GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32
33 #define CQSPI_NAME                      "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT            16
35
36 /* Quirks */
37 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
38 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
39 #define CQSPI_SUPPORT_EXTERNAL_DMA      BIT(2)
40 #define CQSPI_NO_SUPPORT_WR_COMPLETION  BIT(3)
41 #define CQSPI_SLOW_SRAM         BIT(4)
42 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR  BIT(5)
43
44 /* Capabilities */
45 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
46
47 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48
49 enum {
50         CLK_QSPI_APB = 0,
51         CLK_QSPI_AHB,
52         CLK_QSPI_NUM,
53 };
54
55 struct cqspi_st;
56
57 struct cqspi_flash_pdata {
58         struct cqspi_st *cqspi;
59         u32             clk_rate;
60         u32             read_delay;
61         u32             tshsl_ns;
62         u32             tsd2d_ns;
63         u32             tchsh_ns;
64         u32             tslch_ns;
65         u8              cs;
66 };
67
68 struct cqspi_st {
69         struct platform_device  *pdev;
70         struct spi_controller   *host;
71         struct clk              *clk;
72         struct clk              *clks[CLK_QSPI_NUM];
73         unsigned int            sclk;
74
75         void __iomem            *iobase;
76         void __iomem            *ahb_base;
77         resource_size_t         ahb_size;
78         struct completion       transfer_complete;
79
80         struct dma_chan         *rx_chan;
81         struct completion       rx_dma_complete;
82         dma_addr_t              mmap_phys_base;
83
84         int                     current_cs;
85         unsigned long           master_ref_clk_hz;
86         bool                    is_decoded_cs;
87         u32                     fifo_depth;
88         u32                     fifo_width;
89         u32                     num_chipselect;
90         bool                    rclk_en;
91         u32                     trigger_address;
92         u32                     wr_delay;
93         bool                    use_direct_mode;
94         bool                    use_direct_mode_wr;
95         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
96         bool                    use_dma_read;
97         u32                     pd_dev_id;
98         bool                    wr_completion;
99         bool                    slow_sram;
100         bool                    apb_ahb_hazard;
101
102         bool                    is_jh7110; /* Flag for StarFive JH7110 SoC */
103 };
104
105 struct cqspi_driver_platdata {
106         u32 hwcaps_mask;
107         u8 quirks;
108         int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
109                                  u_char *rxbuf, loff_t from_addr, size_t n_rx);
110         u32 (*get_dma_status)(struct cqspi_st *cqspi);
111         int (*jh7110_clk_init)(struct platform_device *pdev,
112                                struct cqspi_st *cqspi);
113 };
114
115 /* Operation timeout value */
116 #define CQSPI_TIMEOUT_MS                        500
117 #define CQSPI_READ_TIMEOUT_MS                   10
118
119 /* Runtime_pm autosuspend delay */
120 #define CQSPI_AUTOSUSPEND_TIMEOUT               2000
121
122 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
123 #define CQSPI_DUMMY_BYTES_MAX                   4
124 #define CQSPI_DUMMY_CLKS_MAX                    31
125
126 #define CQSPI_STIG_DATA_LEN_MAX                 8
127
128 /* Register map */
129 #define CQSPI_REG_CONFIG                        0x00
130 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
131 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
132 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
133 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
134 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
135 #define CQSPI_REG_CONFIG_BAUD_LSB               19
136 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
137 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
138 #define CQSPI_REG_CONFIG_IDLE_LSB               31
139 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
140 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
141
142 #define CQSPI_REG_RD_INSTR                      0x04
143 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
144 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
145 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
146 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
147 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
148 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
149 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
150 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
151 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
152 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
153
154 #define CQSPI_REG_WR_INSTR                      0x08
155 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
156 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
157 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
158
159 #define CQSPI_REG_DELAY                         0x0C
160 #define CQSPI_REG_DELAY_TSLCH_LSB               0
161 #define CQSPI_REG_DELAY_TCHSH_LSB               8
162 #define CQSPI_REG_DELAY_TSD2D_LSB               16
163 #define CQSPI_REG_DELAY_TSHSL_LSB               24
164 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
165 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
166 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
167 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
168
169 #define CQSPI_REG_READCAPTURE                   0x10
170 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
171 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
172 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
173
174 #define CQSPI_REG_SIZE                          0x14
175 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
176 #define CQSPI_REG_SIZE_PAGE_LSB                 4
177 #define CQSPI_REG_SIZE_BLOCK_LSB                16
178 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
179 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
180 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
181
182 #define CQSPI_REG_SRAMPARTITION                 0x18
183 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
184
185 #define CQSPI_REG_DMA                           0x20
186 #define CQSPI_REG_DMA_SINGLE_LSB                0
187 #define CQSPI_REG_DMA_BURST_LSB                 8
188 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
189 #define CQSPI_REG_DMA_BURST_MASK                0xFF
190
191 #define CQSPI_REG_REMAP                         0x24
192 #define CQSPI_REG_MODE_BIT                      0x28
193
194 #define CQSPI_REG_SDRAMLEVEL                    0x2C
195 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
196 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
197 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
198 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
199
200 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
201 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
202
203 #define CQSPI_REG_IRQSTATUS                     0x40
204 #define CQSPI_REG_IRQMASK                       0x44
205
206 #define CQSPI_REG_INDIRECTRD                    0x60
207 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
208 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
209 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
210
211 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
212 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
213 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
214
215 #define CQSPI_REG_CMDCTRL                       0x90
216 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
217 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
218 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
219 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
220 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
221 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
222 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
223 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
224 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
225 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
226 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
227 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
228 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
229 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
230
231 #define CQSPI_REG_INDIRECTWR                    0x70
232 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
233 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
234 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
235
236 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
237 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
238 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
239
240 #define CQSPI_REG_INDTRIG_ADDRRANGE             0x80
241
242 #define CQSPI_REG_CMDADDRESS                    0x94
243 #define CQSPI_REG_CMDREADDATALOWER              0xA0
244 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
245 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
246 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
247
248 #define CQSPI_REG_POLLING_STATUS                0xB0
249 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
250
251 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
252 #define CQSPI_REG_OP_EXT_READ_LSB               24
253 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
254 #define CQSPI_REG_OP_EXT_STIG_LSB               0
255
256 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR           0x1000
257
258 #define CQSPI_REG_VERSAL_DMA_DST_ADDR           0x1800
259 #define CQSPI_REG_VERSAL_DMA_DST_SIZE           0x1804
260
261 #define CQSPI_REG_VERSAL_DMA_DST_CTRL           0x180C
262
263 #define CQSPI_REG_VERSAL_DMA_DST_I_STS          0x1814
264 #define CQSPI_REG_VERSAL_DMA_DST_I_EN           0x1818
265 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS          0x181C
266 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK      BIT(1)
267
268 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB       0x1828
269
270 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL       0xF43FFA00
271 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL    0x6
272
273 /* Interrupt status bits */
274 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
275 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
276 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
277 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
278 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
279 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
280 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
281 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
282
283 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
284                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
285                                          CQSPI_REG_IRQ_IND_COMP)
286
287 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
288                                          CQSPI_REG_IRQ_WATERMARK        | \
289                                          CQSPI_REG_IRQ_UNDERFLOW)
290
291 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
292 #define CQSPI_DMA_UNALIGN               0x3
293
294 #define CQSPI_REG_VERSAL_DMA_VAL                0x602
295
296 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
297 {
298         u32 val;
299
300         return readl_relaxed_poll_timeout(reg, val,
301                                           (((clr ? ~val : val) & mask) == mask),
302                                           10, CQSPI_TIMEOUT_MS * 1000);
303 }
304
305 static bool cqspi_is_idle(struct cqspi_st *cqspi)
306 {
307         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
308
309         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
310 }
311
312 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
313 {
314         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
315
316         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
317         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
318 }
319
320 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
321 {
322         u32 dma_status;
323
324         dma_status = readl(cqspi->iobase +
325                                            CQSPI_REG_VERSAL_DMA_DST_I_STS);
326         writel(dma_status, cqspi->iobase +
327                    CQSPI_REG_VERSAL_DMA_DST_I_STS);
328
329         return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
330 }
331
332 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
333 {
334         struct cqspi_st *cqspi = dev;
335         unsigned int irq_status;
336         struct device *device = &cqspi->pdev->dev;
337         const struct cqspi_driver_platdata *ddata;
338
339         ddata = of_device_get_match_data(device);
340
341         /* Read interrupt status */
342         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
343
344         /* Clear interrupt */
345         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
346
347         if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
348                 if (ddata->get_dma_status(cqspi)) {
349                         complete(&cqspi->transfer_complete);
350                         return IRQ_HANDLED;
351                 }
352         }
353
354         else if (!cqspi->slow_sram)
355                 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
356         else
357                 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
358
359         if (irq_status)
360                 complete(&cqspi->transfer_complete);
361
362         return IRQ_HANDLED;
363 }
364
365 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
366 {
367         u32 rdreg = 0;
368
369         rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
370         rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
371         rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
372
373         return rdreg;
374 }
375
376 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
377 {
378         unsigned int dummy_clk;
379
380         if (!op->dummy.nbytes)
381                 return 0;
382
383         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
384         if (op->cmd.dtr)
385                 dummy_clk /= 2;
386
387         return dummy_clk;
388 }
389
390 static int cqspi_wait_idle(struct cqspi_st *cqspi)
391 {
392         const unsigned int poll_idle_retry = 3;
393         unsigned int count = 0;
394         unsigned long timeout;
395
396         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
397         while (1) {
398                 /*
399                  * Read few times in succession to ensure the controller
400                  * is indeed idle, that is, the bit does not transition
401                  * low again.
402                  */
403                 if (cqspi_is_idle(cqspi))
404                         count++;
405                 else
406                         count = 0;
407
408                 if (count >= poll_idle_retry)
409                         return 0;
410
411                 if (time_after(jiffies, timeout)) {
412                         /* Timeout, in busy mode. */
413                         dev_err(&cqspi->pdev->dev,
414                                 "QSPI is still busy after %dms timeout.\n",
415                                 CQSPI_TIMEOUT_MS);
416                         return -ETIMEDOUT;
417                 }
418
419                 cpu_relax();
420         }
421 }
422
423 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
424 {
425         void __iomem *reg_base = cqspi->iobase;
426         int ret;
427
428         /* Write the CMDCTRL without start execution. */
429         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
430         /* Start execute */
431         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
432         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
433
434         /* Polling for completion. */
435         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
436                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
437         if (ret) {
438                 dev_err(&cqspi->pdev->dev,
439                         "Flash command execution timed out.\n");
440                 return ret;
441         }
442
443         /* Polling QSPI idle status. */
444         return cqspi_wait_idle(cqspi);
445 }
446
447 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
448                                   const struct spi_mem_op *op,
449                                   unsigned int shift)
450 {
451         struct cqspi_st *cqspi = f_pdata->cqspi;
452         void __iomem *reg_base = cqspi->iobase;
453         unsigned int reg;
454         u8 ext;
455
456         if (op->cmd.nbytes != 2)
457                 return -EINVAL;
458
459         /* Opcode extension is the LSB. */
460         ext = op->cmd.opcode & 0xff;
461
462         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
463         reg &= ~(0xff << shift);
464         reg |= ext << shift;
465         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
466
467         return 0;
468 }
469
470 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
471                             const struct spi_mem_op *op, unsigned int shift)
472 {
473         struct cqspi_st *cqspi = f_pdata->cqspi;
474         void __iomem *reg_base = cqspi->iobase;
475         unsigned int reg;
476         int ret;
477
478         reg = readl(reg_base + CQSPI_REG_CONFIG);
479
480         /*
481          * We enable dual byte opcode here. The callers have to set up the
482          * extension opcode based on which type of operation it is.
483          */
484         if (op->cmd.dtr) {
485                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
486                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
487
488                 /* Set up command opcode extension. */
489                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
490                 if (ret)
491                         return ret;
492         } else {
493                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
494                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
495         }
496
497         writel(reg, reg_base + CQSPI_REG_CONFIG);
498
499         return cqspi_wait_idle(cqspi);
500 }
501
502 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
503                               const struct spi_mem_op *op)
504 {
505         struct cqspi_st *cqspi = f_pdata->cqspi;
506         void __iomem *reg_base = cqspi->iobase;
507         u8 *rxbuf = op->data.buf.in;
508         u8 opcode;
509         size_t n_rx = op->data.nbytes;
510         unsigned int rdreg;
511         unsigned int reg;
512         unsigned int dummy_clk;
513         size_t read_len;
514         int status;
515
516         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
517         if (status)
518                 return status;
519
520         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
521                 dev_err(&cqspi->pdev->dev,
522                         "Invalid input argument, len %zu rxbuf 0x%p\n",
523                         n_rx, rxbuf);
524                 return -EINVAL;
525         }
526
527         if (op->cmd.dtr)
528                 opcode = op->cmd.opcode >> 8;
529         else
530                 opcode = op->cmd.opcode;
531
532         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
533
534         rdreg = cqspi_calc_rdreg(op);
535         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
536
537         dummy_clk = cqspi_calc_dummy(op);
538         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
539                 return -EOPNOTSUPP;
540
541         if (dummy_clk)
542                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
543                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
544
545         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
546
547         /* 0 means 1 byte. */
548         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
549                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
550
551         /* setup ADDR BIT field */
552         if (op->addr.nbytes) {
553                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
554                 reg |= ((op->addr.nbytes - 1) &
555                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
556                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
557
558                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
559         }
560
561         status = cqspi_exec_flash_cmd(cqspi, reg);
562         if (status)
563                 return status;
564
565         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
566
567         /* Put the read value into rx_buf */
568         read_len = (n_rx > 4) ? 4 : n_rx;
569         memcpy(rxbuf, &reg, read_len);
570         rxbuf += read_len;
571
572         if (n_rx > 4) {
573                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
574
575                 read_len = n_rx - read_len;
576                 memcpy(rxbuf, &reg, read_len);
577         }
578
579         /* Reset CMD_CTRL Reg once command read completes */
580         writel(0, reg_base + CQSPI_REG_CMDCTRL);
581
582         return 0;
583 }
584
585 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
586                                const struct spi_mem_op *op)
587 {
588         struct cqspi_st *cqspi = f_pdata->cqspi;
589         void __iomem *reg_base = cqspi->iobase;
590         u8 opcode;
591         const u8 *txbuf = op->data.buf.out;
592         size_t n_tx = op->data.nbytes;
593         unsigned int reg;
594         unsigned int data;
595         size_t write_len;
596         int ret;
597
598         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
599         if (ret)
600                 return ret;
601
602         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
603                 dev_err(&cqspi->pdev->dev,
604                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
605                         n_tx, txbuf);
606                 return -EINVAL;
607         }
608
609         reg = cqspi_calc_rdreg(op);
610         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
611
612         if (op->cmd.dtr)
613                 opcode = op->cmd.opcode >> 8;
614         else
615                 opcode = op->cmd.opcode;
616
617         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
618
619         if (op->addr.nbytes) {
620                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
621                 reg |= ((op->addr.nbytes - 1) &
622                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
623                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
624
625                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
626         }
627
628         if (n_tx) {
629                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
630                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
631                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
632                 data = 0;
633                 write_len = (n_tx > 4) ? 4 : n_tx;
634                 memcpy(&data, txbuf, write_len);
635                 txbuf += write_len;
636                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
637
638                 if (n_tx > 4) {
639                         data = 0;
640                         write_len = n_tx - 4;
641                         memcpy(&data, txbuf, write_len);
642                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
643                 }
644         }
645
646         ret = cqspi_exec_flash_cmd(cqspi, reg);
647
648         /* Reset CMD_CTRL Reg once command write completes */
649         writel(0, reg_base + CQSPI_REG_CMDCTRL);
650
651         return ret;
652 }
653
654 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
655                             const struct spi_mem_op *op)
656 {
657         struct cqspi_st *cqspi = f_pdata->cqspi;
658         void __iomem *reg_base = cqspi->iobase;
659         unsigned int dummy_clk = 0;
660         unsigned int reg;
661         int ret;
662         u8 opcode;
663
664         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
665         if (ret)
666                 return ret;
667
668         if (op->cmd.dtr)
669                 opcode = op->cmd.opcode >> 8;
670         else
671                 opcode = op->cmd.opcode;
672
673         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
674         reg |= cqspi_calc_rdreg(op);
675
676         /* Setup dummy clock cycles */
677         dummy_clk = cqspi_calc_dummy(op);
678
679         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
680                 return -EOPNOTSUPP;
681
682         if (dummy_clk)
683                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
684                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
685
686         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
687
688         /* Set address width */
689         reg = readl(reg_base + CQSPI_REG_SIZE);
690         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
691         reg |= (op->addr.nbytes - 1);
692         writel(reg, reg_base + CQSPI_REG_SIZE);
693         return 0;
694 }
695
696 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
697                                        u8 *rxbuf, loff_t from_addr,
698                                        const size_t n_rx)
699 {
700         struct cqspi_st *cqspi = f_pdata->cqspi;
701         struct device *dev = &cqspi->pdev->dev;
702         void __iomem *reg_base = cqspi->iobase;
703         void __iomem *ahb_base = cqspi->ahb_base;
704         unsigned int remaining = n_rx;
705         unsigned int mod_bytes = n_rx % 4;
706         unsigned int bytes_to_read = 0;
707         u8 *rxbuf_end = rxbuf + n_rx;
708         int ret = 0;
709
710         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
711         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
712
713         /* Clear all interrupts. */
714         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
715
716         /*
717          * On SoCFPGA platform reading the SRAM is slow due to
718          * hardware limitation and causing read interrupt storm to CPU,
719          * so enabling only watermark interrupt to disable all read
720          * interrupts later as we want to run "bytes to read" loop with
721          * all the read interrupts disabled for max performance.
722          */
723
724         if (!cqspi->slow_sram)
725                 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
726         else
727                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
728
729         reinit_completion(&cqspi->transfer_complete);
730         writel(CQSPI_REG_INDIRECTRD_START_MASK,
731                reg_base + CQSPI_REG_INDIRECTRD);
732
733         while (remaining > 0) {
734                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
735                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
736                         ret = -ETIMEDOUT;
737
738                 /*
739                  * Disable all read interrupts until
740                  * we are out of "bytes to read"
741                  */
742                 if (cqspi->slow_sram)
743                         writel(0x0, reg_base + CQSPI_REG_IRQMASK);
744
745                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
746
747                 if (ret && bytes_to_read == 0) {
748                         dev_err(dev, "Indirect read timeout, no bytes\n");
749                         goto failrd;
750                 }
751
752                 while (bytes_to_read != 0) {
753                         unsigned int word_remain = round_down(remaining, 4);
754
755                         bytes_to_read *= cqspi->fifo_width;
756                         bytes_to_read = bytes_to_read > remaining ?
757                                         remaining : bytes_to_read;
758                         bytes_to_read = round_down(bytes_to_read, 4);
759                         /* Read 4 byte word chunks then single bytes */
760                         if (bytes_to_read) {
761                                 ioread32_rep(ahb_base, rxbuf,
762                                              (bytes_to_read / 4));
763                         } else if (!word_remain && mod_bytes) {
764                                 unsigned int temp = ioread32(ahb_base);
765
766                                 bytes_to_read = mod_bytes;
767                                 memcpy(rxbuf, &temp, min((unsigned int)
768                                                          (rxbuf_end - rxbuf),
769                                                          bytes_to_read));
770                         }
771                         rxbuf += bytes_to_read;
772                         remaining -= bytes_to_read;
773                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
774                 }
775
776                 if (remaining > 0) {
777                         reinit_completion(&cqspi->transfer_complete);
778                         if (cqspi->slow_sram)
779                                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
780                 }
781         }
782
783         /* Check indirect done status */
784         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
785                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
786         if (ret) {
787                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
788                 goto failrd;
789         }
790
791         /* Disable interrupt */
792         writel(0, reg_base + CQSPI_REG_IRQMASK);
793
794         /* Clear indirect completion status */
795         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
796
797         return 0;
798
799 failrd:
800         /* Disable interrupt */
801         writel(0, reg_base + CQSPI_REG_IRQMASK);
802
803         /* Cancel the indirect read */
804         writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
805                reg_base + CQSPI_REG_INDIRECTRD);
806         return ret;
807 }
808
809 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
810 {
811         void __iomem *reg_base = cqspi->iobase;
812         unsigned int reg;
813
814         reg = readl(reg_base + CQSPI_REG_CONFIG);
815
816         if (enable)
817                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
818         else
819                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
820
821         writel(reg, reg_base + CQSPI_REG_CONFIG);
822 }
823
824 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
825                                           u_char *rxbuf, loff_t from_addr,
826                                           size_t n_rx)
827 {
828         struct cqspi_st *cqspi = f_pdata->cqspi;
829         struct device *dev = &cqspi->pdev->dev;
830         void __iomem *reg_base = cqspi->iobase;
831         u32 reg, bytes_to_dma;
832         loff_t addr = from_addr;
833         void *buf = rxbuf;
834         dma_addr_t dma_addr;
835         u8 bytes_rem;
836         int ret = 0;
837
838         bytes_rem = n_rx % 4;
839         bytes_to_dma = (n_rx - bytes_rem);
840
841         if (!bytes_to_dma)
842                 goto nondmard;
843
844         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
845         if (ret)
846                 return ret;
847
848         cqspi_controller_enable(cqspi, 0);
849
850         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
851         reg |= CQSPI_REG_CONFIG_DMA_MASK;
852         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
853
854         cqspi_controller_enable(cqspi, 1);
855
856         dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
857         if (dma_mapping_error(dev, dma_addr)) {
858                 dev_err(dev, "dma mapping failed\n");
859                 return -ENOMEM;
860         }
861
862         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
863         writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
864         writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
865                reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
866
867         /* Clear all interrupts. */
868         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
869
870         /* Enable DMA done interrupt */
871         writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
872                reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
873
874         /* Default DMA periph configuration */
875         writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
876
877         /* Configure DMA Dst address */
878         writel(lower_32_bits(dma_addr),
879                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
880         writel(upper_32_bits(dma_addr),
881                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
882
883         /* Configure DMA Src address */
884         writel(cqspi->trigger_address, reg_base +
885                CQSPI_REG_VERSAL_DMA_SRC_ADDR);
886
887         /* Set DMA destination size */
888         writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
889
890         /* Set DMA destination control */
891         writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
892                reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
893
894         writel(CQSPI_REG_INDIRECTRD_START_MASK,
895                reg_base + CQSPI_REG_INDIRECTRD);
896
897         reinit_completion(&cqspi->transfer_complete);
898
899         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
900                                          msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
901                 ret = -ETIMEDOUT;
902                 goto failrd;
903         }
904
905         /* Disable DMA interrupt */
906         writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
907
908         /* Clear indirect completion status */
909         writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
910                cqspi->iobase + CQSPI_REG_INDIRECTRD);
911         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
912
913         cqspi_controller_enable(cqspi, 0);
914
915         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
916         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
917         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
918
919         cqspi_controller_enable(cqspi, 1);
920
921         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
922                                         PM_OSPI_MUX_SEL_LINEAR);
923         if (ret)
924                 return ret;
925
926 nondmard:
927         if (bytes_rem) {
928                 addr += bytes_to_dma;
929                 buf += bytes_to_dma;
930                 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
931                                                   bytes_rem);
932                 if (ret)
933                         return ret;
934         }
935
936         return 0;
937
938 failrd:
939         /* Disable DMA interrupt */
940         writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
941
942         /* Cancel the indirect read */
943         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
944                reg_base + CQSPI_REG_INDIRECTRD);
945
946         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
947
948         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
949         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
950         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
951
952         zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
953
954         return ret;
955 }
956
957 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
958                              const struct spi_mem_op *op)
959 {
960         unsigned int reg;
961         int ret;
962         struct cqspi_st *cqspi = f_pdata->cqspi;
963         void __iomem *reg_base = cqspi->iobase;
964         u8 opcode;
965
966         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
967         if (ret)
968                 return ret;
969
970         if (op->cmd.dtr)
971                 opcode = op->cmd.opcode >> 8;
972         else
973                 opcode = op->cmd.opcode;
974
975         /* Set opcode. */
976         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
977         reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
978         reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
979         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
980         reg = cqspi_calc_rdreg(op);
981         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
982
983         /*
984          * SPI NAND flashes require the address of the status register to be
985          * passed in the Read SR command. Also, some SPI NOR flashes like the
986          * cypress Semper flash expect a 4-byte dummy address in the Read SR
987          * command in DTR mode.
988          *
989          * But this controller does not support address phase in the Read SR
990          * command when doing auto-HW polling. So, disable write completion
991          * polling on the controller's side. spinand and spi-nor will take
992          * care of polling the status register.
993          */
994         if (cqspi->wr_completion) {
995                 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
996                 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
997                 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
998                 /*
999                  * DAC mode require auto polling as flash needs to be polled
1000                  * for write completion in case of bubble in SPI transaction
1001                  * due to slow CPU/DMA master.
1002                  */
1003                 cqspi->use_direct_mode_wr = false;
1004         }
1005
1006         reg = readl(reg_base + CQSPI_REG_SIZE);
1007         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1008         reg |= (op->addr.nbytes - 1);
1009         writel(reg, reg_base + CQSPI_REG_SIZE);
1010         return 0;
1011 }
1012
1013 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1014                                         loff_t to_addr, const u8 *txbuf,
1015                                         const size_t n_tx)
1016 {
1017         struct cqspi_st *cqspi = f_pdata->cqspi;
1018         struct device *dev = &cqspi->pdev->dev;
1019         void __iomem *reg_base = cqspi->iobase;
1020         unsigned int remaining = n_tx;
1021         unsigned int write_bytes;
1022         int ret;
1023
1024         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1025         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1026
1027         /* Clear all interrupts. */
1028         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1029
1030         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1031
1032         reinit_completion(&cqspi->transfer_complete);
1033         writel(CQSPI_REG_INDIRECTWR_START_MASK,
1034                reg_base + CQSPI_REG_INDIRECTWR);
1035         /*
1036          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1037          * Controller programming sequence, couple of cycles of
1038          * QSPI_REF_CLK delay is required for the above bit to
1039          * be internally synchronized by the QSPI module. Provide 5
1040          * cycles of delay.
1041          */
1042         if (cqspi->wr_delay)
1043                 ndelay(cqspi->wr_delay);
1044
1045         /*
1046          * If a hazard exists between the APB and AHB interfaces, perform a
1047          * dummy readback from the controller to ensure synchronization.
1048          */
1049         if (cqspi->apb_ahb_hazard)
1050                 readl(reg_base + CQSPI_REG_INDIRECTWR);
1051
1052         while (remaining > 0) {
1053                 size_t write_words, mod_bytes;
1054
1055                 write_bytes = remaining;
1056                 write_words = write_bytes / 4;
1057                 mod_bytes = write_bytes % 4;
1058                 /* Write 4 bytes at a time then single bytes. */
1059                 if (write_words) {
1060                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1061                         txbuf += (write_words * 4);
1062                 }
1063                 if (mod_bytes) {
1064                         unsigned int temp = 0xFFFFFFFF;
1065
1066                         memcpy(&temp, txbuf, mod_bytes);
1067                         iowrite32(temp, cqspi->ahb_base);
1068                         txbuf += mod_bytes;
1069                 }
1070
1071                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1072                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1073                         dev_err(dev, "Indirect write timeout\n");
1074                         ret = -ETIMEDOUT;
1075                         goto failwr;
1076                 }
1077
1078                 remaining -= write_bytes;
1079
1080                 if (remaining > 0)
1081                         reinit_completion(&cqspi->transfer_complete);
1082         }
1083
1084         /* Check indirect done status */
1085         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1086                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1087         if (ret) {
1088                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1089                 goto failwr;
1090         }
1091
1092         /* Disable interrupt. */
1093         writel(0, reg_base + CQSPI_REG_IRQMASK);
1094
1095         /* Clear indirect completion status */
1096         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1097
1098         cqspi_wait_idle(cqspi);
1099
1100         return 0;
1101
1102 failwr:
1103         /* Disable interrupt. */
1104         writel(0, reg_base + CQSPI_REG_IRQMASK);
1105
1106         /* Cancel the indirect write */
1107         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1108                reg_base + CQSPI_REG_INDIRECTWR);
1109         return ret;
1110 }
1111
1112 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1113 {
1114         struct cqspi_st *cqspi = f_pdata->cqspi;
1115         void __iomem *reg_base = cqspi->iobase;
1116         unsigned int chip_select = f_pdata->cs;
1117         unsigned int reg;
1118
1119         reg = readl(reg_base + CQSPI_REG_CONFIG);
1120         if (cqspi->is_decoded_cs) {
1121                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1122         } else {
1123                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1124
1125                 /* Convert CS if without decoder.
1126                  * CS0 to 4b'1110
1127                  * CS1 to 4b'1101
1128                  * CS2 to 4b'1011
1129                  * CS3 to 4b'0111
1130                  */
1131                 chip_select = 0xF & ~(1 << chip_select);
1132         }
1133
1134         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1135                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1136         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1137             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1138         writel(reg, reg_base + CQSPI_REG_CONFIG);
1139 }
1140
1141 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1142                                            const unsigned int ns_val)
1143 {
1144         unsigned int ticks;
1145
1146         ticks = ref_clk_hz / 1000;      /* kHz */
1147         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1148
1149         return ticks;
1150 }
1151
1152 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1153 {
1154         struct cqspi_st *cqspi = f_pdata->cqspi;
1155         void __iomem *iobase = cqspi->iobase;
1156         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1157         unsigned int tshsl, tchsh, tslch, tsd2d;
1158         unsigned int reg;
1159         unsigned int tsclk;
1160
1161         /* calculate the number of ref ticks for one sclk tick */
1162         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1163
1164         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1165         /* this particular value must be at least one sclk */
1166         if (tshsl < tsclk)
1167                 tshsl = tsclk;
1168
1169         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1170         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1171         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1172
1173         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1174                << CQSPI_REG_DELAY_TSHSL_LSB;
1175         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1176                 << CQSPI_REG_DELAY_TCHSH_LSB;
1177         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1178                 << CQSPI_REG_DELAY_TSLCH_LSB;
1179         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1180                 << CQSPI_REG_DELAY_TSD2D_LSB;
1181         writel(reg, iobase + CQSPI_REG_DELAY);
1182 }
1183
1184 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1185 {
1186         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1187         void __iomem *reg_base = cqspi->iobase;
1188         u32 reg, div;
1189
1190         /* Recalculate the baudrate divisor based on QSPI specification. */
1191         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1192
1193         /* Maximum baud divisor */
1194         if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1195                 div = CQSPI_REG_CONFIG_BAUD_MASK;
1196                 dev_warn(&cqspi->pdev->dev,
1197                         "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1198                         cqspi->sclk, ref_clk_hz/((div+1)*2));
1199         }
1200
1201         reg = readl(reg_base + CQSPI_REG_CONFIG);
1202         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1203         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1204         writel(reg, reg_base + CQSPI_REG_CONFIG);
1205 }
1206
1207 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1208                                    const bool bypass,
1209                                    const unsigned int delay)
1210 {
1211         void __iomem *reg_base = cqspi->iobase;
1212         unsigned int reg;
1213
1214         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1215
1216         if (bypass)
1217                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1218         else
1219                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1220
1221         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1222                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1223
1224         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1225                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1226
1227         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1228 }
1229
1230 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1231                             unsigned long sclk)
1232 {
1233         struct cqspi_st *cqspi = f_pdata->cqspi;
1234         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1235         int switch_ck = (cqspi->sclk != sclk);
1236
1237         if (switch_cs || switch_ck)
1238                 cqspi_controller_enable(cqspi, 0);
1239
1240         /* Switch chip select. */
1241         if (switch_cs) {
1242                 cqspi->current_cs = f_pdata->cs;
1243                 cqspi_chipselect(f_pdata);
1244         }
1245
1246         /* Setup baudrate divisor and delays */
1247         if (switch_ck) {
1248                 cqspi->sclk = sclk;
1249                 cqspi_config_baudrate_div(cqspi);
1250                 cqspi_delay(f_pdata);
1251                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1252                                        f_pdata->read_delay);
1253         }
1254
1255         if (switch_cs || switch_ck)
1256                 cqspi_controller_enable(cqspi, 1);
1257 }
1258
1259 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1260                            const struct spi_mem_op *op)
1261 {
1262         struct cqspi_st *cqspi = f_pdata->cqspi;
1263         loff_t to = op->addr.val;
1264         size_t len = op->data.nbytes;
1265         const u_char *buf = op->data.buf.out;
1266         int ret;
1267
1268         ret = cqspi_write_setup(f_pdata, op);
1269         if (ret)
1270                 return ret;
1271
1272         /*
1273          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1274          * address (all 0s) with the read status register command in DTR mode.
1275          * But this controller does not support sending dummy address bytes to
1276          * the flash when it is polling the write completion register in DTR
1277          * mode. So, we can not use direct mode when in DTR mode for writing
1278          * data.
1279          */
1280         if (!op->cmd.dtr && cqspi->use_direct_mode &&
1281             cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1282                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1283                 return cqspi_wait_idle(cqspi);
1284         }
1285
1286         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1287 }
1288
1289 static void cqspi_rx_dma_callback(void *param)
1290 {
1291         struct cqspi_st *cqspi = param;
1292
1293         complete(&cqspi->rx_dma_complete);
1294 }
1295
1296 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1297                                      u_char *buf, loff_t from, size_t len)
1298 {
1299         struct cqspi_st *cqspi = f_pdata->cqspi;
1300         struct device *dev = &cqspi->pdev->dev;
1301         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1302         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1303         int ret = 0;
1304         struct dma_async_tx_descriptor *tx;
1305         dma_cookie_t cookie;
1306         dma_addr_t dma_dst;
1307         struct device *ddev;
1308
1309         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1310                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1311                 return 0;
1312         }
1313
1314         ddev = cqspi->rx_chan->device->dev;
1315         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1316         if (dma_mapping_error(ddev, dma_dst)) {
1317                 dev_err(dev, "dma mapping failed\n");
1318                 return -ENOMEM;
1319         }
1320         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1321                                        len, flags);
1322         if (!tx) {
1323                 dev_err(dev, "device_prep_dma_memcpy error\n");
1324                 ret = -EIO;
1325                 goto err_unmap;
1326         }
1327
1328         tx->callback = cqspi_rx_dma_callback;
1329         tx->callback_param = cqspi;
1330         cookie = tx->tx_submit(tx);
1331         reinit_completion(&cqspi->rx_dma_complete);
1332
1333         ret = dma_submit_error(cookie);
1334         if (ret) {
1335                 dev_err(dev, "dma_submit_error %d\n", cookie);
1336                 ret = -EIO;
1337                 goto err_unmap;
1338         }
1339
1340         dma_async_issue_pending(cqspi->rx_chan);
1341         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1342                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1343                 dmaengine_terminate_sync(cqspi->rx_chan);
1344                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1345                 ret = -ETIMEDOUT;
1346                 goto err_unmap;
1347         }
1348
1349 err_unmap:
1350         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1351
1352         return ret;
1353 }
1354
1355 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1356                           const struct spi_mem_op *op)
1357 {
1358         struct cqspi_st *cqspi = f_pdata->cqspi;
1359         struct device *dev = &cqspi->pdev->dev;
1360         const struct cqspi_driver_platdata *ddata;
1361         loff_t from = op->addr.val;
1362         size_t len = op->data.nbytes;
1363         u_char *buf = op->data.buf.in;
1364         u64 dma_align = (u64)(uintptr_t)buf;
1365         int ret;
1366
1367         ddata = of_device_get_match_data(dev);
1368
1369         ret = cqspi_read_setup(f_pdata, op);
1370         if (ret)
1371                 return ret;
1372
1373         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1374                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1375
1376         if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1377             virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1378                 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1379
1380         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1381 }
1382
1383 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1384 {
1385         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1386         struct cqspi_flash_pdata *f_pdata;
1387
1388         f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1389         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1390
1391         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1392         /*
1393          * Performing reads in DAC mode forces to read minimum 4 bytes
1394          * which is unsupported on some flash devices during register
1395          * reads, prefer STIG mode for such small reads.
1396          */
1397                 if (!op->addr.nbytes ||
1398                     op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1399                         return cqspi_command_read(f_pdata, op);
1400
1401                 return cqspi_read(f_pdata, op);
1402         }
1403
1404         if (!op->addr.nbytes || !op->data.buf.out)
1405                 return cqspi_command_write(f_pdata, op);
1406
1407         return cqspi_write(f_pdata, op);
1408 }
1409
1410 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1411 {
1412         int ret;
1413         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1414         struct device *dev = &cqspi->pdev->dev;
1415
1416         ret = pm_runtime_resume_and_get(dev);
1417         if (ret) {
1418                 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1419                 return ret;
1420         }
1421
1422         ret = cqspi_mem_process(mem, op);
1423
1424         pm_runtime_mark_last_busy(dev);
1425         pm_runtime_put_autosuspend(dev);
1426
1427         if (ret)
1428                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1429
1430         return ret;
1431 }
1432
1433 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1434                                   const struct spi_mem_op *op)
1435 {
1436         bool all_true, all_false;
1437
1438         /*
1439          * op->dummy.dtr is required for converting nbytes into ncycles.
1440          * Also, don't check the dtr field of the op phase having zero nbytes.
1441          */
1442         all_true = op->cmd.dtr &&
1443                    (!op->addr.nbytes || op->addr.dtr) &&
1444                    (!op->dummy.nbytes || op->dummy.dtr) &&
1445                    (!op->data.nbytes || op->data.dtr);
1446
1447         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1448                     !op->data.dtr;
1449
1450         if (all_true) {
1451                 /* Right now we only support 8-8-8 DTR mode. */
1452                 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1453                         return false;
1454                 if (op->addr.nbytes && op->addr.buswidth != 8)
1455                         return false;
1456                 if (op->data.nbytes && op->data.buswidth != 8)
1457                         return false;
1458         } else if (!all_false) {
1459                 /* Mixed DTR modes are not supported. */
1460                 return false;
1461         }
1462
1463         return spi_mem_default_supports_op(mem, op);
1464 }
1465
1466 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1467                                     struct cqspi_flash_pdata *f_pdata,
1468                                     struct device_node *np)
1469 {
1470         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1471                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1472                 return -ENXIO;
1473         }
1474
1475         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1476                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1477                 return -ENXIO;
1478         }
1479
1480         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1481                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1482                 return -ENXIO;
1483         }
1484
1485         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1486                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1487                 return -ENXIO;
1488         }
1489
1490         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1491                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1492                 return -ENXIO;
1493         }
1494
1495         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1496                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1497                 return -ENXIO;
1498         }
1499
1500         return 0;
1501 }
1502
1503 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1504 {
1505         struct device *dev = &cqspi->pdev->dev;
1506         struct device_node *np = dev->of_node;
1507         u32 id[2];
1508
1509         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1510
1511         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1512                 dev_err(dev, "couldn't determine fifo-depth\n");
1513                 return -ENXIO;
1514         }
1515
1516         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1517                 dev_err(dev, "couldn't determine fifo-width\n");
1518                 return -ENXIO;
1519         }
1520
1521         if (of_property_read_u32(np, "cdns,trigger-address",
1522                                  &cqspi->trigger_address)) {
1523                 dev_err(dev, "couldn't determine trigger-address\n");
1524                 return -ENXIO;
1525         }
1526
1527         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1528                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1529
1530         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1531
1532         if (!of_property_read_u32_array(np, "power-domains", id,
1533                                         ARRAY_SIZE(id)))
1534                 cqspi->pd_dev_id = id[1];
1535
1536         return 0;
1537 }
1538
1539 static void cqspi_controller_init(struct cqspi_st *cqspi)
1540 {
1541         u32 reg;
1542
1543         cqspi_controller_enable(cqspi, 0);
1544
1545         /* Configure the remap address register, no remap */
1546         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1547
1548         /* Disable all interrupts. */
1549         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1550
1551         /* Configure the SRAM split to 1:1 . */
1552         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1553
1554         /* Load indirect trigger address. */
1555         writel(cqspi->trigger_address,
1556                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1557
1558         /* Program read watermark -- 1/2 of the FIFO. */
1559         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1560                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1561         /* Program write watermark -- 1/8 of the FIFO. */
1562         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1563                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1564
1565         /* Disable direct access controller */
1566         if (!cqspi->use_direct_mode) {
1567                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1568                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1569                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1570         }
1571
1572         /* Enable DMA interface */
1573         if (cqspi->use_dma_read) {
1574                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1575                 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1576                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1577         }
1578
1579         cqspi_controller_enable(cqspi, 1);
1580 }
1581
1582 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1583 {
1584         dma_cap_mask_t mask;
1585
1586         dma_cap_zero(mask);
1587         dma_cap_set(DMA_MEMCPY, mask);
1588
1589         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1590         if (IS_ERR(cqspi->rx_chan)) {
1591                 int ret = PTR_ERR(cqspi->rx_chan);
1592
1593                 cqspi->rx_chan = NULL;
1594                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1595         }
1596         init_completion(&cqspi->rx_dma_complete);
1597
1598         return 0;
1599 }
1600
1601 static const char *cqspi_get_name(struct spi_mem *mem)
1602 {
1603         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1604         struct device *dev = &cqspi->pdev->dev;
1605
1606         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1607                               spi_get_chipselect(mem->spi, 0));
1608 }
1609
1610 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1611         .exec_op = cqspi_exec_mem_op,
1612         .get_name = cqspi_get_name,
1613         .supports_op = cqspi_supports_mem_op,
1614 };
1615
1616 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1617         .dtr = true,
1618 };
1619
1620 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1621 {
1622         struct platform_device *pdev = cqspi->pdev;
1623         struct device *dev = &pdev->dev;
1624         struct device_node *np = dev->of_node;
1625         struct cqspi_flash_pdata *f_pdata;
1626         unsigned int cs;
1627         int ret;
1628
1629         /* Get flash device data */
1630         for_each_available_child_of_node(dev->of_node, np) {
1631                 ret = of_property_read_u32(np, "reg", &cs);
1632                 if (ret) {
1633                         dev_err(dev, "Couldn't determine chip select.\n");
1634                         of_node_put(np);
1635                         return ret;
1636                 }
1637
1638                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1639                         dev_err(dev, "Chip select %d out of range.\n", cs);
1640                         of_node_put(np);
1641                         return -EINVAL;
1642                 }
1643
1644                 f_pdata = &cqspi->f_pdata[cs];
1645                 f_pdata->cqspi = cqspi;
1646                 f_pdata->cs = cs;
1647
1648                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1649                 if (ret) {
1650                         of_node_put(np);
1651                         return ret;
1652                 }
1653         }
1654
1655         return 0;
1656 }
1657
1658 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1659 {
1660         static struct clk_bulk_data qspiclk[] = {
1661                 { .id = "apb" },
1662                 { .id = "ahb" },
1663         };
1664
1665         int ret = 0;
1666
1667         ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1668         if (ret) {
1669                 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1670                 return ret;
1671         }
1672
1673         cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1674         cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1675
1676         ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1677         if (ret) {
1678                 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1679                 return ret;
1680         }
1681
1682         ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1683         if (ret) {
1684                 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1685                 goto disable_apb_clk;
1686         }
1687
1688         cqspi->is_jh7110 = true;
1689
1690         return 0;
1691
1692 disable_apb_clk:
1693         clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1694
1695         return ret;
1696 }
1697
1698 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1699 {
1700         clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1701         clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1702 }
1703 static int cqspi_probe(struct platform_device *pdev)
1704 {
1705         const struct cqspi_driver_platdata *ddata;
1706         struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1707         struct device *dev = &pdev->dev;
1708         struct spi_controller *host;
1709         struct resource *res_ahb;
1710         struct cqspi_st *cqspi;
1711         int ret;
1712         int irq;
1713
1714         host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1715         if (!host) {
1716                 dev_err(&pdev->dev, "devm_spi_alloc_host failed\n");
1717                 return -ENOMEM;
1718         }
1719         host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1720         host->mem_ops = &cqspi_mem_ops;
1721         host->mem_caps = &cqspi_mem_caps;
1722         host->dev.of_node = pdev->dev.of_node;
1723
1724         cqspi = spi_controller_get_devdata(host);
1725
1726         cqspi->pdev = pdev;
1727         cqspi->host = host;
1728         cqspi->is_jh7110 = false;
1729         platform_set_drvdata(pdev, cqspi);
1730
1731         /* Obtain configuration from OF. */
1732         ret = cqspi_of_get_pdata(cqspi);
1733         if (ret) {
1734                 dev_err(dev, "Cannot get mandatory OF data.\n");
1735                 return -ENODEV;
1736         }
1737
1738         /* Obtain QSPI clock. */
1739         cqspi->clk = devm_clk_get(dev, NULL);
1740         if (IS_ERR(cqspi->clk)) {
1741                 dev_err(dev, "Cannot claim QSPI clock.\n");
1742                 ret = PTR_ERR(cqspi->clk);
1743                 return ret;
1744         }
1745
1746         /* Obtain and remap controller address. */
1747         cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1748         if (IS_ERR(cqspi->iobase)) {
1749                 dev_err(dev, "Cannot remap controller address.\n");
1750                 ret = PTR_ERR(cqspi->iobase);
1751                 return ret;
1752         }
1753
1754         /* Obtain and remap AHB address. */
1755         cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1756         if (IS_ERR(cqspi->ahb_base)) {
1757                 dev_err(dev, "Cannot remap AHB address.\n");
1758                 ret = PTR_ERR(cqspi->ahb_base);
1759                 return ret;
1760         }
1761         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1762         cqspi->ahb_size = resource_size(res_ahb);
1763
1764         init_completion(&cqspi->transfer_complete);
1765
1766         /* Obtain IRQ line. */
1767         irq = platform_get_irq(pdev, 0);
1768         if (irq < 0)
1769                 return -ENXIO;
1770
1771         ret = pm_runtime_set_active(dev);
1772         if (ret)
1773                 return ret;
1774
1775
1776         ret = clk_prepare_enable(cqspi->clk);
1777         if (ret) {
1778                 dev_err(dev, "Cannot enable QSPI clock.\n");
1779                 goto probe_clk_failed;
1780         }
1781
1782         /* Obtain QSPI reset control */
1783         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1784         if (IS_ERR(rstc)) {
1785                 ret = PTR_ERR(rstc);
1786                 dev_err(dev, "Cannot get QSPI reset.\n");
1787                 goto probe_reset_failed;
1788         }
1789
1790         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1791         if (IS_ERR(rstc_ocp)) {
1792                 ret = PTR_ERR(rstc_ocp);
1793                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1794                 goto probe_reset_failed;
1795         }
1796
1797         if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1798                 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1799                 if (IS_ERR(rstc_ref)) {
1800                         ret = PTR_ERR(rstc_ref);
1801                         dev_err(dev, "Cannot get QSPI REF reset.\n");
1802                         goto probe_reset_failed;
1803                 }
1804                 reset_control_assert(rstc_ref);
1805                 reset_control_deassert(rstc_ref);
1806         }
1807
1808         reset_control_assert(rstc);
1809         reset_control_deassert(rstc);
1810
1811         reset_control_assert(rstc_ocp);
1812         reset_control_deassert(rstc_ocp);
1813
1814         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1815         host->max_speed_hz = cqspi->master_ref_clk_hz;
1816
1817         /* write completion is supported by default */
1818         cqspi->wr_completion = true;
1819
1820         ddata  = of_device_get_match_data(dev);
1821         if (ddata) {
1822                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1823                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1824                                                 cqspi->master_ref_clk_hz);
1825                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1826                         host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1827                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1828                         cqspi->use_direct_mode = true;
1829                         cqspi->use_direct_mode_wr = true;
1830                 }
1831                 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1832                         cqspi->use_dma_read = true;
1833                 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1834                         cqspi->wr_completion = false;
1835                 if (ddata->quirks & CQSPI_SLOW_SRAM)
1836                         cqspi->slow_sram = true;
1837                 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1838                         cqspi->apb_ahb_hazard = true;
1839
1840                 if (ddata->jh7110_clk_init) {
1841                         ret = cqspi_jh7110_clk_init(pdev, cqspi);
1842                         if (ret)
1843                                 goto probe_reset_failed;
1844                 }
1845
1846                 if (of_device_is_compatible(pdev->dev.of_node,
1847                                             "xlnx,versal-ospi-1.0")) {
1848                         ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1849                         if (ret)
1850                                 goto probe_reset_failed;
1851                 }
1852         }
1853
1854         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1855                                pdev->name, cqspi);
1856         if (ret) {
1857                 dev_err(dev, "Cannot request IRQ.\n");
1858                 goto probe_reset_failed;
1859         }
1860
1861         cqspi_wait_idle(cqspi);
1862         cqspi_controller_init(cqspi);
1863         cqspi->current_cs = -1;
1864         cqspi->sclk = 0;
1865
1866         host->num_chipselect = cqspi->num_chipselect;
1867
1868         ret = cqspi_setup_flash(cqspi);
1869         if (ret) {
1870                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1871                 goto probe_setup_failed;
1872         }
1873
1874         if (cqspi->use_direct_mode) {
1875                 ret = cqspi_request_mmap_dma(cqspi);
1876                 if (ret == -EPROBE_DEFER)
1877                         goto probe_setup_failed;
1878         }
1879
1880         ret = devm_pm_runtime_enable(dev);
1881         if (ret) {
1882                 if (cqspi->rx_chan)
1883                         dma_release_channel(cqspi->rx_chan);
1884                 goto probe_setup_failed;
1885         }
1886
1887         pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1888         pm_runtime_use_autosuspend(dev);
1889         pm_runtime_get_noresume(dev);
1890
1891         ret = spi_register_controller(host);
1892         if (ret) {
1893                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1894                 goto probe_setup_failed;
1895         }
1896
1897         pm_runtime_mark_last_busy(dev);
1898         pm_runtime_put_autosuspend(dev);
1899
1900         return 0;
1901 probe_setup_failed:
1902         cqspi_controller_enable(cqspi, 0);
1903 probe_reset_failed:
1904         if (cqspi->is_jh7110)
1905                 cqspi_jh7110_disable_clk(pdev, cqspi);
1906         clk_disable_unprepare(cqspi->clk);
1907 probe_clk_failed:
1908         return ret;
1909 }
1910
1911 static void cqspi_remove(struct platform_device *pdev)
1912 {
1913         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1914
1915         spi_unregister_controller(cqspi->host);
1916         cqspi_controller_enable(cqspi, 0);
1917
1918         if (cqspi->rx_chan)
1919                 dma_release_channel(cqspi->rx_chan);
1920
1921         clk_disable_unprepare(cqspi->clk);
1922
1923         if (cqspi->is_jh7110)
1924                 cqspi_jh7110_disable_clk(pdev, cqspi);
1925
1926         pm_runtime_put_sync(&pdev->dev);
1927         pm_runtime_disable(&pdev->dev);
1928 }
1929
1930 static int cqspi_runtime_suspend(struct device *dev)
1931 {
1932         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1933
1934         cqspi_controller_enable(cqspi, 0);
1935         clk_disable_unprepare(cqspi->clk);
1936         return 0;
1937 }
1938
1939 static int cqspi_runtime_resume(struct device *dev)
1940 {
1941         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1942
1943         clk_prepare_enable(cqspi->clk);
1944         cqspi_wait_idle(cqspi);
1945         cqspi_controller_init(cqspi);
1946
1947         cqspi->current_cs = -1;
1948         cqspi->sclk = 0;
1949         return 0;
1950 }
1951
1952 static int cqspi_suspend(struct device *dev)
1953 {
1954         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1955
1956         return spi_controller_suspend(cqspi->host);
1957 }
1958
1959 static int cqspi_resume(struct device *dev)
1960 {
1961         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1962
1963         return spi_controller_resume(cqspi->host);
1964 }
1965
1966 static const struct dev_pm_ops cqspi_dev_pm_ops = {
1967         RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
1968         SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
1969 };
1970
1971 static const struct cqspi_driver_platdata cdns_qspi = {
1972         .quirks = CQSPI_DISABLE_DAC_MODE,
1973 };
1974
1975 static const struct cqspi_driver_platdata k2g_qspi = {
1976         .quirks = CQSPI_NEEDS_WR_DELAY,
1977 };
1978
1979 static const struct cqspi_driver_platdata am654_ospi = {
1980         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1981         .quirks = CQSPI_NEEDS_WR_DELAY,
1982 };
1983
1984 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1985         .quirks = CQSPI_DISABLE_DAC_MODE,
1986 };
1987
1988 static const struct cqspi_driver_platdata socfpga_qspi = {
1989         .quirks = CQSPI_DISABLE_DAC_MODE
1990                         | CQSPI_NO_SUPPORT_WR_COMPLETION
1991                         | CQSPI_SLOW_SRAM,
1992 };
1993
1994 static const struct cqspi_driver_platdata versal_ospi = {
1995         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1996         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1997         .indirect_read_dma = cqspi_versal_indirect_read_dma,
1998         .get_dma_status = cqspi_get_versal_dma_status,
1999 };
2000
2001 static const struct cqspi_driver_platdata jh7110_qspi = {
2002         .quirks = CQSPI_DISABLE_DAC_MODE,
2003         .jh7110_clk_init = cqspi_jh7110_clk_init,
2004 };
2005
2006 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2007         .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2008 };
2009
2010 static const struct of_device_id cqspi_dt_ids[] = {
2011         {
2012                 .compatible = "cdns,qspi-nor",
2013                 .data = &cdns_qspi,
2014         },
2015         {
2016                 .compatible = "ti,k2g-qspi",
2017                 .data = &k2g_qspi,
2018         },
2019         {
2020                 .compatible = "ti,am654-ospi",
2021                 .data = &am654_ospi,
2022         },
2023         {
2024                 .compatible = "intel,lgm-qspi",
2025                 .data = &intel_lgm_qspi,
2026         },
2027         {
2028                 .compatible = "xlnx,versal-ospi-1.0",
2029                 .data = &versal_ospi,
2030         },
2031         {
2032                 .compatible = "intel,socfpga-qspi",
2033                 .data = &socfpga_qspi,
2034         },
2035         {
2036                 .compatible = "starfive,jh7110-qspi",
2037                 .data = &jh7110_qspi,
2038         },
2039         {
2040                 .compatible = "amd,pensando-elba-qspi",
2041                 .data = &pensando_cdns_qspi,
2042         },
2043         { /* end of table */ }
2044 };
2045
2046 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2047
2048 static struct platform_driver cqspi_platform_driver = {
2049         .probe = cqspi_probe,
2050         .remove_new = cqspi_remove,
2051         .driver = {
2052                 .name = CQSPI_NAME,
2053                 .pm = pm_ptr(&cqspi_dev_pm_ops),
2054                 .of_match_table = cqspi_dt_ids,
2055         },
2056 };
2057
2058 module_platform_driver(cqspi_platform_driver);
2059
2060 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2061 MODULE_LICENSE("GPL v2");
2062 MODULE_ALIAS("platform:" CQSPI_NAME);
2063 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2064 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2065 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2066 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2067 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");