arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / include / linux / seqlock.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4
5 /*
6  * seqcount_t / seqlock_t - a reader-writer consistency mechanism with
7  * lockless readers (read-only retry loops), and no writer starvation.
8  *
9  * See Documentation/locking/seqlock.rst
10  *
11  * Copyrights:
12  * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli
13  * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH
14  */
15
16 #include <linux/compiler.h>
17 #include <linux/kcsan-checks.h>
18 #include <linux/lockdep.h>
19 #include <linux/mutex.h>
20 #include <linux/preempt.h>
21 #include <linux/spinlock.h>
22
23 #include <asm/processor.h>
24
25 /*
26  * The seqlock seqcount_t interface does not prescribe a precise sequence of
27  * read begin/retry/end. For readers, typically there is a call to
28  * read_seqcount_begin() and read_seqcount_retry(), however, there are more
29  * esoteric cases which do not follow this pattern.
30  *
31  * As a consequence, we take the following best-effort approach for raw usage
32  * via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
33  * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
34  * atomics; if there is a matching read_seqcount_retry() call, no following
35  * memory operations are considered atomic. Usage of the seqlock_t interface
36  * is not affected.
37  */
38 #define KCSAN_SEQLOCK_REGION_MAX 1000
39
40 /*
41  * Sequence counters (seqcount_t)
42  *
43  * This is the raw counting mechanism, without any writer protection.
44  *
45  * Write side critical sections must be serialized and non-preemptible.
46  *
47  * If readers can be invoked from hardirq or softirq contexts,
48  * interrupts or bottom halves must also be respectively disabled before
49  * entering the write section.
50  *
51  * This mechanism can't be used if the protected data contains pointers,
52  * as the writer can invalidate a pointer that a reader is following.
53  *
54  * If the write serialization mechanism is one of the common kernel
55  * locking primitives, use a sequence counter with associated lock
56  * (seqcount_LOCKNAME_t) instead.
57  *
58  * If it's desired to automatically handle the sequence counter writer
59  * serialization and non-preemptibility requirements, use a sequential
60  * lock (seqlock_t) instead.
61  *
62  * See Documentation/locking/seqlock.rst
63  */
64 typedef struct seqcount {
65         unsigned sequence;
66 #ifdef CONFIG_DEBUG_LOCK_ALLOC
67         struct lockdep_map dep_map;
68 #endif
69 } seqcount_t;
70
71 static inline void __seqcount_init(seqcount_t *s, const char *name,
72                                           struct lock_class_key *key)
73 {
74         /*
75          * Make sure we are not reinitializing a held lock:
76          */
77         lockdep_init_map(&s->dep_map, name, key, 0);
78         s->sequence = 0;
79 }
80
81 #ifdef CONFIG_DEBUG_LOCK_ALLOC
82
83 # define SEQCOUNT_DEP_MAP_INIT(lockname)                                \
84                 .dep_map = { .name = #lockname }
85
86 /**
87  * seqcount_init() - runtime initializer for seqcount_t
88  * @s: Pointer to the seqcount_t instance
89  */
90 # define seqcount_init(s)                                               \
91         do {                                                            \
92                 static struct lock_class_key __key;                     \
93                 __seqcount_init((s), #s, &__key);                       \
94         } while (0)
95
96 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
97 {
98         seqcount_t *l = (seqcount_t *)s;
99         unsigned long flags;
100
101         local_irq_save(flags);
102         seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
103         seqcount_release(&l->dep_map, _RET_IP_);
104         local_irq_restore(flags);
105 }
106
107 #else
108 # define SEQCOUNT_DEP_MAP_INIT(lockname)
109 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
110 # define seqcount_lockdep_reader_access(x)
111 #endif
112
113 /**
114  * SEQCNT_ZERO() - static initializer for seqcount_t
115  * @name: Name of the seqcount_t instance
116  */
117 #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) }
118
119 /*
120  * Sequence counters with associated locks (seqcount_LOCKNAME_t)
121  *
122  * A sequence counter which associates the lock used for writer
123  * serialization at initialization time. This enables lockdep to validate
124  * that the write side critical section is properly serialized.
125  *
126  * For associated locks which do not implicitly disable preemption,
127  * preemption protection is enforced in the write side function.
128  *
129  * Lockdep is never used in any for the raw write variants.
130  *
131  * See Documentation/locking/seqlock.rst
132  */
133
134 /*
135  * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot
136  * disable preemption. It can lead to higher latencies, and the write side
137  * sections will not be able to acquire locks which become sleeping locks
138  * (e.g. spinlock_t).
139  *
140  * To remain preemptible while avoiding a possible livelock caused by the
141  * reader preempting the writer, use a different technique: let the reader
142  * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the
143  * case, acquire then release the associated LOCKNAME writer serialization
144  * lock. This will allow any possibly-preempted writer to make progress
145  * until the end of its writer serialization lock critical section.
146  *
147  * This lock-unlock technique must be implemented for all of PREEMPT_RT
148  * sleeping locks.  See Documentation/locking/locktypes.rst
149  */
150 #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT)
151 #define __SEQ_LOCK(expr)        expr
152 #else
153 #define __SEQ_LOCK(expr)
154 #endif
155
156 /*
157  * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated
158  * @seqcount:   The real sequence counter
159  * @lock:       Pointer to the associated lock
160  *
161  * A plain sequence counter with external writer synchronization by
162  * LOCKNAME @lock. The lock is associated to the sequence counter in the
163  * static initializer or init function. This enables lockdep to validate
164  * that the write side critical section is properly serialized.
165  *
166  * LOCKNAME:    raw_spinlock, spinlock, rwlock or mutex
167  */
168
169 /*
170  * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
171  * @s:          Pointer to the seqcount_LOCKNAME_t instance
172  * @lock:       Pointer to the associated lock
173  */
174
175 #define seqcount_LOCKNAME_init(s, _lock, lockname)                      \
176         do {                                                            \
177                 seqcount_##lockname##_t *____s = (s);                   \
178                 seqcount_init(&____s->seqcount);                        \
179                 __SEQ_LOCK(____s->lock = (_lock));                      \
180         } while (0)
181
182 #define seqcount_raw_spinlock_init(s, lock)     seqcount_LOCKNAME_init(s, lock, raw_spinlock)
183 #define seqcount_spinlock_init(s, lock)         seqcount_LOCKNAME_init(s, lock, spinlock)
184 #define seqcount_rwlock_init(s, lock)           seqcount_LOCKNAME_init(s, lock, rwlock)
185 #define seqcount_mutex_init(s, lock)            seqcount_LOCKNAME_init(s, lock, mutex)
186
187 /*
188  * SEQCOUNT_LOCKNAME()  - Instantiate seqcount_LOCKNAME_t and helpers
189  * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t
190  *
191  * @lockname:           "LOCKNAME" part of seqcount_LOCKNAME_t
192  * @locktype:           LOCKNAME canonical C data type
193  * @preemptible:        preemptibility of above locktype
194  * @lockbase:           prefix for associated lock/unlock
195  */
196 #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockbase)    \
197 typedef struct seqcount_##lockname {                                    \
198         seqcount_t              seqcount;                               \
199         __SEQ_LOCK(locktype     *lock);                                 \
200 } seqcount_##lockname##_t;                                              \
201                                                                         \
202 static __always_inline seqcount_t *                                     \
203 __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s)                  \
204 {                                                                       \
205         return &s->seqcount;                                            \
206 }                                                                       \
207                                                                         \
208 static __always_inline const seqcount_t *                               \
209 __seqprop_##lockname##_const_ptr(const seqcount_##lockname##_t *s)      \
210 {                                                                       \
211         return &s->seqcount;                                            \
212 }                                                                       \
213                                                                         \
214 static __always_inline unsigned                                         \
215 __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s)       \
216 {                                                                       \
217         unsigned seq = READ_ONCE(s->seqcount.sequence);                 \
218                                                                         \
219         if (!IS_ENABLED(CONFIG_PREEMPT_RT))                             \
220                 return seq;                                             \
221                                                                         \
222         if (preemptible && unlikely(seq & 1)) {                         \
223                 __SEQ_LOCK(lockbase##_lock(s->lock));                   \
224                 __SEQ_LOCK(lockbase##_unlock(s->lock));                 \
225                                                                         \
226                 /*                                                      \
227                  * Re-read the sequence counter since the (possibly     \
228                  * preempted) writer made progress.                     \
229                  */                                                     \
230                 seq = READ_ONCE(s->seqcount.sequence);                  \
231         }                                                               \
232                                                                         \
233         return seq;                                                     \
234 }                                                                       \
235                                                                         \
236 static __always_inline bool                                             \
237 __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s)    \
238 {                                                                       \
239         if (!IS_ENABLED(CONFIG_PREEMPT_RT))                             \
240                 return preemptible;                                     \
241                                                                         \
242         /* PREEMPT_RT relies on the above LOCK+UNLOCK */                \
243         return false;                                                   \
244 }                                                                       \
245                                                                         \
246 static __always_inline void                                             \
247 __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s)         \
248 {                                                                       \
249         __SEQ_LOCK(lockdep_assert_held(s->lock));                       \
250 }
251
252 /*
253  * __seqprop() for seqcount_t
254  */
255
256 static inline seqcount_t *__seqprop_ptr(seqcount_t *s)
257 {
258         return s;
259 }
260
261 static inline const seqcount_t *__seqprop_const_ptr(const seqcount_t *s)
262 {
263         return s;
264 }
265
266 static inline unsigned __seqprop_sequence(const seqcount_t *s)
267 {
268         return READ_ONCE(s->sequence);
269 }
270
271 static inline bool __seqprop_preemptible(const seqcount_t *s)
272 {
273         return false;
274 }
275
276 static inline void __seqprop_assert(const seqcount_t *s)
277 {
278         lockdep_assert_preemption_disabled();
279 }
280
281 #define __SEQ_RT        IS_ENABLED(CONFIG_PREEMPT_RT)
282
283 SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t,  false,    raw_spin)
284 SEQCOUNT_LOCKNAME(spinlock,     spinlock_t,      __SEQ_RT, spin)
285 SEQCOUNT_LOCKNAME(rwlock,       rwlock_t,        __SEQ_RT, read)
286 SEQCOUNT_LOCKNAME(mutex,        struct mutex,    true,     mutex)
287
288 /*
289  * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
290  * @name:       Name of the seqcount_LOCKNAME_t instance
291  * @lock:       Pointer to the associated LOCKNAME
292  */
293
294 #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) {                  \
295         .seqcount               = SEQCNT_ZERO(seq_name.seqcount),       \
296         __SEQ_LOCK(.lock        = (assoc_lock))                         \
297 }
298
299 #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock)    SEQCOUNT_LOCKNAME_ZERO(name, lock)
300 #define SEQCNT_SPINLOCK_ZERO(name, lock)        SEQCOUNT_LOCKNAME_ZERO(name, lock)
301 #define SEQCNT_RWLOCK_ZERO(name, lock)          SEQCOUNT_LOCKNAME_ZERO(name, lock)
302 #define SEQCNT_MUTEX_ZERO(name, lock)           SEQCOUNT_LOCKNAME_ZERO(name, lock)
303 #define SEQCNT_WW_MUTEX_ZERO(name, lock)        SEQCOUNT_LOCKNAME_ZERO(name, lock)
304
305 #define __seqprop_case(s, lockname, prop)                               \
306         seqcount_##lockname##_t: __seqprop_##lockname##_##prop
307
308 #define __seqprop(s, prop) _Generic(*(s),                               \
309         seqcount_t:             __seqprop_##prop,                       \
310         __seqprop_case((s),     raw_spinlock,   prop),                  \
311         __seqprop_case((s),     spinlock,       prop),                  \
312         __seqprop_case((s),     rwlock,         prop),                  \
313         __seqprop_case((s),     mutex,          prop))
314
315 #define seqprop_ptr(s)                  __seqprop(s, ptr)(s)
316 #define seqprop_const_ptr(s)            __seqprop(s, const_ptr)(s)
317 #define seqprop_sequence(s)             __seqprop(s, sequence)(s)
318 #define seqprop_preemptible(s)          __seqprop(s, preemptible)(s)
319 #define seqprop_assert(s)               __seqprop(s, assert)(s)
320
321 /**
322  * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier
323  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
324  *
325  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
326  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
327  * provided before actually loading any of the variables that are to be
328  * protected in this critical section.
329  *
330  * Use carefully, only in critical code, and comment how the barrier is
331  * provided.
332  *
333  * Return: count to be passed to read_seqcount_retry()
334  */
335 #define __read_seqcount_begin(s)                                        \
336 ({                                                                      \
337         unsigned __seq;                                                 \
338                                                                         \
339         while ((__seq = seqprop_sequence(s)) & 1)                       \
340                 cpu_relax();                                            \
341                                                                         \
342         kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);                    \
343         __seq;                                                          \
344 })
345
346 /**
347  * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep
348  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
349  *
350  * Return: count to be passed to read_seqcount_retry()
351  */
352 #define raw_read_seqcount_begin(s)                                      \
353 ({                                                                      \
354         unsigned _seq = __read_seqcount_begin(s);                       \
355                                                                         \
356         smp_rmb();                                                      \
357         _seq;                                                           \
358 })
359
360 /**
361  * read_seqcount_begin() - begin a seqcount_t read critical section
362  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
363  *
364  * Return: count to be passed to read_seqcount_retry()
365  */
366 #define read_seqcount_begin(s)                                          \
367 ({                                                                      \
368         seqcount_lockdep_reader_access(seqprop_const_ptr(s));           \
369         raw_read_seqcount_begin(s);                                     \
370 })
371
372 /**
373  * raw_read_seqcount() - read the raw seqcount_t counter value
374  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
375  *
376  * raw_read_seqcount opens a read critical section of the given
377  * seqcount_t, without any lockdep checking, and without checking or
378  * masking the sequence counter LSB. Calling code is responsible for
379  * handling that.
380  *
381  * Return: count to be passed to read_seqcount_retry()
382  */
383 #define raw_read_seqcount(s)                                            \
384 ({                                                                      \
385         unsigned __seq = seqprop_sequence(s);                           \
386                                                                         \
387         smp_rmb();                                                      \
388         kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);                    \
389         __seq;                                                          \
390 })
391
392 /**
393  * raw_seqcount_begin() - begin a seqcount_t read critical section w/o
394  *                        lockdep and w/o counter stabilization
395  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
396  *
397  * raw_seqcount_begin opens a read critical section of the given
398  * seqcount_t. Unlike read_seqcount_begin(), this function will not wait
399  * for the count to stabilize. If a writer is active when it begins, it
400  * will fail the read_seqcount_retry() at the end of the read critical
401  * section instead of stabilizing at the beginning of it.
402  *
403  * Use this only in special kernel hot paths where the read section is
404  * small and has a high probability of success through other external
405  * means. It will save a single branching instruction.
406  *
407  * Return: count to be passed to read_seqcount_retry()
408  */
409 #define raw_seqcount_begin(s)                                           \
410 ({                                                                      \
411         /*                                                              \
412          * If the counter is odd, let read_seqcount_retry() fail        \
413          * by decrementing the counter.                                 \
414          */                                                             \
415         raw_read_seqcount(s) & ~1;                                      \
416 })
417
418 /**
419  * __read_seqcount_retry() - end a seqcount_t read section w/o barrier
420  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
421  * @start: count, from read_seqcount_begin()
422  *
423  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
424  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
425  * provided before actually loading any of the variables that are to be
426  * protected in this critical section.
427  *
428  * Use carefully, only in critical code, and comment how the barrier is
429  * provided.
430  *
431  * Return: true if a read section retry is required, else false
432  */
433 #define __read_seqcount_retry(s, start)                                 \
434         do___read_seqcount_retry(seqprop_const_ptr(s), start)
435
436 static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start)
437 {
438         kcsan_atomic_next(0);
439         return unlikely(READ_ONCE(s->sequence) != start);
440 }
441
442 /**
443  * read_seqcount_retry() - end a seqcount_t read critical section
444  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
445  * @start: count, from read_seqcount_begin()
446  *
447  * read_seqcount_retry closes the read critical section of given
448  * seqcount_t.  If the critical section was invalid, it must be ignored
449  * (and typically retried).
450  *
451  * Return: true if a read section retry is required, else false
452  */
453 #define read_seqcount_retry(s, start)                                   \
454         do_read_seqcount_retry(seqprop_const_ptr(s), start)
455
456 static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start)
457 {
458         smp_rmb();
459         return do___read_seqcount_retry(s, start);
460 }
461
462 /**
463  * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep
464  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
465  *
466  * Context: check write_seqcount_begin()
467  */
468 #define raw_write_seqcount_begin(s)                                     \
469 do {                                                                    \
470         if (seqprop_preemptible(s))                                     \
471                 preempt_disable();                                      \
472                                                                         \
473         do_raw_write_seqcount_begin(seqprop_ptr(s));                    \
474 } while (0)
475
476 static inline void do_raw_write_seqcount_begin(seqcount_t *s)
477 {
478         kcsan_nestable_atomic_begin();
479         s->sequence++;
480         smp_wmb();
481 }
482
483 /**
484  * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep
485  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
486  *
487  * Context: check write_seqcount_end()
488  */
489 #define raw_write_seqcount_end(s)                                       \
490 do {                                                                    \
491         do_raw_write_seqcount_end(seqprop_ptr(s));                      \
492                                                                         \
493         if (seqprop_preemptible(s))                                     \
494                 preempt_enable();                                       \
495 } while (0)
496
497 static inline void do_raw_write_seqcount_end(seqcount_t *s)
498 {
499         smp_wmb();
500         s->sequence++;
501         kcsan_nestable_atomic_end();
502 }
503
504 /**
505  * write_seqcount_begin_nested() - start a seqcount_t write section with
506  *                                 custom lockdep nesting level
507  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
508  * @subclass: lockdep nesting level
509  *
510  * See Documentation/locking/lockdep-design.rst
511  * Context: check write_seqcount_begin()
512  */
513 #define write_seqcount_begin_nested(s, subclass)                        \
514 do {                                                                    \
515         seqprop_assert(s);                                              \
516                                                                         \
517         if (seqprop_preemptible(s))                                     \
518                 preempt_disable();                                      \
519                                                                         \
520         do_write_seqcount_begin_nested(seqprop_ptr(s), subclass);       \
521 } while (0)
522
523 static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass)
524 {
525         seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
526         do_raw_write_seqcount_begin(s);
527 }
528
529 /**
530  * write_seqcount_begin() - start a seqcount_t write side critical section
531  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
532  *
533  * Context: sequence counter write side sections must be serialized and
534  * non-preemptible. Preemption will be automatically disabled if and
535  * only if the seqcount write serialization lock is associated, and
536  * preemptible.  If readers can be invoked from hardirq or softirq
537  * context, interrupts or bottom halves must be respectively disabled.
538  */
539 #define write_seqcount_begin(s)                                         \
540 do {                                                                    \
541         seqprop_assert(s);                                              \
542                                                                         \
543         if (seqprop_preemptible(s))                                     \
544                 preempt_disable();                                      \
545                                                                         \
546         do_write_seqcount_begin(seqprop_ptr(s));                        \
547 } while (0)
548
549 static inline void do_write_seqcount_begin(seqcount_t *s)
550 {
551         do_write_seqcount_begin_nested(s, 0);
552 }
553
554 /**
555  * write_seqcount_end() - end a seqcount_t write side critical section
556  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
557  *
558  * Context: Preemption will be automatically re-enabled if and only if
559  * the seqcount write serialization lock is associated, and preemptible.
560  */
561 #define write_seqcount_end(s)                                           \
562 do {                                                                    \
563         do_write_seqcount_end(seqprop_ptr(s));                          \
564                                                                         \
565         if (seqprop_preemptible(s))                                     \
566                 preempt_enable();                                       \
567 } while (0)
568
569 static inline void do_write_seqcount_end(seqcount_t *s)
570 {
571         seqcount_release(&s->dep_map, _RET_IP_);
572         do_raw_write_seqcount_end(s);
573 }
574
575 /**
576  * raw_write_seqcount_barrier() - do a seqcount_t write barrier
577  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
578  *
579  * This can be used to provide an ordering guarantee instead of the usual
580  * consistency guarantee. It is one wmb cheaper, because it can collapse
581  * the two back-to-back wmb()s.
582  *
583  * Note that writes surrounding the barrier should be declared atomic (e.g.
584  * via WRITE_ONCE): a) to ensure the writes become visible to other threads
585  * atomically, avoiding compiler optimizations; b) to document which writes are
586  * meant to propagate to the reader critical section. This is necessary because
587  * neither writes before nor after the barrier are enclosed in a seq-writer
588  * critical section that would ensure readers are aware of ongoing writes::
589  *
590  *      seqcount_t seq;
591  *      bool X = true, Y = false;
592  *
593  *      void read(void)
594  *      {
595  *              bool x, y;
596  *
597  *              do {
598  *                      int s = read_seqcount_begin(&seq);
599  *
600  *                      x = X; y = Y;
601  *
602  *              } while (read_seqcount_retry(&seq, s));
603  *
604  *              BUG_ON(!x && !y);
605  *      }
606  *
607  *      void write(void)
608  *      {
609  *              WRITE_ONCE(Y, true);
610  *
611  *              raw_write_seqcount_barrier(seq);
612  *
613  *              WRITE_ONCE(X, false);
614  *      }
615  */
616 #define raw_write_seqcount_barrier(s)                                   \
617         do_raw_write_seqcount_barrier(seqprop_ptr(s))
618
619 static inline void do_raw_write_seqcount_barrier(seqcount_t *s)
620 {
621         kcsan_nestable_atomic_begin();
622         s->sequence++;
623         smp_wmb();
624         s->sequence++;
625         kcsan_nestable_atomic_end();
626 }
627
628 /**
629  * write_seqcount_invalidate() - invalidate in-progress seqcount_t read
630  *                               side operations
631  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
632  *
633  * After write_seqcount_invalidate, no seqcount_t read side operations
634  * will complete successfully and see data older than this.
635  */
636 #define write_seqcount_invalidate(s)                                    \
637         do_write_seqcount_invalidate(seqprop_ptr(s))
638
639 static inline void do_write_seqcount_invalidate(seqcount_t *s)
640 {
641         smp_wmb();
642         kcsan_nestable_atomic_begin();
643         s->sequence+=2;
644         kcsan_nestable_atomic_end();
645 }
646
647 /*
648  * Latch sequence counters (seqcount_latch_t)
649  *
650  * A sequence counter variant where the counter even/odd value is used to
651  * switch between two copies of protected data. This allows the read path,
652  * typically NMIs, to safely interrupt the write side critical section.
653  *
654  * As the write sections are fully preemptible, no special handling for
655  * PREEMPT_RT is needed.
656  */
657 typedef struct {
658         seqcount_t seqcount;
659 } seqcount_latch_t;
660
661 /**
662  * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t
663  * @seq_name: Name of the seqcount_latch_t instance
664  */
665 #define SEQCNT_LATCH_ZERO(seq_name) {                                   \
666         .seqcount               = SEQCNT_ZERO(seq_name.seqcount),       \
667 }
668
669 /**
670  * seqcount_latch_init() - runtime initializer for seqcount_latch_t
671  * @s: Pointer to the seqcount_latch_t instance
672  */
673 #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount)
674
675 /**
676  * raw_read_seqcount_latch() - pick even/odd latch data copy
677  * @s: Pointer to seqcount_latch_t
678  *
679  * See raw_write_seqcount_latch() for details and a full reader/writer
680  * usage example.
681  *
682  * Return: sequence counter raw value. Use the lowest bit as an index for
683  * picking which data copy to read. The full counter must then be checked
684  * with raw_read_seqcount_latch_retry().
685  */
686 static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s)
687 {
688         /*
689          * Pairs with the first smp_wmb() in raw_write_seqcount_latch().
690          * Due to the dependent load, a full smp_rmb() is not needed.
691          */
692         return READ_ONCE(s->seqcount.sequence);
693 }
694
695 /**
696  * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section
697  * @s:          Pointer to seqcount_latch_t
698  * @start:      count, from raw_read_seqcount_latch()
699  *
700  * Return: true if a read section retry is required, else false
701  */
702 static __always_inline int
703 raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
704 {
705         smp_rmb();
706         return unlikely(READ_ONCE(s->seqcount.sequence) != start);
707 }
708
709 /**
710  * raw_write_seqcount_latch() - redirect latch readers to even/odd copy
711  * @s: Pointer to seqcount_latch_t
712  *
713  * The latch technique is a multiversion concurrency control method that allows
714  * queries during non-atomic modifications. If you can guarantee queries never
715  * interrupt the modification -- e.g. the concurrency is strictly between CPUs
716  * -- you most likely do not need this.
717  *
718  * Where the traditional RCU/lockless data structures rely on atomic
719  * modifications to ensure queries observe either the old or the new state the
720  * latch allows the same for non-atomic updates. The trade-off is doubling the
721  * cost of storage; we have to maintain two copies of the entire data
722  * structure.
723  *
724  * Very simply put: we first modify one copy and then the other. This ensures
725  * there is always one copy in a stable state, ready to give us an answer.
726  *
727  * The basic form is a data structure like::
728  *
729  *      struct latch_struct {
730  *              seqcount_latch_t        seq;
731  *              struct data_struct      data[2];
732  *      };
733  *
734  * Where a modification, which is assumed to be externally serialized, does the
735  * following::
736  *
737  *      void latch_modify(struct latch_struct *latch, ...)
738  *      {
739  *              smp_wmb();      // Ensure that the last data[1] update is visible
740  *              latch->seq.sequence++;
741  *              smp_wmb();      // Ensure that the seqcount update is visible
742  *
743  *              modify(latch->data[0], ...);
744  *
745  *              smp_wmb();      // Ensure that the data[0] update is visible
746  *              latch->seq.sequence++;
747  *              smp_wmb();      // Ensure that the seqcount update is visible
748  *
749  *              modify(latch->data[1], ...);
750  *      }
751  *
752  * The query will have a form like::
753  *
754  *      struct entry *latch_query(struct latch_struct *latch, ...)
755  *      {
756  *              struct entry *entry;
757  *              unsigned seq, idx;
758  *
759  *              do {
760  *                      seq = raw_read_seqcount_latch(&latch->seq);
761  *
762  *                      idx = seq & 0x01;
763  *                      entry = data_query(latch->data[idx], ...);
764  *
765  *              // This includes needed smp_rmb()
766  *              } while (raw_read_seqcount_latch_retry(&latch->seq, seq));
767  *
768  *              return entry;
769  *      }
770  *
771  * So during the modification, queries are first redirected to data[1]. Then we
772  * modify data[0]. When that is complete, we redirect queries back to data[0]
773  * and we can modify data[1].
774  *
775  * NOTE:
776  *
777  *      The non-requirement for atomic modifications does _NOT_ include
778  *      the publishing of new entries in the case where data is a dynamic
779  *      data structure.
780  *
781  *      An iteration might start in data[0] and get suspended long enough
782  *      to miss an entire modification sequence, once it resumes it might
783  *      observe the new entry.
784  *
785  * NOTE2:
786  *
787  *      When data is a dynamic data structure; one should use regular RCU
788  *      patterns to manage the lifetimes of the objects within.
789  */
790 static inline void raw_write_seqcount_latch(seqcount_latch_t *s)
791 {
792         smp_wmb();      /* prior stores before incrementing "sequence" */
793         s->seqcount.sequence++;
794         smp_wmb();      /* increment "sequence" before following stores */
795 }
796
797 /*
798  * Sequential locks (seqlock_t)
799  *
800  * Sequence counters with an embedded spinlock for writer serialization
801  * and non-preemptibility.
802  *
803  * For more info, see:
804  *    - Comments on top of seqcount_t
805  *    - Documentation/locking/seqlock.rst
806  */
807 typedef struct {
808         /*
809          * Make sure that readers don't starve writers on PREEMPT_RT: use
810          * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK().
811          */
812         seqcount_spinlock_t seqcount;
813         spinlock_t lock;
814 } seqlock_t;
815
816 #define __SEQLOCK_UNLOCKED(lockname)                                    \
817         {                                                               \
818                 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \
819                 .lock = __SPIN_LOCK_UNLOCKED(lockname)                  \
820         }
821
822 /**
823  * seqlock_init() - dynamic initializer for seqlock_t
824  * @sl: Pointer to the seqlock_t instance
825  */
826 #define seqlock_init(sl)                                                \
827         do {                                                            \
828                 spin_lock_init(&(sl)->lock);                            \
829                 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock);   \
830         } while (0)
831
832 /**
833  * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t
834  * @sl: Name of the seqlock_t instance
835  */
836 #define DEFINE_SEQLOCK(sl) \
837                 seqlock_t sl = __SEQLOCK_UNLOCKED(sl)
838
839 /**
840  * read_seqbegin() - start a seqlock_t read side critical section
841  * @sl: Pointer to seqlock_t
842  *
843  * Return: count, to be passed to read_seqretry()
844  */
845 static inline unsigned read_seqbegin(const seqlock_t *sl)
846 {
847         unsigned ret = read_seqcount_begin(&sl->seqcount);
848
849         kcsan_atomic_next(0);  /* non-raw usage, assume closing read_seqretry() */
850         kcsan_flat_atomic_begin();
851         return ret;
852 }
853
854 /**
855  * read_seqretry() - end a seqlock_t read side section
856  * @sl: Pointer to seqlock_t
857  * @start: count, from read_seqbegin()
858  *
859  * read_seqretry closes the read side critical section of given seqlock_t.
860  * If the critical section was invalid, it must be ignored (and typically
861  * retried).
862  *
863  * Return: true if a read section retry is required, else false
864  */
865 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
866 {
867         /*
868          * Assume not nested: read_seqretry() may be called multiple times when
869          * completing read critical section.
870          */
871         kcsan_flat_atomic_end();
872
873         return read_seqcount_retry(&sl->seqcount, start);
874 }
875
876 /*
877  * For all seqlock_t write side functions, use the internal
878  * do_write_seqcount_begin() instead of generic write_seqcount_begin().
879  * This way, no redundant lockdep_assert_held() checks are added.
880  */
881
882 /**
883  * write_seqlock() - start a seqlock_t write side critical section
884  * @sl: Pointer to seqlock_t
885  *
886  * write_seqlock opens a write side critical section for the given
887  * seqlock_t.  It also implicitly acquires the spinlock_t embedded inside
888  * that sequential lock. All seqlock_t write side sections are thus
889  * automatically serialized and non-preemptible.
890  *
891  * Context: if the seqlock_t read section, or other write side critical
892  * sections, can be invoked from hardirq or softirq contexts, use the
893  * _irqsave or _bh variants of this function instead.
894  */
895 static inline void write_seqlock(seqlock_t *sl)
896 {
897         spin_lock(&sl->lock);
898         do_write_seqcount_begin(&sl->seqcount.seqcount);
899 }
900
901 /**
902  * write_sequnlock() - end a seqlock_t write side critical section
903  * @sl: Pointer to seqlock_t
904  *
905  * write_sequnlock closes the (serialized and non-preemptible) write side
906  * critical section of given seqlock_t.
907  */
908 static inline void write_sequnlock(seqlock_t *sl)
909 {
910         do_write_seqcount_end(&sl->seqcount.seqcount);
911         spin_unlock(&sl->lock);
912 }
913
914 /**
915  * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section
916  * @sl: Pointer to seqlock_t
917  *
918  * _bh variant of write_seqlock(). Use only if the read side section, or
919  * other write side sections, can be invoked from softirq contexts.
920  */
921 static inline void write_seqlock_bh(seqlock_t *sl)
922 {
923         spin_lock_bh(&sl->lock);
924         do_write_seqcount_begin(&sl->seqcount.seqcount);
925 }
926
927 /**
928  * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section
929  * @sl: Pointer to seqlock_t
930  *
931  * write_sequnlock_bh closes the serialized, non-preemptible, and
932  * softirqs-disabled, seqlock_t write side critical section opened with
933  * write_seqlock_bh().
934  */
935 static inline void write_sequnlock_bh(seqlock_t *sl)
936 {
937         do_write_seqcount_end(&sl->seqcount.seqcount);
938         spin_unlock_bh(&sl->lock);
939 }
940
941 /**
942  * write_seqlock_irq() - start a non-interruptible seqlock_t write section
943  * @sl: Pointer to seqlock_t
944  *
945  * _irq variant of write_seqlock(). Use only if the read side section, or
946  * other write sections, can be invoked from hardirq contexts.
947  */
948 static inline void write_seqlock_irq(seqlock_t *sl)
949 {
950         spin_lock_irq(&sl->lock);
951         do_write_seqcount_begin(&sl->seqcount.seqcount);
952 }
953
954 /**
955  * write_sequnlock_irq() - end a non-interruptible seqlock_t write section
956  * @sl: Pointer to seqlock_t
957  *
958  * write_sequnlock_irq closes the serialized and non-interruptible
959  * seqlock_t write side section opened with write_seqlock_irq().
960  */
961 static inline void write_sequnlock_irq(seqlock_t *sl)
962 {
963         do_write_seqcount_end(&sl->seqcount.seqcount);
964         spin_unlock_irq(&sl->lock);
965 }
966
967 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
968 {
969         unsigned long flags;
970
971         spin_lock_irqsave(&sl->lock, flags);
972         do_write_seqcount_begin(&sl->seqcount.seqcount);
973         return flags;
974 }
975
976 /**
977  * write_seqlock_irqsave() - start a non-interruptible seqlock_t write
978  *                           section
979  * @lock:  Pointer to seqlock_t
980  * @flags: Stack-allocated storage for saving caller's local interrupt
981  *         state, to be passed to write_sequnlock_irqrestore().
982  *
983  * _irqsave variant of write_seqlock(). Use it only if the read side
984  * section, or other write sections, can be invoked from hardirq context.
985  */
986 #define write_seqlock_irqsave(lock, flags)                              \
987         do { flags = __write_seqlock_irqsave(lock); } while (0)
988
989 /**
990  * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write
991  *                                section
992  * @sl:    Pointer to seqlock_t
993  * @flags: Caller's saved interrupt state, from write_seqlock_irqsave()
994  *
995  * write_sequnlock_irqrestore closes the serialized and non-interruptible
996  * seqlock_t write section previously opened with write_seqlock_irqsave().
997  */
998 static inline void
999 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
1000 {
1001         do_write_seqcount_end(&sl->seqcount.seqcount);
1002         spin_unlock_irqrestore(&sl->lock, flags);
1003 }
1004
1005 /**
1006  * read_seqlock_excl() - begin a seqlock_t locking reader section
1007  * @sl: Pointer to seqlock_t
1008  *
1009  * read_seqlock_excl opens a seqlock_t locking reader critical section.  A
1010  * locking reader exclusively locks out *both* other writers *and* other
1011  * locking readers, but it does not update the embedded sequence number.
1012  *
1013  * Locking readers act like a normal spin_lock()/spin_unlock().
1014  *
1015  * Context: if the seqlock_t write section, *or other read sections*, can
1016  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1017  * variant of this function instead.
1018  *
1019  * The opened read section must be closed with read_sequnlock_excl().
1020  */
1021 static inline void read_seqlock_excl(seqlock_t *sl)
1022 {
1023         spin_lock(&sl->lock);
1024 }
1025
1026 /**
1027  * read_sequnlock_excl() - end a seqlock_t locking reader critical section
1028  * @sl: Pointer to seqlock_t
1029  */
1030 static inline void read_sequnlock_excl(seqlock_t *sl)
1031 {
1032         spin_unlock(&sl->lock);
1033 }
1034
1035 /**
1036  * read_seqlock_excl_bh() - start a seqlock_t locking reader section with
1037  *                          softirqs disabled
1038  * @sl: Pointer to seqlock_t
1039  *
1040  * _bh variant of read_seqlock_excl(). Use this variant only if the
1041  * seqlock_t write side section, *or other read sections*, can be invoked
1042  * from softirq contexts.
1043  */
1044 static inline void read_seqlock_excl_bh(seqlock_t *sl)
1045 {
1046         spin_lock_bh(&sl->lock);
1047 }
1048
1049 /**
1050  * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking
1051  *                            reader section
1052  * @sl: Pointer to seqlock_t
1053  */
1054 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
1055 {
1056         spin_unlock_bh(&sl->lock);
1057 }
1058
1059 /**
1060  * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking
1061  *                           reader section
1062  * @sl: Pointer to seqlock_t
1063  *
1064  * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t
1065  * write side section, *or other read sections*, can be invoked from a
1066  * hardirq context.
1067  */
1068 static inline void read_seqlock_excl_irq(seqlock_t *sl)
1069 {
1070         spin_lock_irq(&sl->lock);
1071 }
1072
1073 /**
1074  * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t
1075  *                             locking reader section
1076  * @sl: Pointer to seqlock_t
1077  */
1078 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
1079 {
1080         spin_unlock_irq(&sl->lock);
1081 }
1082
1083 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
1084 {
1085         unsigned long flags;
1086
1087         spin_lock_irqsave(&sl->lock, flags);
1088         return flags;
1089 }
1090
1091 /**
1092  * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t
1093  *                               locking reader section
1094  * @lock:  Pointer to seqlock_t
1095  * @flags: Stack-allocated storage for saving caller's local interrupt
1096  *         state, to be passed to read_sequnlock_excl_irqrestore().
1097  *
1098  * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t
1099  * write side section, *or other read sections*, can be invoked from a
1100  * hardirq context.
1101  */
1102 #define read_seqlock_excl_irqsave(lock, flags)                          \
1103         do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
1104
1105 /**
1106  * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t
1107  *                                    locking reader section
1108  * @sl:    Pointer to seqlock_t
1109  * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave()
1110  */
1111 static inline void
1112 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
1113 {
1114         spin_unlock_irqrestore(&sl->lock, flags);
1115 }
1116
1117 /**
1118  * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader
1119  * @lock: Pointer to seqlock_t
1120  * @seq : Marker and return parameter. If the passed value is even, the
1121  * reader will become a *lockless* seqlock_t reader as in read_seqbegin().
1122  * If the passed value is odd, the reader will become a *locking* reader
1123  * as in read_seqlock_excl().  In the first call to this function, the
1124  * caller *must* initialize and pass an even value to @seq; this way, a
1125  * lockless read can be optimistically tried first.
1126  *
1127  * read_seqbegin_or_lock is an API designed to optimistically try a normal
1128  * lockless seqlock_t read section first.  If an odd counter is found, the
1129  * lockless read trial has failed, and the next read iteration transforms
1130  * itself into a full seqlock_t locking reader.
1131  *
1132  * This is typically used to avoid seqlock_t lockless readers starvation
1133  * (too much retry loops) in the case of a sharp spike in write side
1134  * activity.
1135  *
1136  * Context: if the seqlock_t write section, *or other read sections*, can
1137  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1138  * variant of this function instead.
1139  *
1140  * Check Documentation/locking/seqlock.rst for template example code.
1141  *
1142  * Return: the encountered sequence counter value, through the @seq
1143  * parameter, which is overloaded as a return parameter. This returned
1144  * value must be checked with need_seqretry(). If the read section need to
1145  * be retried, this returned value must also be passed as the @seq
1146  * parameter of the next read_seqbegin_or_lock() iteration.
1147  */
1148 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
1149 {
1150         if (!(*seq & 1))        /* Even */
1151                 *seq = read_seqbegin(lock);
1152         else                    /* Odd */
1153                 read_seqlock_excl(lock);
1154 }
1155
1156 /**
1157  * need_seqretry() - validate seqlock_t "locking or lockless" read section
1158  * @lock: Pointer to seqlock_t
1159  * @seq: sequence count, from read_seqbegin_or_lock()
1160  *
1161  * Return: true if a read section retry is required, false otherwise
1162  */
1163 static inline int need_seqretry(seqlock_t *lock, int seq)
1164 {
1165         return !(seq & 1) && read_seqretry(lock, seq);
1166 }
1167
1168 /**
1169  * done_seqretry() - end seqlock_t "locking or lockless" reader section
1170  * @lock: Pointer to seqlock_t
1171  * @seq: count, from read_seqbegin_or_lock()
1172  *
1173  * done_seqretry finishes the seqlock_t read side critical section started
1174  * with read_seqbegin_or_lock() and validated by need_seqretry().
1175  */
1176 static inline void done_seqretry(seqlock_t *lock, int seq)
1177 {
1178         if (seq & 1)
1179                 read_sequnlock_excl(lock);
1180 }
1181
1182 /**
1183  * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or
1184  *                                   a non-interruptible locking reader
1185  * @lock: Pointer to seqlock_t
1186  * @seq:  Marker and return parameter. Check read_seqbegin_or_lock().
1187  *
1188  * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if
1189  * the seqlock_t write section, *or other read sections*, can be invoked
1190  * from hardirq context.
1191  *
1192  * Note: Interrupts will be disabled only for "locking reader" mode.
1193  *
1194  * Return:
1195  *
1196  *   1. The saved local interrupts state in case of a locking reader, to
1197  *      be passed to done_seqretry_irqrestore().
1198  *
1199  *   2. The encountered sequence counter value, returned through @seq
1200  *      overloaded as a return parameter. Check read_seqbegin_or_lock().
1201  */
1202 static inline unsigned long
1203 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
1204 {
1205         unsigned long flags = 0;
1206
1207         if (!(*seq & 1))        /* Even */
1208                 *seq = read_seqbegin(lock);
1209         else                    /* Odd */
1210                 read_seqlock_excl_irqsave(lock, flags);
1211
1212         return flags;
1213 }
1214
1215 /**
1216  * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a
1217  *                              non-interruptible locking reader section
1218  * @lock:  Pointer to seqlock_t
1219  * @seq:   Count, from read_seqbegin_or_lock_irqsave()
1220  * @flags: Caller's saved local interrupt state in case of a locking
1221  *         reader, also from read_seqbegin_or_lock_irqsave()
1222  *
1223  * This is the _irqrestore variant of done_seqretry(). The read section
1224  * must've been opened with read_seqbegin_or_lock_irqsave(), and validated
1225  * by need_seqretry().
1226  */
1227 static inline void
1228 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
1229 {
1230         if (seq & 1)
1231                 read_sequnlock_excl_irqrestore(lock, flags);
1232 }
1233 #endif /* __LINUX_SEQLOCK_H */