUILD-TEMPLATE 113
BYTE 120

cC %

C: 26
CAN-NOT-BE-DUMPED 15
CAREFUL 82,87
CHANMEL 0
CLEAN-MONITORS 49
CLEANUP 109
CLISTF 74

COMBAT 79, 83, 85, 90
COMMENT 15,16
COMPILE 79 92 93
COMPILE-TUNCTION 93
CRITIC 55
CRITIC-NOTES 55
cu 28

D M4

DOMAIN 74,76
DEBUG 4]
DEBUG-COMPILE BL, 8BS
DEBUGR 15
DECLARE 118
DETER=FIND 70
DEFINE 41

DELETE 75

DL 23

DMOVE 120

DMOVEM 120

Do 27

DPOP 120

DPUSH 120

DR 23

DROP 10,13
DUMP-RSUBRS 114
DUMP=TEMPLATES 114
E-PKG 20
E=VERBOSE 25§

EDIT 15,19, 4]
EDIT-TABLE 31
END 118

ENDBLOCK 9
ENDPACKAGE 10,13
ENTRY 10,12.63
ENTRY-FIND 70
ENV 61

EPRINTI 17

EPRINT 17

ERRET 38
EVAL-WHEN &1
EXPERIMENTAL 85
EXPFLOAD 41,82 87

-

A A —

137

OUT-FAST 44
QUT=PRINT 45
OUT-UNIQUE 44
OUTCHAN 59

P25

PA 29

PACKAGE 10,11,12, 14,63
PACKAGE-F IND 70
PACKAGE-MODE B1, 86
PC 29

PCODE 76

PCOMP 79, %0
POUMP 104, 106
PNAME 14

PPRINF 16
PPRINT 15
PQUOTE 119
PRECOMPILED 81, 86
PRINL 17
PRINT-CLEANUP 110
PSLUDO 119

PT 25

PU 25

PURET 54
PURELST 109
PURIFY 107

Q 12

or 22
QUICKPRINT 16

R 23

ROREAK 122
READI-INTERRUPTS 46
REASONADLE 82, 87
REDEFINE 16
REDO 1,86
MENTRY 12
REPAIR 42

RETRY 19
RFREEZE 121

RM 31

ROOT 12
RPACKAGE 12
RUNBREAK 122
RVECTOR 107

W 30

S M4

SAV T2 106

SAVE 108
SELF-FAST 44
SHORT-PRINT 29
SIXBIT 119

SL M

SOURCE 81,87
SPEC-FIND 75
SPECIAL 81,87
SQUOZE 120,122
SR 24

STACK 120
STATUS 75,80

Table of Contents

The MDL, Programming Environment

su 0

SUB-ENTRY 118
SUBRFY 106, 107
SURY 104

sw 27

TEMPLATE 110
TEMPLATE-DUMP 113
TEMPNAME 81, 86
TITLE 118

TRACE 15,44, 45
TRANSLATE &7
TRANSLATIONS &7
TYPE-CODE 119
TYPE-WORD 119

U 24

Uc 28

uL 24

UM 10
UNASSEMBLE 122
UNDEFT 120
UNLTNE 54
UNPURIFY 54
UNPURIFY-PAGE { -~ TUNLINK 54
UNTRACE 45
UNTRANSLATE &7
UR 24

USE 10, 12,13 14,63
USE-DATUM 10,13, 14
USE-DEFER 66
USE-TOTAL 66

ur 23

L B L

VALUE 40
VERBOSE 45
VERTICAL 16

WM 31
WRITE!=INTERRUPTS 46
|

TA 42

tE 42

tF 2

tN 42

0 42

0 42

th 42

S 23

Mat 126
Muncnk 126
Muncom 86, 125
Muinan 126
Muiimg 131
MumsT 126

136

EXPSPLICE 41,887
EXTERNAL 13

F A

FEIN 72, 105

FCOMP B8O, 85
FEATURET &l
FEATURES ol
FILE-ASSEMBLE 115
FILE-COMPILE 79
FILE-TEMPLATE 113
FIND-FILE 75
FINDATOM 50
FIXUP 15,72, 106
FLIST 75

FLOAD 14,107 .
FLUSH-CLEANUP 110
FORM-FAST 44

FR& 18,37

FR&P 19

FRAVAL 19

FRAMES 18,37

FRATM 19

FRLVAL 19,37

FAM 18,20

FRTYPE 19

G 25

GET=-FILE 75

GETYP 119

GLUE 82, 87,103, 104, 107,121
60 28

GROUP-DUMP 39, 104, 113
GROUP-GLUE 104
GROUP-LOAD 26, 19, 82, 106, 107, 108
GROUP-PURIFY 108
HAIRY-AMALYSIS B3
HELP 43

12

I* 2%

I:

IF-NEEDED 120

16 2%

IN-BREAK 44
IN-PRINT 45

INCHAN 59
INDENT-DIF 43
INDENT=INC 43}

INDENT -HOD 4]
IMITIAL 14,65
INTERMAL-ENTRY 118 121
IQUOTE 119

IT 1

KX

K:

KB X

KC 2

KEEP-FIXUPS 15, 16,41
KILL-ALL-MONITORS 49
KILL-MOMITOR 49
KILL-SUBRFY 107

Table of Contents

The MDI. Programming Environment

KILL:;PURITY 108
KT X

L 23
L-ALWAYS-INQUIRE 68
L-COUNTE &9
L=COUNTP &9
L-FILE 69

L=-FIND 69
L-LISTE 69
L-LISTP &5
L-LISTPE 70
L=LOAD 69
L-NO-DEFER 66, 68
L-NO-MAGIC 68
L-NOISY 68

L-0BL 70

L-PATH 70
L=SEARCH-PATH 64, 68,69
L-S[COND-NAMES 64,65, 68
L=-TRANSLATIONS 67
L-UNUSE 10,13
L-WHERE &9
LAST-OUT 42
LIB=-GC 72

LIBMUD 64
LINE=CHANMEL 115
LISTF 74

LOAD 14
LOOKAHEAD 16
LUP-ACT T1
LUP-ADD-DATUM 72
LUP-DCT T1
LUP-DEL T2
LUP-MOVE 72

N7

MACRO B6
MACRO-COMPILE 82 87
MACRO-FLUSH 82 &7
MAGIC-RSUBR 40
MAKE-SYM-TABLE 116
MANIFEST B6
MAX-SPACE 81,87
MCALL 103
MONITOR 47
MOMITORS 49
MONOB) 48,49
MONSPEC 49
MQUOTE 119
MUDDLE 117
NEWVAL 48

NODE ™

NPCONP T9

03

OBLIST 9.9
OLDVAL 48

or 117

OPCODE 116

oT 1

OUT-BREAK 43

